UVM-SystemC based hardware in the loop simulations for accelerated Co-Verification

Paul Ehrlich¹, Thang Nguyen², Thilo Vörtler³ ^{1,3} Fraunhofer IIS – EAS

² Infineon Technologies Austria AG

- 1. Introduction
 - Overview
 - Aims
- 2. Methodology
- 3. Case Study Airbag SOC
- 4. Summary

Introduction: Overview

DUT evolvement

Lab Verification and Lab Validation

Lab Validation

Test Environments

Introduction: Aims

- Increase interchangeability of test description
- Integration of a HIL into Verification

- 1. Introduction
- 2. Methodology
 - Lab Validation with UVM-SystemC
 - Advantages
 - Tooling
- 3. Case Study Airbag SOC
- 4. Summary

Lab Validation with UVM-SystemC

- Requirements for UVM-SystemC
 - Fully compatible C++ Compiler (SystemC... libraries)
 - Hardware interface (GPIOs, SPIs, ADCs, DACs...)
 - Performance processing system (speed, real-time)
 - Deterministic timing
- Example HIL tester
 - dSPACE ds1006 processor with ds2211 IO Board
 - Zedboard ARM based Zynq-SOC with real-time Linux

Advantages (1)

- Soft and Hardware layering
 - Re-use of Testbenches
 with their vectors
 - DUT Adoption via
 UVM Agent with
 Drivers and Monitors

Advantages (2)

- Swiss cheese model depicts the advantages of combining methodologies to improve design quality
 - Upper Layer Computer based Simulation
 - Lower Layer lab based validation

Advantages

- HIL performance allows randomization and therefore the coverage
- Test vector re-use reduces effort and time of a root cause analysis

IDE Tooling

- Example integration into an existing SystemC IDE – COSIDE®
 - Schematic entry of the UVM environment
 - Generates Code skeletons
 - Integrates Cross Compilation and Test execution on HIL Tester

- 1. Introduction
- 2. Methodology
- 3. Case Study Airbag SOC
 - Overview
 - Demo Implementation
- 4. Summary

Case study – Airbag SOC

Demo implementation – Blockset

Demo implementation – Lab setup

- 1. Introduction
- 2. Methodology
- 3. Case Study Airbag SOC
- 4. Summary

Summary

- Tester requirements have been investigated and defined
- Two example Tester have been introduced
- Example Tooling integration has been shown
- Advantages of the proposed methodology have been discussed
- Case Study of an Airbag SOC has proven applicability

Thank you for your attention.

Questions?

