

1

UVM-SystemC based hardware in the loop

simulations for accelerated Co-Verification

Paul Ehrlich
1
, Thang Nguyen

2
, Thilo Vörtler

3

1,3
Fraunhofer IIS - Design Automation Division - EAS,

Dresden, Germany ({paul.ehrlich,thilo.voertler}@eas.iis.fraunhofer.de)

2
Infineon Technologies Austria AG,

Villach, Austria (Thang.Nguyen@infineon.com)

Abstract— Stricter and higher safety requirements at a higher cost-efficiency together with the tremendous

growth in the silicon integration capability in recent years have pushed automotive electronic systems to a safe

system-on-chip architecture approach. This is especially true for a modern airbag system application, which is a

safety critical heterogeneous mixed-signal real-time system. As a consequence, verification of those systems is

becoming an increasingly time consuming and costly task, which cannot be handled by a classical simulation-based

development flow anymore. System emulation, as well as hardware in the loop (HIL) techniques for system

integration and test are widely used by Tier-1 and OEMs and more recently are also accepted by Tier-2 suppliers.

Despite this, an in-efficiency on the link between simulation-based development and HIL/Emulation based

development still exists, especially on the interchangeability of test descriptions between both steps. To overcome this

we propose to run UVM-SystemC on HIL systems, allowing them to re-use the verification environment with its test

benches. This re-use enables a tight relationship between the computer based verification and the HIL based lab

validation and therefore helps to reduce the time of a redesign cycle. It also speeds up root cause analysis in the case

of bug findings during the lab validation. To realize the proposed strategy, different established methods and

techniques are combined, which will be illustrated within this paper on the basis of an industrial airbag system

application.

Keywords— UVM, Verification, Validation, Co-Verification, Verification re-use, UVM-SystemC, Hardware

Acceleration, SystemC-AMS, HIL, RCP, SoC

I. INTRODUCTION

Electronic System Level (ESL) design has become a mature and proven practice during the design of complex

embedded systems. It assists the engineers and system architects with various methodologies to create virtual

prototypes. SystemC [1] and SystemC-AMS [2] as system level modeling language for digital and analog hard-

and software as well as the transaction level modeling (TLM) as a communication abstraction methodology

thereby provide the basis to create lightweight and fast models needed to handle the increasing system size and

heterogeneity. Coupling such a system model with an advanced test bench methodology like UVM [3] enables

extensive verification activity, aimed at the specification and furthermore the application context. Especially the

newly introduced UVM-SystemC provides a methodology to extend the already SystemC based system level

designs with a test environment [4]. Nevertheless, those setups often require a high computational effort for a

classical simulation which can take hours or even up to a day. This is especially true for simulations of a mixed

abstraction based device under test (DUT) especially if it includes RTL descriptions within the system model and

thus the simulation based setup alone becomes impractical.

Rapid control prototyping (RCP) on the other hand is known and proven for the lab validation of real

hardware as well as their prototypical implementations at a very high speed, ideally real-time. Therefore the use

of HIL simulations promises relief and acceleration if coupled with the verification process, since the DUT or

parts of it are replaced from the virtual system with real hardware.

To effectively use the HIL simulations to aid the verification and therefore the whole system level design

process, a tight coupling between the verification of the virtual prototype and lab validation of the DUT with the

HIL has to be established. The paper therefore presents a novel strategy (shown in Figure 1) to enable the re-use

of the test environment, with its test and check sequences throughout verification and lab validation activities.

This allows a bigger iterative loop between those two steps (shown in Figure 1), whereby an early move of the

implementation onto the prototype can accelerate and aid the verification, because of the speed supremacy of the

2

validation task. It shortens the time of a root-cause analysis in the virtual prototype through the re-use of the test

sequences obtained from the HIL simulation within the computer based verification. Including the HIL in the

verification process also has the noticeable side effect of not only increasing the speed but also the bug detection

possibilities at an early point in time to reduce development costs.

Figure 1 Verification and lab validation overview including DUT evolution.

The paper is organized as follows: The second section describes the proposed methodology with its

advantages. The third section describes the flow integration exemplarily in case of an existing SystemC/SystemC-

AMS integrated development environment (IDE). Then in section four, a case study based on the airbag SoC is

shown. Finally, section five concludes the paper and gives an outlook on future topics.

II. PROPOSSED METHODOLOGY

As mentioned in the introduction the whole setup contains a DUT and an attached test environment (shown in

Figure 1). During the design process time elapses from the left to the right during which the testing can be

distinguished in two tasks: a verifying task done on the models to check their requirement fulfillment and a

validating task to prove that they are implemented correctly.

A. DUT development

During the design process, the DUT evolves from a behavioral SystemC-AMS description to a mixed

abstraction model. In this second stage parts are replaced by more detailed RTL descriptions based on

Verilog/VHDL, while other parts especially analog ones remain in SystemC-AMS or get mixed with behavior

descriptions of analogue circuits using the VHDL real value modeling technique [5]. In a classical model-based

development environment, these two DUT models are normally used for proof-of-concept and to support the

development, including the debugging, of test cases, test bench and the test sequences. After reaching a certain

verification coverage, the mixed-abstraction model can be synthesized towards an FPGA prototype coupled to

risk-minimizing analog test chips to build up the first hardware setup [6]. The transition from the software based

model to the first hardware implementation thereby defines the boundary between the above mentioned

verification and validation step. In the final development step all parts move together in a single SoC – so-called

DUT Silicon ASIC.

B. Test environment

While the DUT evolves during the design process the test environment should remain as similar as possible to

guarantee functional correct testing throughout the steps. This constancy also ensures that a minimal effort is

spend on test environment creation and its porting from the software implementation to the one of HIL-Tester and

vice versa. Figure 2 illustrates the soft- and hardware layers of the verification and lab validation architecture and

emphasizes the proposed re-use of the described novel strategy

As depicted the test environment is based on UVM-SystemC represented by the three upper most layers. In it

the high abstraction test description provides test vectors to the specific UVM agent via the virtual sequencer,

which in turn provide specific driver and monitor components (not shown) to connect the test environment to the

Design
Sign-Off

HIL based
Tester

D
U

T

Im
p
le

m
e
n
ta

ti
o
n
s

DUT
Mixed

Abstraction

DUT
SystemC

(behavioral)

DUT-FPGA
Prototype

DUT-ASIC
Silicon

Simulation based
Environment

UVM-SystemC
Environment

re-use

MonitorDriver

UVM-SystemC
Environment

MonitorDriver

Lab ValidationVerification

T
e
s
t

E
n
v
ir
o
n
m

e
n
t

Abstraction level

3

corresponding DUT implementation. During the verification the monitor and drivers are function

implementations, connecting and wrapping the modeled DUT via Interfaces to the UVM-SystemC test

environment. Whereas the connection in case of the validation requires some more attention since it has to

connect trough specific hardware of the HIL-Tester, e.g. a FPGA providing SPI functionality. Requirements for

those HIL-Testers and two possible platforms are discussed in sections 1) and 2) below. The final hardware

namely the ASIC SoC has the most constrained interface due to its limited number of hardware pins. It therefore

defines the minimal interface to the test environment, used to enable the proposed re-use of test sequences with its

vectors throughout the process. This is also emphasized in Figure 2 where the corresponding two components

span over the scenarios layers covering the different design steps.

Figure 2 Detailed view on the soft- and hardware implementation highlighting the re-use of the proposed novel strategy.

1) HIL Tester

The so called HIL-Tester represents a hardware system with its corresponding software tool chain, capable of

building and running directly the UVM-SystemC based test environment, wherefore it has to fulfill the following

requirements:

 A fully compatible C++ Compiler, to compile SystemC and corresponding UVM-SystemC and SystemC-

AMS libraries

 A Hardware interface to connect the DUT (GPIOs, SPIs, ADCs, DACs, …)

 A high-performance processing system capable of running the test environment at sufficient speed, ideally

at real-time

 Predictable timing behavior to generate DUT stimuli at a specified timing

2) Example HIL-Tester

The above criteria led to the following two test environments. The first one is based on a dSPACE box with a

DS1006 processor board [8] running the UVM-SystemC environment almost on bare metal by wrapping it with

an initialize call and a background task called periodically. The second one is an ARM based Zynq-SoC [9], build

on the cost-effective Zedboard [10], running a real-time Linux scheduling the test environment. Both were able to

Lab Validation

X86-Computer

DUT FPGA or

ASIC-Silicon

HIL- System

Real-Time

OS

Hardware SPI

on FPGA

UVM_SC_Agent(HIL)

Verification

X86 / 64 - System

Windows/Linux OS

DUT Mixed Abstraction
Interfaces

UVM_SC_Agent(SIM)

DUT SC-AMS BehaviorInterfaces

 U
VM_SC_AGent(SIM)FUNC/CM

D

Layer

Test bench with virtual sequencer

 SystemC-AMS high-abstraction Test Description

Scenario
Layer

Application

 Layer

Signal
 Layer

UVM
Layer

Soft- and
Hardware
Plattform

4

fulfill the requirements enabling the native run of the UVM-SystemC environment. For the case study described

in section IV the latter was used.

C. Advantages

To illustrate the advantages of the proposed methodology it will be presented with the help of the Swiss

Cheese Model as depicted in Figure 3. Widely used in quality management, the analogy of the Swiss Cheese

Model describes the escape of possible errors/bugs for each used tools/methodologies due to their limitation.

Therefore, it’s important to combine different tools and methodologies so that more bugs can be captured, hence

improving the design quality. As shown in Figure 3, the upper layer represents the computer based simulation

whereas the lower layer represents the lab validation.

It’s essential to deploy computer based simulation at the beginning until it reaches certain coverage and then

continue with the HIL-testing with physical prototyping. With the prototype, it allows accelerated verification

runs as well as extremely high speed validation tests with real time stimuli generation. This is a clear advantage

compared to classical mixed-signal simulation approaches, as it overcomes their bottle neck due to its simulation

performance issues. With the newly proposed methodology and the resulting speed, also randomized tests are

possible. The higher test coverage gained by the lab validation is depicted in the cheese model by the smaller

number and lesser size of holes in the lower layer, whereas the remaining holes e.g. can be seen as test scenarios

not achievable due to the lack of access to internal DUT signals.

As the test sequences are re-used, including the test vectors, a direct mapping between the verification and

validation activities gets possible. Any detected errors in one or the other layer can quickly reveal inconsistencies

in the DUT and can single out bugs that were otherwise missed at this stage. In the cheese each test vector is

represented by a bug dropping down on a straight line, which represents the re-use in the beneath layer.

Root cause analysis on the other hand are more focused, and thus require less effort and time, whereby also

the re-implementation and testing of the bug-fixes is accelerated, since the test vector can specifically re-use in

the layer above to direct the DUT into the detected error state.

Additionally to the advantages of the methodology illustrated with the Swiss cheese an early FPGA prototype

can be provided with it at a minimum effort. This is due to the early integration of RTL code in the DUT. The

complete implementation of certain important functions of the chip can thus be validated before the final chip is

assembled and produced.

Therefore, the overall advantage of the re-use and thus increased test coverage and speed, is the increased

detection of errors vastly reducing development costs.

Figure 3 Swiss-cheese model for verification / validation process.

5

III. TOOLING INTEGRATION

To effectively use the proposed methodology the IDE has to support a seamless HIL integration as well as the

UVM environment. Exemplarily this integration will be shown for COSIDE
®
 which is an Eclipse based

SystemC-AMS IDE developed by Fraunhofer IIS/EAS.

Figure 4 a) Flow within IDE b) COSIDE® showing a UVM schematic with a monitor and driver.

The IDE was extended by a cross compiler, which was integrated into the IDEs make flow. Aided with

precompiled libraries such as SystemC and UVM-SystemC it allows a fast off target executable generation. For

further usability a plugin was added which includes HIL specific actions, to make for example use of the Ethernet

connection of the HIL-Tester to automatically upload the cross compiled executable or to transfer the console

output and trace files back into the user interface (UI). Notice that all of those points have to be provided

specifically for each HIL-Tester.

HIL-Tester independent on the contrary is the UVM environment, which is rather complex and therefore

supported by a schematic editor. It allows visual editing and creation of the environment structure (shown

exemplarily in Figure 4) as well as generation of code skeletons for each component.

IV. AIRBAG SOC CASE STUDY

The proposed workflow was executed on the example of an airbag SoC. The example was chosen based on its

underlying properties, challenges and its complexity resulting from the full integration of an airbag electronic

system into a single SoC.

A. Overview of the airbag SoC case study

The underlying airbag DUT is comprised of sensors, an airbag ECU (Electronic Control Unit) – which

consists of an airbag SoC chipset and an airbag embedded main microcontroller (µC) – and actuators. The airbag

ECU is the hardware within a multiple airbag system that controls the deployment of airbags within a car.

The main µC is the master and communicates with the airbag SoC chipset via the standard serial peripheral

interface (SPI). The functionalities of the chip include a supply management unit, satellite sensor interfaces (such

as: acceleration and rotational sensor), firing event verification controller, firing enabling logic, airbag

deployment module and many more other functionalities. These high density functionalities are distributed in

both, hardware (digital and analogue front end) and firmware glued on high density logic digital cores, so called

DCORE – digital CORE.

The main functionalities of the airbag SoC chip include the following:

 Intelligent supply management units consist of Switched Mode Power Supply modules - SMPS (buck and

boost converter), the internal Power Supply Generator – iPSG, and a CENTRAL power supply control

Code Skeleton
Generation

Schematic
Entry of UVM
Environment

Cross
Compilation

HIL
Simulation

Post
Simulation
Evaluation

6

logic, which controls the chip power up and power down stage and monitors the system supply integrity. It

also provides logic for failsafe state diagnostics in case of integrity violation.

 Remote sensor interfaces supporting different sensor types ranging from acceleration to rotational sensors

and compliance to various standards such as PSI5 (Peripheral Sensor Interface) [7] or DSI3 (Distributed

System Interface) [6]

 Saving engine assisting the main µC in observing the sensor data transmission and confirming if a

deployment event has occurred.

 Airbag deployment module – squib drivers and deployment enabling logic – allowing current for the

ignition of airbags, covering requirements on deployment timing and current as well as load condition

diagnostics.

Figure 5 Airbag SoC overview.

B. Execution of the new strategy on the airbag system:

As modeling and product emulation using FPGA-analogue test chip are already developed in [5] and [6]

respectively, the evaluation of the proposed strategy focused on the re-use and emulation of UVM-SystemC test

bench on the HIL-Tester. This means that the FPGA-analogue TC with its sensor network is already available as

hardware prototype. Figure 6 demonstrates a lab setup block diagram of the airbag SoC DUT FPGA prototype,

while Figure 7 shows the according real setup for lab evaluation activity. As shown in both Figure 6 and Figure 7,

to realize the HIL-Tester concept, the main µC is replaced now by the Zedboard with the Xilinx Zynq based

ARM-SoC, on which the UVM-SystemC test bench is re-used to emulate the physical stimulus to drive the DUT

FPGA-prototype.

DSI3 Sensor
Emulyzer/RealDSI3 Sensor

Emulyzer/RealDSI3 Sensor
Emulyzer/Real

FPGA_SoC_TOP

Main
µC/SPI

Emulator

Airbag_Dig

Sensor TxR
logic

(DUT1)S
P

I
H

W
 I

F

E
xt

_D
at

aX
_

IF

 TC_Board

AFE
Analogue TC

(DUT2)

E
xt

_D
at

aX
_

IF

DSI/PSI Sensor
Emulyzer/Real

init_sync

Trans_ctrl

1
2

/
2

4
/

3
6

M
h

Z

Vdsi_X

(X=1..6)

SPI_IF

FPGA Mother Board
Workstation
with StubFnc
Ctrl Software

RS232
/RJ-45

Airbag_AFE
StubFunC

 Testing/evaluating the new
implementation of sensor TxR

 Paremetric testing of AFE
circuit implementation

HIL_Tester, e.g.:
Zedboard with the

reuse of UVM-
SystemC TB

Figure 6: Lab Evaluation Setup block diagram of airbag SoC DUT FPGA prototype.

7

Figure 7: Real lab setup for the evaluation of the new verification/lab evaluation strategy.

C. Evaluation results

The evaluation results could be summarized as follows:

 With the execution of the new strategy, not only the UVM-SystemC test bench can be directly re-

used as shown in Figure 2 but also it can be extended for long-term test (e.g.: few hours of system

run-time checking reception of millions of sensor data frames) and stress test (e.g.: full system

configuration at maximum transmission rate, etc…) which are impractical to do with classical system

computer-based simulation. These tests are very important for such safety critical application, thus

extended the verification coverage.

 As well, with the new setup, the whole prototype system is checked at real-time speed against real

sensor network used later in the application instead of sensor model simulation.

 Using the new strategy and workflow, system test scenarios and test vectors can be modelled and

implemented using C++/SystemC, allowing object oriented test capability with layering. This

significantly contributes to the improvement of test implementation, management and overall

verification effort.

V. CONCLUSION AND FUTURE WORK

In the paper a methodology for a tightly coupled verification and validation strategy has been introduced

allowing the re-use of test environment. Two HIL-Testers have been described which enable the use of UVM-

SystemC during the validation within the lab. Their requirements and limitations were defined and tested based

on an existing Airbag SoC. The advantages of the methodology were shown by an increased error finding while

greatly shortening the time of the overall V&V process.

As an outlook, the authors focus on a more intense investigation of the HIL-Tester environments to highlight

their ability and features. Also the speed-tradeoff by introducing SystemC on the hardware platform compared to

a bare metal implementation has to be further reviewed.

8

ACKNOLEDGEMENT

The research leading to these results has received funding from the European Union’s Seventh Framework

Program (FP7-ICT-2011-8) under grand agreement n° 287562 (http://verdi-fp7.eu/)

REFERENCES

[1] IEEE Computer Society, 1666-2005 IEEE Standard SystemC Language Reference Manual

[2] Accellera Systems Initiative, SystemC AMS 2.0 Standard, http://www.accellera.org/downloads/standards/systemc.

[3] Accellera Systems Initiative, Standard Universal Verification Methodology (UVM),
http://www.accellera.org/downloads/standards/uvm/.

[4] M. Barnasconi, F. Pêcheux and T. Vörtler, “Advancing system-level verification using UVM in SystemC”, Design and Verification
Conference & Exhibition (DVCon), March 2014.

[5] Nguyen, T. and Haerle, D., "FPGA-Based Development for Sophisticated Automotive Embedded Safety Critical System”, Design and
Verification Conference & Exhibition (DVCon), February 2013.

[6] Nguyen, T. and Wooters, S., " Mixed-abstraction Modeling Approach with Fault Injection for Hardware-Firmware Co-design and
Functional Co-verification of an Automotive Airbag System on Chip Product," SAE Int. J. Passeng. Cars – Electron. Electr. Syst.
7(1):125-132, 2014, doi:10.4271/2014-01-0240.

[7] PSI5 Consortium, PSI5 – Peripheral Sensor Interface for automotive Application Specification version 2.1 -
http://psi5.org/specification/

[8] dSPACE – Modulare Hardware overview - https://www.dspace.com/en/pub/home/products/hw/modular_hardware_introduction.cfm ,

accessed July 2014.

[9] Xilinx - Zynq-7000 All Programmable SoC - http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/ , accessed July 2014.

[10] Zedboard --- Product Page - http://www.zedboard.org/product/zedboard , accessed July 2014.

[11] DSI Consortium, DSI – The Distributed System Interface - http://dsiconsortium.org/ , accessed July 2014.

http://verdi-fp7.eu/
http://www.accellera.org/downloads/standards/systemc
http://www.accellera.org/downloads/standards/uvm/
http://psi5.org/specification/
https://www.dspace.com/en/pub/home/products/hw/modular_hardware_introduction.cfm
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.zedboard.org/product/zedboard
http://dsiconsortium.org/

