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• Universal Verification Methodology facilitates the 
creation of modular, scalable, configurable and reusable 
test benches 
– Based on verification components with standardized interfaces  

• Class library which provides a set of built-in features 
dedicated to simulation-based verification 
– Utilities for phasing, component overriding (factory), 

configuration, comparing, scoreboarding, reporting, etc. 
• Environment supporting migration from directed testing 

towards Coverage Driven Verification (CDV)  
– Introducing automated stimulus generation, independent result 

checking and coverage collection 
 

Introduction: UVM - what is it? 

4 



• No structured nor unified 
verification methodology 
available for ESL design  
– UVM (in SystemVerilog) primarily 

targeting block/IP level (RTL) 
verification, not system-level 

• Porting UVM to SystemC/C++ 
enables 
– creation of more advanced system-

level test benches 
– reuse of verification components 

between system-level and block-
level verification 

Motivation 
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Why UVM in SystemC/C++ and 
SystemC-AMS? 

• Strong need for a system-level verification 
methodology for embedded systems which include 
HW/SW and AMS functions 
– SystemC is the recognized standard for system-level design, 

and needs to be extended with advanced verification concepts 
– SystemC AMS available to cover the AMS verification needs 

• Reuse tests and test benches across verification 
(simulation) and validation (HW-prototyping) platforms 
– This requires a portable language like C++ to run tests on  

HW prototypes and even measurement equipment 
– Enabling Hardware-in-the-Loop simulation or Rapid Control 

Prototyping 
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Why UVM in SystemC/C++ and 
SystemC-AMS? 

• Benefit from proven standards and reference 
implementations 
– Leverage from existing methodology standards and reference 

implementations, aligned with best practices in verification 
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UVM-SystemC overview 
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UVM-SystemC functionality Status
Test bench creation with component classes:
agent, sequencer, driver, monitor, scoreboard, etc.



Test creation with test, (virtual) sequences, etc. 
Configuration and factory mechanism 
Phasing and objections 
Policies to print, compare, pack, unpack, etc. 
Messaging and reporting 
Register abstraction layer and callbacks development
Coverage groups development
Constrained randomization SCV or CRAVE



UVM layered architecture 
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UVM-SystemC phasing 
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run
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connect extract check report final

UVM runtime phases 
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UVM common phases

build
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start_of_simulation
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 = SystemC process(es)

        




= top-down execution

= bottom-up execution
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before_end_of_elaboration* end_of_simulation*

= SystemC-only callback*

Pre-run phases Runtime phases Post-run phases



− UVM phases are mapped on the SystemC phases 

− UVM-SystemC supports the 9 common phases and the (optional) 
refined runtime phases 

− Completion of a runtime phase happens as soon as there are no 
objections (anymore) to proceed to the next phase 



• Component responsible for driving and  
monitoring the DUT : 
– Typically contains three components 

• Sequencer 
• Driver 
• Monitor 

• Can contain analysis functionality for  
basic coverage and checking 
 

• Possible configurations 
– Active agent: sequencer and driver are enabled 
– Passive agent: only monitors signals  

(sequencer and driver are disabled) 
• C++ base class: uvm_agent 

UVM agent 
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class dut_agent1: public uvm::uvm_agent{ 
 public:     
  dut_driver1<dut_trans1>* driver; 
  dut_monitor1<dut_trans1>* monitor; 
  dut_sequencer1<dut_trans1>* sequencer; 
   
  UVM_COMPONENT_UTILS(dut_agent1); 
 
  dut_agent1::dut_agent1(uvm::uvm_name name) : 
  uvm_agent(name), driver(0), monitor(0), sequencer(0) {} 
 
  void dut_agent1::build_phase(uvm::uvm_phase& phase) { 
    uvm_agent::build_phase(phase);  
 
     
  if (get_is_active() == uvm::UVM_ACTIVE) { 
      sequencer = dut_sequencer1<dut_trans1>::type_id::create("sequencer",    
this); 
    assert(sequencer); 
 
    driver = dut_driver1<dut_trans1>::type_id::create("driver", this); 
    assert(driver); 
  } 
  monitor = dut_monitor1<dut_trans1>::type_id::create("monitor", this); 
  assert(monitor); 
} 

UVM-SystemC agent (1) 
Dedicated base class to 
distinguish agents from 
other component types 

Registers the object in 
the factory 

Call to the factory which creates and instantiates 
child component dynamically 

NOTE: UVM-SystemC API under review – subject to change  

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

Essential call to base class to 
access properties of the agent 
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UVM-SystemC agent (2) 

  ... 
 
void dut_agent1::connect_phase(uvm::uvm_phase& phase) { 
 
if (get_is_active() == uvm::UVM_ACTIVE) { 
  // connect driver and sequencer 
  driver->seq_item_port(sequencer->seq_item_export); 
} 
 ... 

Only the connection between sequencer 
and driver is made here. Connection of 

driver and monitor to the DUT is done via 
the configuration mechanism 

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

NOTE: UVM-SystemC API under review – subject to change  
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• A UVM verification component 
(UVC) is an environment which 
consists of one or more 
cooperating agents 

• UVCs or agents may set or get 
configuration parameters 

• Each verification component is 
connected to the DUT using a 
dedicated interface 

• C++ base class: uvm_env 

UVM verification component 
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In this example, the UVM verification component (UVC) 
contains only one agent 

UVM-SystemC verification component 
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class dut_uvc: public uvm::uvm_env 
{ 
  public: 
  UVM_COMPONENT_UTILS(dut_uvc); 
 
dut_agent1* agent1;   
 
dut_uvc::dut_uvc(uvm::uvm_name name) : 
    uvm_env(name), agent1(0) { 
} 
void dut_uvc::build_phase(uvm::uvm_phase& phase) 
{ 
  uvm_env::build_phase(phase); 
  // instantiate the agent 
  agent1 = dut_agent1::type_id::create("agent1", this); 
    assert(agent1); 
} 
}; 

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)
config

trans

seq

vifvif

config

analysis

A UVC is considered as a 
sub-environment in large 

system-level environments 

NOTE: UVM-SystemC API under review – subject to change  



• Sequences are part of the test scenario and  
define streams of transactions 

• The properties (or attributes) of a transaction  
are captured in a sequence item 

• Sequences are not part of the test bench hierarchy, 
but are mapped onto one or more sequencers 

• Sequences can be layered, hierarchical  
or virtual, and may contain multiple  
sequences or sequence items 

• Sequences and transactions can be configured  
via the factory 

UVM sequences 
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UVM-SystemC sequence item 
class dut_trans1: public uvm::uvm_sequence_item 
{ 
public: 
    int data1; 
    int data2; 
    UVM_OBJECT_UTILS( dut_trans1) 
    ; 
 
    dut_trans1::dut_trans1(const std::string& name) : 
    uvm_sequence_item(name), data1(0), data2(0){} 
     
    virtual void 
    do_print(uvm::uvm_printer& printer) const; 
    virtual void 
    do_pack(uvm::uvm_packer& packer) const; 
    virtual void 
    do_unpack(uvm::uvm_packer& packer); 
    virtual void 
    do_copy(const uvm::uvm_object& rhs); 
    virtual bool 
    do_compare(const uvm::uvm_object& rhs) const; 
 
}; 

Transaction 
defined  as  

sequence item 

User-defined data items 
(randomization can be done 

using SCV or CRAVE)  

A sequence item should implement all 
elementary member functions to print, 

pack, unpack, copy and compare the data 
items 

(there are no field macros in  
UVM-SystemC ) 
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NOTE: UVM-SystemC API under review – subject to change  
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UVM-SystemC sequence 
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class dut_sequence1: public uvm::uvm_sequence<> 
{ 
public: 
  UVM_OBJECT_UTILS(dut_sequence1) 
  ; 
  dut_sequence1(const std::string& name = "dut_sequence1"); 
     
  dut_sequence1::dut_sequence1(const std::string& name) : 
  uvm_sequence<>(name) {} 
 
  void dut_sequence1::pre_body() { 
     if (starting_phase != NULL) 
        starting_phase->raise_objection(this); 
    } 
  void dut_sequence1::body() { 
    dut_trans1* req = dut_trans1::type_id::create("req"); 
    uvm::uvm_sequence_item* rsp; 
    start_item(req); 
 
   //Implement transaction contents 
 
    finish_item(req); 
    get_response(rsp); 
  } 
  void dut_sequence1::post_body() { 
    if (starting_phase != NULL) 
      starting_phase->drop_objection(this); 
} 
}; 

Randomization and transaction 
contents her 

Optional: get response  

Factory registration also 
supports template classes 

Raise objection if there is no 
parent sequence 

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

NOTE: UVM-SystemC API under review – subject to change  

A sequence contains a 
request and (optional) 

response, both defined as 
sequence item 



• A test bench is the environment  
which instantiates and configures  
the UVCs, scoreboard, and  
(optional) virtual sequencer 

• The test bench connects 
– Agent sequencer(s) in each UVC with  

the virtual sequencer (if defined) 
– Monitor analysis port(s) in each UVC  

with the scoreboard subscriber(s) 
– Note: The driver and monitor in each 

agent connect to the DUT using the interface  
stored in the configuration database 

• C++ base class: uvm_env 
 

UVM environment (test bench) 
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UVM-SystemC test bench (1) 
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class testbench : public uvm_env 
{ 
 public: 
  vip_uvc*        uvc1; 
  vip_uvc*        uvc2; 
  virt_sequencer* virtual_sequencer; 
  scoreboard*     scoreboard1; 
 
  UVM_COMPONENT_UTILS(testbench); 
 
  testbench( uvm_name name )  
  : uvm_env( name ), uvc1(0), uvc2(0),  
    virtual_sequencer(0), scoreboard1(0) {} 
 
  virtual void build_phase( uvm_phase& phase ) 
  { 
    uvm_env::build_phase(phase); 
 
    uvc1 = vip_uvc::type_id::create("uvc1", this); 
    assert(uvc1); 
    uvc2 = vip_uvc::type_id::create("uvc2", this); 
    assert(uvc2); 
 
    set_config_int("uvc1.*", "is_active", UVM_ACTIVE); 
    set_config_int("uvc2.*", "is_active", UVM_PASSIVE); 
 
    ... 

Definition of active or 
passive UVCs 

All components in the test 
bench will be dynamically 
instan-tiated so they can 

be overidden by the test if 
needed 

Testbench (env) config

…..agent
UVC1 (env)
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1

conf
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NOTE: UVM-SystemC API under review – subject to change  



UVM-SystemC test bench (2) 
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    ... 
    virtual_sequencer = virt_sequencer::type_id::create( 
                          "virtual_sequencer", this); 
    assert(virtual_sequencer); 
     
    scoreboard1 =  
      scoreboard::type_id::create("scoreboard1", this); 
    assert(scoreboard1); 
  } 
 
 
  virtual void connect_phase( uvm_phase& phase ) 
  { 
    virtual_sequencer->vip_seqr = uvc1->agent->sequencer; 
 
    uvc1->agent->monitor->item_collected_port.connect( 
      scoreboard1->xmt_listener_imp); 
 
    uvc2->agent->monitor->item_collected_port.connect( 
      scoreboard1->rcv_listener_imp); 
  } 
 
}; 

Analysis ports of  the 
monitors are connected to 
the scoreboard subscribers 

(listeners) 

Virtual sequencer points to 
UVC sequencer 

Testbench (env) config

…..agent
UVC1 (env)
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NOTE: UVM-SystemC API under review – subject to change  



• Each UVM test is defined as a dedicated test class, 
which instantiates the test bench and defines the 
test sequence(s) 

• Reuse of tests and topologies is  
possible by deriving tests from a  
test base class 

• The UVM configuration and factory  
concept can be used to configure or  
override UVM components,  
sequences or sequence items 

• C++ base class: uvm_test 

UVM test 
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UVM-SystemC test (1) 
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class test : public uvm_test 
{ 
 public: 
  testbench* tb; 
  bool test_pass; 
 
  test( uvm_name name ) : uvm_test( name ),  
    tb(0), test_pass(true) {} 
 
  UVM_COMPONENT_UTILS(test); 
 
  virtual void build_phase( uvm_phase& phase ) 
  { 
    uvm_test::build_phase(phase); 
    tb = testbench::type_id::create("tb", this); 
    assert(tb); 
 
    uvm_config_db<uvm_object_wrapper*>::set( this, 
     tb.uvc1.agent.sequencer.run_phase", "default_sequence", 
     vip_sequence<vip_trans>::type_id::get());  } 
 
 
    set_type_override_by_type( vip_driver<vip_trans>::get_type(), 
      new_driver<vip_trans>::get_type() ); 
    
    ... 

Factory method to override the 
original driver with a new driver 

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)
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Configuration of the default sequence, which 
will be executed on the sequencer of the 

agent in UVC1 

The test instantiates the 
required test bench  

Specific class to  identify the test 
objects for execution in the 

sc_main  program 

NOTE: UVM-SystemC API under review – subject to change  



UVM-SystemC test (2) 
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  ... 
 
  virtual void run_phase( uvm_phase& phase ) 
  { 
    UVM_INFO( get_name(),  
      "** UVM TEST STARTED **", UVM_NONE ); 
  } 
 
  virtual void extract_phase( uvm_phase& phase ) 
  { 
    if ( tb->scoreboard1.error ) 
      test_pass = false; 
  } 
 
  virtual void report_phase( uvm_phase& phase ) 
  { 
    if ( test_pass ) 
      UVM_INFO( get_name(), "** UVM TEST PASSED **", UVM_NONE ); 
      else 
        UVM_ERROR( get_name(), "** UVM TEST FAILED **" ); 
  } 
}; 

Report results in the 
report phase 

Testbench (env)

…..agent
UVC1 (env)
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Sqr
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Get result of the scoreboard 
 in the extract phase 

NOTE: UVM-SystemC API under review – subject to change  



• The top-level (e.g. sc_main) 
contains the test(s) and the DUT 

• The interface to which the DUT is 
connected is stored in the 
configuration database, so it can 
be used by the UVCs to connect 
to the DUT 

• The test to be executed is either 
defined by the test class 
instantiation or by the argument 
of the member function run_test 

The main program (top-level) 
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int sc_main(int, char*[])  
{   
 
  dut* my_dut = new dut("my_dut"); 
 
  vip_if* vif_uvc1 = new vip_if; 
  vip_if* vif_uvc2 = new vip_if; 
 
 
 
  uvm_config_db<vip_if*>::set(0, "*.uvc1.*",  
                              "vif", vif_uvc1); 
  uvm_config_db<vip_if*>::set(0, "*.uvc2.*",  
                              "vif", vif_uvc2); 
 
 
  my_dut->in(vif_uvc1->sig_a); 
  my_dut->out(vif_uvc2->sig_a); 
 
  run_test("test"); 
 
  return 0; 
} 

UVM-SystemC main program 
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Instantiate the 
DUT and 

interfaces 

Register the test to be 
executed. This function also 
dynamically instantiates the 

test if given as argument 

Connect DUT to 
the interface 

register interface  
using the configuration 
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• Constrained randomization libraries for SystemC  are 
available 
– SystemC Verification Library (SCV) 
– Constrained Random Verification Environment (CRAVE) 

• No standardized functional coverage API in SystemC 
available 
– Proprietary/commercial SystemC coverage APIs available, but 

not offered (yet) for standardization 

• Proposals for randomization and coverage APIs exist 

Constrained randomization and 
functional coverage in UVM-SystemC 
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Demo 
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UVM-SystemC-AMS 
• The UVM-SystemC infrastructure can also handle AMS 

verification 
• Transactions will program analog driver and monitors 
• Drivers generate analog signals, Monitors analyze analog 

signals and extracting properties like amplitude, 
spectrum, … and transfer them via transactions 

• AMS verification requires continuous distribution 
function (and not PWC only) 

• Randomization of DUT parameters is essential 
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UVC with AMS driver and monitor 
using SystemC-AMS 

• Regular UVM-SystemC drivers and 
monitors are used in which 
SystemC-AMS Timed Data Flow 
(TDF) modules are instantiated 

• For the SystemC-AMS modules, 
TDF ports are necessary to allow 
read / write operations to the 
analog interface  

• The parent driver and monitor 
establish the connection from the 
TDF ports to the interface via the 
configuration mechanism 

31 
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• UVM AMS extensions will not break the existing 

UVM 
• Time annotation to transaction 

– Decoupled sequence time 
– Data dependent synchronization 

• Introducing of a pre-build phase under discussion 
– Is executed before the DUT is instantiated 
– Permits the setting of parameter, which influence the DUT 

creation 

Further UVM-SystemC-AMS 
extensions 

32 



Demo 
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Standardization within Accellera 
• UVM-SystemC 

Standardization within 
Accellera Verification WG is 
under way 
– UVM-SystemC Language 

Reference Manual (LRM) 
available 

– UVM-SystemC Proof-of-Concept 
implementation exists, released 
under Apache 2.0 license 
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• Enables new use cases 
 

• New re-use scenarios 
 

• IP protected, language and simulator independent 
verification IP 
 

• Enables System-level UVM based verification 
 

• Simplifies development of UVM based verification 
methods for AMS systems 

Applications and use cases of UVM-
SystemC 
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Re-use across Languages, Simulators, 
Abstraction Levels 
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• Vision 
– Translating specifications (documents, standards) to 

readable – also for non verification experts - test scenarios, 
this should also include ranges and uncertainties 

• No separation between analog/digital, hard- and software 
• “real” system-level verification 

• Main question: 
– Will the system work for the purposes for which it will be 

built? 

 

UVM for System-level / Functional 
verification 

40 



• No executable reference model available 
 

• Complex stimulation and expected sequences 
 

• Coverage measure is different to implementation level 
 

• How much of the possible application scenarios, input 
stimuli, operating conditions, specification items are 
verified? 

 UVM methodology/best practices have to be extended for system 
level! 
 UVM framework is generic enough to realize the required 
extensions needed for System level verification! 
 

 
 

 

Challenges for UVM System-level 
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Outline 



• Universal Verification Methodology created in 
SystemC/C++ 
– Fully compliant with UVM standard 
– Target is to make all essential features of UVM available in 

SystemC/C++ 
– UVM-SystemC language definition and proof-of-concept 

implementation contributed to Accellera Systems Initiative 
– SystemC-AMS is used for AMS system-level verification use 

cases 

Summary and outlook (1) 
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• Ongoing developments 
– Extend UVM-SystemC with constrained randomization 

capabilities using SystemC Verification Library (SCV) or 
CRAVE 

– Introduction of randomization and functional coverage 
features 

– Add register abstraction layer and callback mechanism 
– Develop UVM based AMS and system-level verification 

methods 

Summary and outlook (2) 
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• SystemC, SystemC-AMS, UVM Standards 
– www.accellera.org 

• SystemC proof-of-concept 
– www.accellera.org/downloads/standards/systemc 

• SystemC-AMS proof-of-concept 
– www.coside.de/open_source.html 

• Verdi project site (e.g. publications, tutorials for UVM 
SystemC) 
– www.verdi-fp7.eu 

• Crave randomization library 
– www.systemc-verification.org/  

Resources 
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http://www.accellera.org/
http://www.accellera.org/downloads/standards/systemc
http://www.coside.de/open_source.html
http://www.verdi-fp7.eu/
http://www.systemc-verification.org/
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Guidelines (1) 
• Please keep the default font size for main lines at 

28pt (or 26pt) 
– And use 24pt (or 22pt) font size for the sub bullets 

• Use the default bullet style and color scheme 
supplied by this template 

• Limited the number of bullets per page.  
• Use keywords, not full sentences 
• Please do not overlay Accellera or DVCon logo’s 
• Check the page numbering 
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