
UVM-SystemC Applications in
the real world

Stephan Schulz, Thilo Vörtler, Karsten
Einwich (Fraunhofer IIS/EAS)

Martin Barnasconi (NXP)

© Accellera Systems Initiative 1

Outline
• Introduction and Motivation

– Universal Verification Methodology (UVM) … what is it?
– Why UVM in SystemC/C++/SystemC-AMS?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation
– Randomization and coverage

• Standardization within Accellera
• Applications and use cases of UVM-SystemC
• Summary and outlook

• Introduction and Motivation
– Universal Verification Methodology (UVM) … what is it?
– Why UVM in SystemC/C++/SystemC-AMS?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation
– Randomization and coverage

• Standardization within Accellera
• Applications and use cases of UVM-SystemC
• Summary and outlook

Outline

• Universal Verification Methodology facilitates the
creation of modular, scalable, configurable and reusable
test benches
– Based on verification components with standardized interfaces

• Class library which provides a set of built-in features
dedicated to simulation-based verification
– Utilities for phasing, component overriding (factory),

configuration, comparing, scoreboarding, reporting, etc.
• Environment supporting migration from directed testing

towards Coverage Driven Verification (CDV)
– Introducing automated stimulus generation, independent result

checking and coverage collection

Introduction: UVM - what is it?

4

• No structured nor unified
verification methodology
available for ESL design
– UVM (in SystemVerilog) primarily

targeting block/IP level (RTL)
verification, not system-level

• Porting UVM to SystemC/C++
enables
– creation of more advanced system-

level test benches
– reuse of verification components

between system-level and block-
level verification

Motivation

5

*UVM-SystemC = UVM implemented in
SystemC/C++

C++

SystemC-AMS
TLM SCV

UVM-SystemC* -AMS

Verification & Validation
Methodology

SystemC

-AMS

Why UVM in SystemC/C++ and
SystemC-AMS?

• Strong need for a system-level verification
methodology for embedded systems which include
HW/SW and AMS functions
– SystemC is the recognized standard for system-level design,

and needs to be extended with advanced verification concepts
– SystemC AMS available to cover the AMS verification needs

• Reuse tests and test benches across verification
(simulation) and validation (HW-prototyping) platforms
– This requires a portable language like C++ to run tests on

HW prototypes and even measurement equipment
– Enabling Hardware-in-the-Loop simulation or Rapid Control

Prototyping

6

Why UVM in SystemC/C++ and
SystemC-AMS?

• Benefit from proven standards and reference
implementations
– Leverage from existing methodology standards and reference

implementations, aligned with best practices in verification

7

Outline
• Introduction and Motivation

– Universal Verification Methodology (UVM) … what is it?
– Why UVM in SystemC/C++/SystemC-AMS?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation
– Randomization and coverage

• Standardization within Accellera
• Applications and use cases of UVM-SystemC
• Summary and outlook

UVM-SystemC overview

9

UVM-SystemC functionality Status
Test bench creation with component classes:
agent, sequencer, driver, monitor, scoreboard, etc.



Test creation with test, (virtual) sequences, etc. 
Configuration and factory mechanism 
Phasing and objections 
Policies to print, compare, pack, unpack, etc. 
Messaging and reporting 
Register abstraction layer and callbacks development
Coverage groups development
Constrained randomization SCV or CRAVE

UVM layered architecture

10

Spec

Test cases

Scenario

Signal

Test casesTest

Fu
nc

tio
na

l c
ov

er
ag

e

Functional

Command Monitor

ScoreboardSequencer

Driver Monitor

Verification component

Verification environment (test bench)

Device
under test

Sequences

UVM-SystemC phasing

11

run

reset

configure main shutdown

connect extract check report final

UVM runtime phases 



UVM common phases

build

end_of_elaboration

start_of_simulation

pre-reset post-reset

 = SystemC process(es)

        




= top-down execution

= bottom-up execution

Legend

before_end_of_elaboration* end_of_simulation*

= SystemC-only callback*

Pre-run phases Runtime phases Post-run phases



− UVM phases are mapped on the SystemC phases

− UVM-SystemC supports the 9 common phases and the (optional)
refined runtime phases

− Completion of a runtime phase happens as soon as there are no
objections (anymore) to proceed to the next phase

• Component responsible for driving and
monitoring the DUT :
– Typically contains three components

• Sequencer
• Driver
• Monitor

• Can contain analysis functionality for
basic coverage and checking

• Possible configurations
– Active agent: sequencer and driver are enabled
– Passive agent: only monitors signals

(sequencer and driver are disabled)
• C++ base class: uvm_agent

UVM agent

12

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

class dut_agent1: public uvm::uvm_agent{
 public:
 dut_driver1<dut_trans1>* driver;
 dut_monitor1<dut_trans1>* monitor;
 dut_sequencer1<dut_trans1>* sequencer;

 UVM_COMPONENT_UTILS(dut_agent1);

 dut_agent1::dut_agent1(uvm::uvm_name name) :
 uvm_agent(name), driver(0), monitor(0), sequencer(0) {}

 void dut_agent1::build_phase(uvm::uvm_phase& phase) {
 uvm_agent::build_phase(phase);

 if (get_is_active() == uvm::UVM_ACTIVE) {
 sequencer = dut_sequencer1<dut_trans1>::type_id::create("sequencer",
this);
 assert(sequencer);

 driver = dut_driver1<dut_trans1>::type_id::create("driver", this);
 assert(driver);
 }
 monitor = dut_monitor1<dut_trans1>::type_id::create("monitor", this);
 assert(monitor);
}

UVM-SystemC agent (1)
Dedicated base class to
distinguish agents from
other component types

Registers the object in
the factory

Call to the factory which creates and instantiates
child component dynamically

NOTE: UVM-SystemC API under review – subject to change

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

Essential call to base class to
access properties of the agent

13

UVM-SystemC agent (2)

 ...

void dut_agent1::connect_phase(uvm::uvm_phase& phase) {

if (get_is_active() == uvm::UVM_ACTIVE) {
 // connect driver and sequencer
 driver->seq_item_port(sequencer->seq_item_export);
}
 ...

Only the connection between sequencer
and driver is made here. Connection of

driver and monitor to the DUT is done via
the configuration mechanism

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

NOTE: UVM-SystemC API under review – subject to change

14

• A UVM verification component
(UVC) is an environment which
consists of one or more
cooperating agents

• UVCs or agents may set or get
configuration parameters

• Each verification component is
connected to the DUT using a
dedicated interface

• C++ base class: uvm_env

UVM verification component

15

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)
config

trans

seq

vifvif

config

analysis

In this example, the UVM verification component (UVC)
contains only one agent

UVM-SystemC verification component

16

class dut_uvc: public uvm::uvm_env
{
 public:
 UVM_COMPONENT_UTILS(dut_uvc);

dut_agent1* agent1;

dut_uvc::dut_uvc(uvm::uvm_name name) :
 uvm_env(name), agent1(0) {
}
void dut_uvc::build_phase(uvm::uvm_phase& phase)
{
 uvm_env::build_phase(phase);
 // instantiate the agent
 agent1 = dut_agent1::type_id::create("agent1", this);
 assert(agent1);
}
};

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)
config

trans

seq

vifvif

config

analysis

A UVC is considered as a
sub-environment in large

system-level environments

NOTE: UVM-SystemC API under review – subject to change

• Sequences are part of the test scenario and
define streams of transactions

• The properties (or attributes) of a transaction
are captured in a sequence item

• Sequences are not part of the test bench hierarchy,
but are mapped onto one or more sequencers

• Sequences can be layered, hierarchical
or virtual, and may contain multiple
sequences or sequence items

• Sequences and transactions can be configured
via the factory

UVM sequences

17

transaction

transaction

transaction

sequence

seq

seq1

seq2

trans

trans

seq1

trans

trans

seq2

UVM-SystemC sequence item
class dut_trans1: public uvm::uvm_sequence_item
{
public:
 int data1;
 int data2;
 UVM_OBJECT_UTILS(dut_trans1)
 ;

 dut_trans1::dut_trans1(const std::string& name) :
 uvm_sequence_item(name), data1(0), data2(0){}

 virtual void
 do_print(uvm::uvm_printer& printer) const;
 virtual void
 do_pack(uvm::uvm_packer& packer) const;
 virtual void
 do_unpack(uvm::uvm_packer& packer);
 virtual void
 do_copy(const uvm::uvm_object& rhs);
 virtual bool
 do_compare(const uvm::uvm_object& rhs) const;

};

Transaction
defined as

sequence item

User-defined data items
(randomization can be done

using SCV or CRAVE)

A sequence item should implement all
elementary member functions to print,

pack, unpack, copy and compare the data
items

(there are no field macros in
UVM-SystemC)

18

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

NOTE: UVM-SystemC API under review – subject to change

18

UVM-SystemC sequence

19

class dut_sequence1: public uvm::uvm_sequence<>
{
public:
 UVM_OBJECT_UTILS(dut_sequence1)
 ;
 dut_sequence1(const std::string& name = "dut_sequence1");

 dut_sequence1::dut_sequence1(const std::string& name) :
 uvm_sequence<>(name) {}

 void dut_sequence1::pre_body() {
 if (starting_phase != NULL)
 starting_phase->raise_objection(this);
 }
 void dut_sequence1::body() {
 dut_trans1* req = dut_trans1::type_id::create("req");
 uvm::uvm_sequence_item* rsp;
 start_item(req);

 //Implement transaction contents

 finish_item(req);
 get_response(rsp);
 }
 void dut_sequence1::post_body() {
 if (starting_phase != NULL)
 starting_phase->drop_objection(this);
}
};

Randomization and transaction
contents her

Optional: get response

Factory registration also
supports template classes

Raise objection if there is no
parent sequence

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

NOTE: UVM-SystemC API under review – subject to change

A sequence contains a
request and (optional)

response, both defined as
sequence item

• A test bench is the environment
which instantiates and configures
the UVCs, scoreboard, and
(optional) virtual sequencer

• The test bench connects
– Agent sequencer(s) in each UVC with

the virtual sequencer (if defined)
– Monitor analysis port(s) in each UVC

with the scoreboard subscriber(s)
– Note: The driver and monitor in each

agent connect to the DUT using the interface
stored in the configuration database

• C++ base class: uvm_env

UVM environment (test bench)

20

Testbench (env) config

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf

scoreboard
Subscr

2evalSubscr
1

conf

virtual
sequencer

UVM-SystemC test bench (1)

21

class testbench : public uvm_env
{
 public:
 vip_uvc* uvc1;
 vip_uvc* uvc2;
 virt_sequencer* virtual_sequencer;
 scoreboard* scoreboard1;

 UVM_COMPONENT_UTILS(testbench);

 testbench(uvm_name name)
 : uvm_env(name), uvc1(0), uvc2(0),
 virtual_sequencer(0), scoreboard1(0) {}

 virtual void build_phase(uvm_phase& phase)
 {
 uvm_env::build_phase(phase);

 uvc1 = vip_uvc::type_id::create("uvc1", this);
 assert(uvc1);
 uvc2 = vip_uvc::type_id::create("uvc2", this);
 assert(uvc2);

 set_config_int("uvc1.*", "is_active", UVM_ACTIVE);
 set_config_int("uvc2.*", "is_active", UVM_PASSIVE);

 ...

Definition of active or
passive UVCs

All components in the test
bench will be dynamically
instan-tiated so they can

be overidden by the test if
needed

Testbench (env) config

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf

scoreboard
Subscr

2evalSubscr
1

conf

virtual
sequencer

NOTE: UVM-SystemC API under review – subject to change

UVM-SystemC test bench (2)

22

 ...
 virtual_sequencer = virt_sequencer::type_id::create(
 "virtual_sequencer", this);
 assert(virtual_sequencer);

 scoreboard1 =
 scoreboard::type_id::create("scoreboard1", this);
 assert(scoreboard1);
 }

 virtual void connect_phase(uvm_phase& phase)
 {
 virtual_sequencer->vip_seqr = uvc1->agent->sequencer;

 uvc1->agent->monitor->item_collected_port.connect(
 scoreboard1->xmt_listener_imp);

 uvc2->agent->monitor->item_collected_port.connect(
 scoreboard1->rcv_listener_imp);
 }

};

Analysis ports of the
monitors are connected to
the scoreboard subscribers

(listeners)

Virtual sequencer points to
UVC sequencer

Testbench (env) config

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf

scoreboard
Subscr

2evalSubscr
1

conf

virtual
sequencer

NOTE: UVM-SystemC API under review – subject to change

• Each UVM test is defined as a dedicated test class,
which instantiates the test bench and defines the
test sequence(s)

• Reuse of tests and topologies is
possible by deriving tests from a
test base class

• The UVM configuration and factory
concept can be used to configure or
override UVM components,
sequences or sequence items

• C++ base class: uvm_test

UVM test

23

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

UVM-SystemC test (1)

24

class test : public uvm_test
{
 public:
 testbench* tb;
 bool test_pass;

 test(uvm_name name) : uvm_test(name),
 tb(0), test_pass(true) {}

 UVM_COMPONENT_UTILS(test);

 virtual void build_phase(uvm_phase& phase)
 {
 uvm_test::build_phase(phase);
 tb = testbench::type_id::create("tb", this);
 assert(tb);

 uvm_config_db<uvm_object_wrapper*>::set(this,
 tb.uvc1.agent.sequencer.run_phase", "default_sequence",
 vip_sequence<vip_trans>::type_id::get()); }

 set_type_override_by_type(vip_driver<vip_trans>::get_type(),
 new_driver<vip_trans>::get_type());

 ...

Factory method to override the
original driver with a new driver

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

Configuration of the default sequence, which
will be executed on the sequencer of the

agent in UVC1

The test instantiates the
required test bench

Specific class to identify the test
objects for execution in the

sc_main program

NOTE: UVM-SystemC API under review – subject to change

UVM-SystemC test (2)

25

 ...

 virtual void run_phase(uvm_phase& phase)
 {
 UVM_INFO(get_name(),
 "** UVM TEST STARTED **", UVM_NONE);
 }

 virtual void extract_phase(uvm_phase& phase)
 {
 if (tb->scoreboard1.error)
 test_pass = false;
 }

 virtual void report_phase(uvm_phase& phase)
 {
 if (test_pass)
 UVM_INFO(get_name(), "** UVM TEST PASSED **", UVM_NONE);
 else
 UVM_ERROR(get_name(), "** UVM TEST FAILED **");
 }
};

Report results in the
report phase

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

Get result of the scoreboard
 in the extract phase

NOTE: UVM-SystemC API under review – subject to change

• The top-level (e.g. sc_main)
contains the test(s) and the DUT

• The interface to which the DUT is
connected is stored in the
configuration database, so it can
be used by the UVCs to connect
to the DUT

• The test to be executed is either
defined by the test class
instantiation or by the argument
of the member function run_test

The main program (top-level)

26

DUT

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

int sc_main(int, char*[])
{

 dut* my_dut = new dut("my_dut");

 vip_if* vif_uvc1 = new vip_if;
 vip_if* vif_uvc2 = new vip_if;

 uvm_config_db<vip_if*>::set(0, "*.uvc1.*",
 "vif", vif_uvc1);
 uvm_config_db<vip_if*>::set(0, "*.uvc2.*",
 "vif", vif_uvc2);

 my_dut->in(vif_uvc1->sig_a);
 my_dut->out(vif_uvc2->sig_a);

 run_test("test");

 return 0;
}

UVM-SystemC main program

27

Instantiate the
DUT and

interfaces

Register the test to be
executed. This function also
dynamically instantiates the

test if given as argument

Connect DUT to
the interface

register interface
using the configuration

database

DUT

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

NOTE: UVM-SystemC API under review – subject to change

• Constrained randomization libraries for SystemC are
available
– SystemC Verification Library (SCV)
– Constrained Random Verification Environment (CRAVE)

• No standardized functional coverage API in SystemC
available
– Proprietary/commercial SystemC coverage APIs available, but

not offered (yet) for standardization

• Proposals for randomization and coverage APIs exist

Constrained randomization and
functional coverage in UVM-SystemC

28

Demo

© Accellera Systems Initiative 29

UVM-SystemC-AMS
• The UVM-SystemC infrastructure can also handle AMS

verification
• Transactions will program analog driver and monitors
• Drivers generate analog signals, Monitors analyze analog

signals and extracting properties like amplitude,
spectrum, … and transfer them via transactions

• AMS verification requires continuous distribution
function (and not PWC only)

• Randomization of DUT parameters is essential

30

UVC with AMS driver and monitor
using SystemC-AMS

• Regular UVM-SystemC drivers and
monitors are used in which
SystemC-AMS Timed Data Flow
(TDF) modules are instantiated

• For the SystemC-AMS modules,
TDF ports are necessary to allow
read / write operations to the
analog interface

• The parent driver and monitor
establish the connection from the
TDF ports to the interface via the
configuration mechanism

31

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)
config

trans

seq

vifvif

config

analysis
AMS

monitor
AMS

driver

• UVM AMS extensions will not break the existing

UVM
• Time annotation to transaction

– Decoupled sequence time
– Data dependent synchronization

• Introducing of a pre-build phase under discussion
– Is executed before the DUT is instantiated
– Permits the setting of parameter, which influence the DUT

creation

Further UVM-SystemC-AMS
extensions

32

Demo

© Accellera Systems Initiative 33

• Introduction and Motivation
– Universal Verification Methodology (UVM) … what is it?
– Why UVM in SystemC/C++/SystemC-AMS?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation
– Randomization and coverage

• Standardization within Accellera
• Applications and use cases of UVM-SystemC
• Summary and outlook

Outline

Standardization within Accellera
• UVM-SystemC

Standardization within
Accellera Verification WG is
under way
– UVM-SystemC Language

Reference Manual (LRM)
available

– UVM-SystemC Proof-of-Concept
implementation exists, released
under Apache 2.0 license

35

• Introduction and Motivation
– Universal Verification Methodology (UVM) … what is it?
– Why UVM in SystemC/C++/SystemC-AMS?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation
– Randomization and coverage

• Standardization within Accellera
• Applications and use cases of UVM-SystemC
• Summary and outlook

Outline

• Enables new use cases

• New re-use scenarios

• IP protected, language and simulator independent
verification IP

• Enables System-level UVM based verification

• Simplifies development of UVM based verification
methods for AMS systems

Applications and use cases of UVM-
SystemC

37

Re-use across Languages, Simulators,
Abstraction Levels

38

Testbench (env)

….. agent
UVC1 (env)

Mon Drv

Sqr

agent
UVC2 (env)

Mon Drv

Sqr conf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test config default
sequence

DUT - VHDL

AMS DIG SW
in

out DUT - Verilog

AMS DIG SW
in

out DUT - SystemC

AMS DIG SW
in

out DUT - Matlab

AMS DIG SW
in

out …

download

monitor
integrate

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

config default
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

config default
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

config default
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Zynq Board (FPGA + ARM)

Re-use for emulation and lab validation

39

• Vision
– Translating specifications (documents, standards) to

readable – also for non verification experts - test scenarios,
this should also include ranges and uncertainties

• No separation between analog/digital, hard- and software
• “real” system-level verification

• Main question:
– Will the system work for the purposes for which it will be

built?

UVM for System-level / Functional
verification

40

• No executable reference model available

• Complex stimulation and expected sequences

• Coverage measure is different to implementation level

• How much of the possible application scenarios, input
stimuli, operating conditions, specification items are
verified?

 UVM methodology/best practices have to be extended for system
level!
 UVM framework is generic enough to realize the required
extensions needed for System level verification!

Challenges for UVM System-level

41

• Introduction and Motivation
– Universal Verification Methodology (UVM) … what is it?
– Why UVM in SystemC/C++/SystemC-AMS?

• UVM-SystemC overview
– UVM foundation elements
– UVM test bench and test creation
– Randomization and coverage

• Standardization within Accellera
• Applications and use cases of UVM-SystemC
• Summary and outlook

Outline

• Universal Verification Methodology created in
SystemC/C++
– Fully compliant with UVM standard
– Target is to make all essential features of UVM available in

SystemC/C++
– UVM-SystemC language definition and proof-of-concept

implementation contributed to Accellera Systems Initiative
– SystemC-AMS is used for AMS system-level verification use

cases

Summary and outlook (1)

43

• Ongoing developments
– Extend UVM-SystemC with constrained randomization

capabilities using SystemC Verification Library (SCV) or
CRAVE

– Introduction of randomization and functional coverage
features

– Add register abstraction layer and callback mechanism
– Develop UVM based AMS and system-level verification

methods

Summary and outlook (2)

44

Acknowledgements
The development of the UVM-SystemC methodology and library
has been supported by the European Commission as part of the
Seventh Framework Programme (FP7) for Research and
Technological Development in the project 'VERIFICATION FOR
HETEROGENOUS RELIABLE DESIGN AND INTEGRATION' (VERDI).
The research leading to these results has received funding from
the European Commission under grand agreement No 287562.

45

• SystemC, SystemC-AMS, UVM Standards
– www.accellera.org

• SystemC proof-of-concept
– www.accellera.org/downloads/standards/systemc

• SystemC-AMS proof-of-concept
– www.coside.de/open_source.html

• Verdi project site (e.g. publications, tutorials for UVM
SystemC)
– www.verdi-fp7.eu

• Crave randomization library
– www.systemc-verification.org/

Resources

46

http://www.accellera.org/
http://www.accellera.org/downloads/standards/systemc
http://www.coside.de/open_source.html
http://www.verdi-fp7.eu/
http://www.systemc-verification.org/

Questions

© Accellera Systems Initiative 47

Guidelines (1)
• Please keep the default font size for main lines at

28pt (or 26pt)
– And use 24pt (or 22pt) font size for the sub bullets

• Use the default bullet style and color scheme
supplied by this template

• Limited the number of bullets per page.
• Use keywords, not full sentences
• Please do not overlay Accellera or DVCon logo’s
• Check the page numbering

© Accellera Systems Initiative 48

	UVM-SystemC Applications in the real world
	Outline
	Outline
	Introduction: UVM - what is it?
	Motivation
	Why UVM in SystemC/C++ and SystemC-AMS?
	Why UVM in SystemC/C++ and SystemC-AMS?
	Outline
	UVM-SystemC overview
	UVM layered architecture
	UVM-SystemC phasing
	UVM agent
	UVM-SystemC agent (1)
	UVM-SystemC agent (2)
	UVM verification component
	UVM-SystemC verification component
	UVM sequences
	UVM-SystemC sequence item
	UVM-SystemC sequence
	UVM environment (test bench)
	UVM-SystemC test bench (1)
	UVM-SystemC test bench (2)
	UVM test
	UVM-SystemC test (1)
	UVM-SystemC test (2)
	The main program (top-level)
	UVM-SystemC main program
	Constrained randomization and functional coverage in UVM-SystemC
	Demo
	UVM-SystemC-AMS
	UVC with AMS driver and monitor using SystemC-AMS
	Further UVM-SystemC-AMS extensions
	Demo
	Outline
	Standardization within Accellera
	Outline
	Applications and use cases of UVM-SystemC
	Re-use across Languages, Simulators, Abstraction Levels
	Re-use for emulation and lab validation
	UVM for System-level / Functional verification
	Challenges for UVM System-level
	Outline
	Summary and outlook (1)
	Summary and outlook (2)
	Acknowledgements
	Resources
	Questions
	Guidelines (1)

