
UVM SchmooVM – I Want My C Tests!

Rich Edelman

Mentor Graphics

Fremont, CA

Raghu Ardeishar

Mentor Graphics

McLean, VA

Abstract—The reader of this paper is interested in writing

reusable tests using UVM and C. C tests, such as device

drivers, are very commonly used in the industry and are

written by system level designers. In many cases they have to

be translated or rewritten to UVM based tests to test the

design. This paper shows how the translation step can be

rendered obsolete by mapping the C tests to the UVM

environment. C tests include application layer software such as

eHCI, xHCI for USB. These pre-written tests will be mapped

to UVM sequences. The key issue of communication between

SystemVerilog classes, UVM threads and C routines are shown

in detail. An example is provided to be implemented in a UVM

based environment where a legacy C test is also present.

Keywords—UVM, C, sequence, sequence item, driver, agent;

I. INTRODUCTION

The reader of this paper is interested in leveraging their
C programmers to write tests. They are NOT interested in
rewriting the C tests in terms of SystemVerilog [3] UVM [1]
based sequences. But the verification team has created a
SystemVerilog UVM based test bench along with a VIP
based interfaces and pre-defined UVM sequences.

Figure 1 - C, Sequences and Agents

This paper will define a layer between the UVM based
sequences and test writing in C that can provide a soft-
landing for test writers new to the UVM.

SystemVerilog UVM has matured to a useful level of
supported features, user guide, examples etc. The
standardization of UVM has caused widespread support of
SystemVerilog constructs across many simulator vendors.
This standardization has allowed verification productivity to
improve, as new, higher level constructs are supported and

used. The UVM has become complex, and new users can
have trouble getting started.

When the UVM is used as a Verification IP API, its
value becomes much clearer and a new user can more easily
get started. The UVM allows configuration, built-in tests
(sequences), standard messaging and a simple phasing
approach. Taken in context these standard features are
powerful and valuable. Misused, these features cause
unnecessary complexity and performance issues.

The main test writing API suggested by the UVM is
UVM sequences running on agents - Figure 1. Our
experience has been that sequences are hard for new users
to understand and use effectively. Furthermore, sequences
encourage randomization at every step, but our experience
has shown that for many tests randomization is undesirable.
Randomization has its place, and will be discussed in the
context of this paper. This paper will propose a way to use
UVM based Verification IP combined with DPI-C which
allows writing tests in C while leveraging the standardized
VIP. We’ll show how the C tests that result are more
portable and flexible than if they had been written in
SystemVerilog using UVM sequences. We’ll show how to
create sequences that encourage being used with C. We’ll
demonstrate a working system which implements threaded C
code using normal SystemVerilog DPI (no external thread
packages). The C code has the ability to wait for time, or
number of clocks as necessary enabling untimed or cycle
accurate behavior. It can be as tightly coupled to simulation
time as desired. We’ll describe ways to work around the
limitations of using DPI-C with classes, and provide an
implementation of a working C interface to UVM based VIP.

The C tests will issue READS and WRITES, and can
run as stand-alone tests, compiled and executed without a
SystemVerilog simulator. In this mode, they provide a way
to generate traffic for consumption by other tools, before
simulation. When used with simulation, they provide a way
to have live feedback from the traffic generation to the
hardware under test. This live feedback allows modeling of
at least cycle accurate effects such as cache flushes, and
other resource conflicts.

II. TOP LEVEL FLOW

Let’s look at a possible flow from the top level. In most
cases an application layer written in C. If a standard protocol
like PCIe or USB is used there are standard application
layers applicable for those scenarios. These application
layers sit on top of the protocol layers and the main purpose
of these layers is to develop an implementation agnostic test.
If the underlying implementation changes the application

D
U
T

Agent

seq
seq

C

C

Agent

seq
seq

C

C

layer test remains the same. The C tests issues READs and
WRITEs, and the lower layer translates those requests into
protocol specific transactions. On the implementation side
there will most likely be a test written in UVM (derived from
uvm_test) which will be launching many sequences.

A detailed description of the flow is provided in the
sections which follow. After the build phase of the design
(shown in the appendix) the test enters the run phase. This
sets the context correlation between the SystemVerilog
threads and classes. Then the “C” device driver is called
which does a series of reads/writes or any other routine using
DPI calls. Multiple sequences can be launched which can
call multiple “C” routines.

The outline is shown in Figure 2 – Top Level Flow.

Figure 2 – Top Level Flow

III. C TESTS

C tests are very common in the industry. Many are in the
form of application layer device drivers such eHCI/xHCI for
USB. In the initial stages of testing while the DUT is not
ready a verification IP typically is substituted for the DUT
and the tests are run on it as shown in Figure 3 – C/SV Test
Environment.

Most verification IP these days provide a layer of UVM.
However many tests are written by systems programmers in
C with little knowledge of UVM. These C tests can be used
to drive the UVM sequences in the VIP. The system
programmer in this case does not concern himself with the
UVM layer. Once the DUT is complete the VIP can be
replaced with the DUT and the tests can be repeated (Figure
3 –). An example of this is ehci which is an application layer
built over USB.

Figure 4 - EHCI C Tests & Verilog Slave

An example of a C tests is shown in Figure 5 – C Device
Driver .

device_driver_test (UVM test)

Sets SV thread/ C context

Call C Device Driver

C Device Driver sets

address/data and

calls read/write

routines

C mapping routine

calls DPI tasks

DPI tf gets SV thread/ C

context

device_driver_sequence

started on agent

END

Start

Figure 3 – C/SV Test Environment

C tests SV VIP
SV/Verilog

Slave

dpi
communication

layer

C tests EHCI Host
controller

Verilog
Slave

EHCI USB
Host

SV VIP dpi

C tests EHCI Host
controller

Verilog
Slave

EHCI USB
RTL Host

SV VIP dpi

int c_device_driver() {

 int addr, data, rdata;

 printf("device_driver[[%s::%s]]\n",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name());

 sv_wait_n_ticks(100);

 for (i = 16; i < 100; i+=4) {

 addr = i;

 data = addr<<8;

 my_writel(addr, data);

 rdata = my_readl (addr);

 if (rdata != data)

 printf("ERROR: Mismatch. addr=,

 wrote data=, read data=\n",addr,data,rdata);

 else

 printf("INFO: Match. addr=, wrote data=,

 read data=\n", addr, data, rdata);

 sv_wait_n_ticks(2);

 }

 return 0;

}

Figure 5 – C Device Driver

Typically a C test will set up data structures in memory

and do writes or reads to certain locations in the design such
as register reads and writes. In this example the address and
data of the locations to be read from and written to are set
and tasks “my_writel” and “my_readl” are executed. This
routine will be most likely written by the engineer who has
little to no knowledge of UVM or the sequences needed to
translate it to a register read or write. The next step is to map
these tasks to SystemVerilog tasks.

#include "dpiheader.h"

int my_readl(int addr) {

 int rdata;

 printf("C my_readl addr=%x\n",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name(), addr);

 sv_read(&addr, &rdata);

 printf("C my_readl addr=, data=\n",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name(), addr, rdata);

 return rdata;

}

my_writel(int addr, int data){

 printf("C my_writel addr=, data=",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name(), addr, data);

 sv_write(&addr, &data);

}

Figure 6 – C/SV Mapping Routine

In Figure 6 – C/SV Mapping Routine, the device driver

tasks “my_writel”, and “my_readl” are mapped to

SystemVerilog DPI tasks “sv_write” and “sv_read”
respectively. In mapping these tasks to SystemVerilog tasks
there are several housekeeping issues, which if not handled
correctly can lead to improper communication between SV
classes, SV threads and the C routines. In the next section we
will take a look at the mechanics of how this is
accomplished.

IV. C/SV CLASS LEVEL COMMMUNICATION

The C tests which include device drivers will primarily
issue reads and writes to the SystemVerilog layer which will
convert the high level commands to DUT register reads and
writes using the DPI mechanism.

A key element of this mechanism is the correlation
between SystemVerilog threads, SystemVerilog classes and
C threads. The SystemVerilog thread will, at the start
initialize the threads and classes so as to create a one to one
mapping between the threads and classes. These classes will
in many cases be UVM sequences. There needs to be a
convenient mechanism to launch UVM sequences from C.
The UVM user is unaware of the threading details, he just
uses fork/join, for example. The C programmer is unaware of
the threading details. He must be aware that his C code may
become threaded under this scheme. The issues required to
properly code threaded C is well documented in the industry,
but is beyond the scope of this paper.

In Figure 7 – SV Read/Write, are shown the
SystemVerilog DPI tasks “sv_read” and “sv_write”. This
task needs to be properly correlated between the C device
driver task and the UVM sequence it is associated with. We
use a helper class in SystemVerilog
“MapPidToClassHandle” to accomplish that (Figure 8 –
Class/Thread Helper Routine). The main job of this helper
function is to maintain a link between the SystemVerilog
thread which launched the device driver, the C device driver
and the UVM sequence. This routine is explained later in
this section.

In the tasks “sv_read” and “sv_write” which were called
from the C device driver (Figure 5 – C Device Driver) we are
attempting to call a sequence task.

task sv_read(addr_t addr, output data_t data);

 DEVICE_A_SEQ_base c;

 $cast(c, MapPidToClassHandle::get());

 c.read(addr, data);

endtask

task sv_write(addr_t addr, data_t data);

 SEQ_base c;

 $cast(c, MapPidToClassHandle::get());

 c.write(addr, data);

endtask

Figure 7 – SV Read/Write

To get the handle of that sequence we are retrieving the

handle which was stored correlating the SystemVerilog class
(UVM sequence device_driver_sequence) to the thread from
which it was called. Figure 8 – Class/Thread Helper Routine
shows how that mapping was created by initializing the class

by creating a mapping to the thread in which the class was
created. This initialization is done using the
“MapPidToClassHandle::set” function when this sequence is
run in the test (Figure 10 - Device Driver Test and Figure 8 –
Class/Thread Helper Routine).

class MapPidToClassHandle;

 static base_class class_handle_table[process];

 static function void set(base_class

 class_handle);

 process pid;

 pid = process::self();

 class_handle_table[pid] = class_handle;

 endfunction

 static function uvm_object get();

 uvm_object class_handle;

 process pid;

 pid = process::self();

 class_handle = class_handle_table[pid];

 return class_handle;

 endfunction

endclass

Figure 8 – Class/Thread Helper Routine

MapPidToClassHandle is used to create a map between

the SEQ class and the thread from which it was started. It has
a table “class_handle_table” which stores the class handle
based on the PID (process ID) of the process from which it
was started. This is done in the “set” function.

Once the initialization is complete we can pass control to
the C side of the test using a DPI call where the device driver
will be called. The C thread will then launch reads and
writes.

Now that control has been passed back to the SV thread
from the C device driver we need to associate the proper
sequence with the test. Now we will retrieve the class handle
so that the SV sequence can be executed.

The helper class MapPidToClassHandle is again used to
retrieve the class handle using the thread mapping. Once the
class handle is acquired the associated class based tasks are
run.

In the function called “MapPidToClassHandle::get” first
the process ID is retrieved. Then the “class_handle_table”
array which stores PID based class handles is used. The code
snippet is shown in Figure 8 – Class/Thread Helper Routine.

Notice that the “device_driver_sequence” is the sequence
which calls the “c_device_driver” which was illustrated in
Figure 9 - Device Driver Sequence. This class is registering
its class handle to the process thread and passing control to
the C routine. This is needed when control is returned from C
to the read/write routines of “device_driver_sequence”.

Please refer to Figure 7 – SV Read/Write for the tasks
sv_read and sv_write. These tasks in turn call “read” and
“write” routines from class “c”. The class “c” is
“device_driver_sequence” as shown in Figure 9 - Device
Driver Sequence.

class device_driver_sequence extends

 DEVICE_A_SEQ_BASE;

 data_t mem[addr_t];

 task read(addr_t addr,

 output data_t data);

 mem_item t;

 t = new("item");

 t.rw = 1;

 t.addr = addr;

 start_item(t);

 finish_item(t);

 data = t.data;

 `uvm_info(get_type_name(),

 $sformatf(" read(%0x, %0x)",

 addr, data), UVM_HIGH)

 endtask

 task write(addr_t addr,

 data_t data);

 mem_item t;

 t = new("item");

 t.rw = 0;

 t.addr = addr;

 t.data = data;

 start_item(t);

 finish_item(t);

 `uvm_info(get_type_name(),

 $sformatf("write(%0x, %0x)",

 addr, data), UVM_HIGH)

 endtask

endclass

Figure 9 - Device Driver Sequence

In Figure 10 - Device Driver Test, the UVM test
(“device_driver_test”) which starts everything is shown. The
UVM test “test” is shown in the appendix. It sets up the
connections needed for the test.

In the run_phase the device_driver_sequence is
instantiated. One or more sequences can be forked as shown
in the code snippet. The agent shown in the figure is shown
in detail in the appendix.

class device_driver_test extends test;

 task run_phase(uvm_phase phase);

 device_driver_sequence

 device_driver_seq1,device_driver_seq2;

 uvm_top.print();

 `uvm_info(get_type_name(), "Starting");

 phase.raise_objection(this);

 for(int i = 0; i < 10; i++) begin

 device_driver_seq1=

 new($sformatf("device_driver_seq1"));

 device_driver_seq2=

 new($sformatf("device_driver_seq2"));

 fork

 device_driver_seq1.start(i1_agentA.sequencer);

 device_driver_seq2.start(i2_agentA.sequencer);

 join

 end

 phase.drop_objection(this);

 `uvm_info(get_type_name(),"Finished")

 endtask

endclass

Figure 10 - Device Driver Test

V. A FEW MINOR POINTS

There are a few points which we need to elaborate to
complete the picture. Up to now we showed how to run the
sequences from SystemVerilog and connect it to the C side.
But there is also a need to accurately elapse time in between
the operations. We have used a routine called
“sv_wait_n_ticks” and “sv_wait_n_clocks” to achieve that.
Note the same issues as seen before remain. If you are
running several sequences and would like to elapse different
times in them as you most likely would you cannot afford to
get the times and threads mixed up. The time elapse
functions are shown in Figure 11. Using the
MapPidToClassHandle helper function we once again “get”
the handle to the class (device_driver_sequence) which
started the sequence of events and pass control to the
sequence routine shown in Figure 12 – Sequence Time
Elapse Routine.

task sv_wait_n_clocks(int n = 1);

 DEVICE_A_SEQ_BASE c;

 $cast(c, mapper_pkg::MapPidToClassHandle::get());

 c.wait_n_clocks(n);

endtask

task sv_wait_n_ticks(int n = 1);

 DEVICE_A_SEQ_BASE c;

 $cast(c, mapper_pkg::MapPidToClassHandle::get());

 c.wait_n_ticks(n);

endtask

Figure 11 – Time Elapse Routine

The sequence time elapse routines are tasks which are

run once the control has been passed to the appropriate
sequence.

task wait_n_clocks(int n = 1);

 `uvm_info(get_type_name(), $sformatf("

 wait_n_clocks(%0d)", n), UVM_HIGH)

 if (n <= 0) n = 1;

 while(n-- > 0) begin

 ...

 end

 `uvm_info(get_type_name(), $sformatf("

 wait_n_clocks(%0d) DONE", n), UVM_HIGH)

endtask

task wait_n_ticks(int n = 1);

 `uvm_info(get_type_name(), $sformatf("

 wait_n_ticks(%0d)", n), UVM_HIGH)

 if (n <= 0) n = 1;

 #n;

 `uvm_info(get_type_name(), $sformatf("

 wait_n_ticks(%0d) DONE", n), UVM_HIGH)

endtask

Figure 12 – Sequence Time Elapse Routine

VI. SUMMARY

This paper shows how legacy C tests can be reused in a
UVM based environment where the user does not have to
recode the C routines. The original C code can be compiled
and linked into a SystemVerilog compatible shared library.
The C code can run as threaded code, and can wait for time,
or clocks.

Using a mapping function from C to UVM and a helper
class which tracks SystemVerilog threads and classes the
user can easily move between SystemVerilog sequences and
C tests. This solution provides a transparent way to reuse
device driver C code with a UVM based agent verification
environment.

A detailed example is provided in the appendix which
shows the mechanics of how this is accomplished. Contact
the authors for the complete source code.

VII. REFERENCES

[1] UVM 1.1d, http://www.accellera.org/downloads/standards/uvm/uvm-
1.1d.tar.gz

[2] Furber, Stephen B. ARM System-on-chip Architecture. Harlow,

England: Addison-Wesley, 2000.

[3] "IEEE Standard for SystemVerilog-Unified Hardware Design,

Specification, and Verification Language," IEEE Std 1800-2012,

2012. http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

[4] TLM-2.0 Standard." SystemC TLM (Transaction-level Modeling).

http://www.accellera.org/downloads/standards/systemc/tlm

[5] Peryer, Mark. C Based Stimulus for UVM. Mentor Graphics, n.d.

Web. 06 Feb. 2013. http://www.mentor.com/products/fv/events/c-
based-stimulus-for-uvm

[6] Spear, Chris. SystemVerilog for Verification: A Guide to Learning
the Testbench Language Features. New York, NY: Springer, 2008.
229+

[7] Edelman, Rich. “Using SystemVerilog Now with DPI”, Proc. of
DVCon 2005, San Jose.

[8] Intel,. Full System Simulation with Wind River Simics. Web. 06 Feb.
2013. <http://www.windriver.com/products/simics/>.

http://www.accellera.org/downloads/standards/uvm/uvm-1.1d.tar.gz
http://www.accellera.org/downloads/standards/uvm/uvm-1.1d.tar.gz
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.accellera.org/downloads/standards/systemc/tlm
http://www.mentor.com/products/fv/events/c-based-stimulus-for-uvm
http://www.mentor.com/products/fv/events/c-based-stimulus-for-uvm

VIII. APPENDIX

// ===

// FILE: agentA-device-driver.sv

// ===

package deviceA_pkg;

 import uvm_pkg::*;

 `include "uvm_macros.svh"

 import agentA_pkg::*;

 // --

 typedef bit[31:0]addr_t;

 typedef bit[31:0]data_t;

 virtual class DEVICE_A_SEQ_BASE

 extends uvm_sequence #(mem_item);

 pure virtual task read(addr_t addr, output data_t data);

 pure virtual task write(addr_t addr, data_t data);

 pure virtual task wait_n_clocks(int n = 1);

 pure virtual task wait_n_ticks(int n = 1);

 function new(string name = "DEVICE_A_SEQ_BASE");

 super.new(name);

 endfunction

 endclass

 // --

 export "DPI-C" task sv_read;

 export "DPI-C" task sv_write;

 export "DPI-C" task sv_wait_n_clocks;

 export "DPI-C" task sv_wait_n_ticks;

 export "DPI-C" function sv_get_full_name;

 import "DPI-C" context task c_device_driver();

 function string sv_get_full_name();

 return mapper_pkg::MapPidToClassHandle::get_full_name();

 endfunction

 task sv_read(addr_t addr, output data_t data);

 DEVICE_A_SEQ_BASE c;

 $cast(c, mapper_pkg::MapPidToClassHandle::get());

 c.read(addr, data);

 endtask

 task sv_write(addr_t addr, data_t data);

 DEVICE_A_SEQ_BASE c;

 $cast(c, mapper_pkg::MapPidToClassHandle::get());

 c.write(addr, data);

 endtask

 task sv_wait_n_clocks(int n = 1);

 DEVICE_A_SEQ_BASE c;

 $cast(c, mapper_pkg::MapPidToClassHandle::get());

 c.wait_n_clocks(n);

 endtask

 task sv_wait_n_ticks(int n = 1);

 DEVICE_A_SEQ_BASE c;

 $cast(c, mapper_pkg::MapPidToClassHandle::get());

 c.wait_n_ticks(n);

 endtask

 // --

 class device_driver_sequence extends DEVICE_A_SEQ_BASE;

 `uvm_object_utils(device_driver_sequence)

 virtual busA vif;

 function new(string name = "device_driver_sequence");

 super.new(name);

 endfunction

 task read(addr_t addr, output data_t data);

 mem_item t;

 t = new("item");

 t.rw = 1;

 t.addr = addr;

 start_item(t);

 finish_item(t);

 data = t.data;

 `uvm_info(get_type_name(),

 $sformatf(" read(%0x, %0x)", addr, data), UVM_HIGH)

 endtask

 task write(addr_t addr, data_t data);

 mem_item t;

 t = new("item");

 t.rw = 0;

 t.addr = addr;

 t.data = data;

 start_item(t);

 finish_item(t);

 `uvm_info(get_type_name(),

 $sformatf("write(%0x, %0x)", addr, data), UVM_HIGH)

 endtask

 task wait_n_clocks(int n = 1);

 `uvm_info(get_type_name(),

 $sformatf(" wait_n_clocks(%0d)", n), UVM_HIGH)

 if (n <= 0) n = 1;

 while(n-- > 0) begin

 vif.wait_for_posedge();

 end

 `uvm_info(get_type_name(),

 $sformatf(" wait_n_clocks(%0d) DONE", n), UVM_HIGH)

 endtask

 task wait_n_ticks(int n = 1);

 `uvm_info(get_type_name(),

 $sformatf(" wait_n_ticks(%0d)", n), UVM_HIGH)

 if (n <= 0) n = 1;

 #n;

 `uvm_info(get_type_name(),

 $sformatf(" wait_n_ticks(%0d) DONE", n), UVM_HIGH)

 endtask

 task body();

 sequencerA sequencer;

 `uvm_info(get_type_name(), "Starting... ", UVM_MEDIUM)

 $cast(sequencer, m_sequencer);

 vif = sequencer.vif;

 // Start two instances of the "device driver"

 fork

 begin

 mapper_pkg::MapPidToClassHandle::set(this);

 c_device_driver();

 end

 begin

 mapper_pkg::MapPidToClassHandle::set(this);

 c_device_driver();

 end

 join

 `uvm_info(get_type_name(), "Finishing...", UVM_MEDIUM)

 endtask

 endclass

 class device_driver_test extends test;

 `uvm_component_utils(device_driver_test)

 function new(string name = "device_driver_test",

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 task run_phase(uvm_phase phase);

 device_driver_sequence

 device_driver_seq1, device_driver_seq2;

 uvm_top.print();

 `uvm_info(get_type_name(), "Starting", UVM_MEDIUM)

 phase.raise_objection(this);

 for(int i = 0; i < 10; i++) begin

 device_driver_seq1 =

 new($sformatf("device_driver_seq1"));

 device_driver_seq2 =

 new($sformatf("device_driver_seq2"));

 fork

 device_driver_seq1.start(i1_agentA.sequencer);

 device_driver_seq2.start(i2_agentA.sequencer);

 join

 end

 phase.drop_objection(this);

 `uvm_info(get_type_name(), "Finished", UVM_MEDIUM)

 endtask

 endclass

endpackage

// ===

// FILE: agentA-interface.sv

// ===

interface busA (input clk, input reset);

 logic rw;

 logic valid;

 logic [31:0] addr;

 logic [31:0] rdata;

 logic [31:0] wdata;

 task wait_for_posedge();

 @(posedge clk);

 endtask

 task read(logic [31:0] l_addr, output logic [31:0] l_data);

 rw = 1;

 addr = l_addr;

 valid = 1;

 @(posedge clk);

 #1;

 l_data = rdata;

 valid = 0;

 endtask

 task write(logic [31:0] l_addr, logic [31:0] l_data);

 rw = 0;

 addr = l_addr;

 wdata = l_data;

 valid = 1;

 @(posedge clk);

 valid = 0;

 endtask

endinterface

// ===

// FILE: agentA.sv

// ===

package agentA_pkg;

 import uvm_pkg::*;

 `include "uvm_macros.svh"

 class mem_item extends uvm_sequence_item;

 `uvm_object_utils(mem_item)

 int id;

 rand int delay = 5;

 static int g_id = 0;

 rand bit rw;

 rand bit[31:0]addr;

 rand bit[31:0]data;

 constraint addr_value { addr < 256; addr >= 0; }

 constraint data_value { data == 32'hdeadbeef; }

 constraint delay_value { delay < 10; delay > 0; }

 function new(string name = "mem_item");

 super.new(name);

 id = g_id++;

 endfunction

 function string convert2string();

 return $sformatf("id=%0d, %s(%0x, %0x)",

 id, (rw==1)?" READ":"WRITE", addr, data);

 endfunction

 function void do_record(uvm_recorder recorder);

 super.do_record(recorder);

 if ((id & 'h01) && (recorder.tr_handle != 0))

 $add_color(recorder.tr_handle, "pink");

 else

 $add_color(recorder.tr_handle, "purple");

 `uvm_record_field("name", get_name());

 `uvm_record_field("id", id);

 `uvm_record_field("rw", rw);

 `uvm_record_field("addr", addr);

 `uvm_record_field("data", data);

 `uvm_record_field("delay", delay);

 endfunction

 endclass

 class mem_sequence extends uvm_sequence #(mem_item);

 `uvm_object_utils(mem_sequence)

 function new(string name = "mem_sequence");

 super.new(name);

 endfunction

 task body();

 mem_item t;

 `uvm_info(get_type_name(), "Starting... ", UVM_MEDIUM)

 for(int i = 0; i < 3; i++) begin

 t = new($sformatf("t%0d", i));

 if(!t.randomize()) begin

 `uvm_fatal(get_type_name(), "Randomize Failed")

 end

 t.rw = 0;

 start_item(t);

 finish_item(t);

 t.rw = 1;

 start_item(t);

 finish_item(t);

 end

 `uvm_info(get_type_name(), "Finishing...", UVM_MEDIUM)

 endtask

 endclass

 class driverA extends uvm_driver #(mem_item);

 `uvm_component_utils(driverA)

 virtual busA vif;

 function new(string name = "driverA",

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 mem_item t;

 task run_phase(uvm_phase phase);

 `uvm_info(get_type_name(), "Starting... ", UVM_MEDIUM)

 forever begin

 seq_item_port.get_next_item(t);

 if (t.rw)

 vif.read(t.addr, t.data);

 else

 vif.write(t.addr, t.data);

 `uvm_info("DRVR",

 $sformatf("Got t=%s", t.convert2string()), UVM_MEDIUM)

 seq_item_port.item_done();

 #1;

 end

 `uvm_info(get_type_name(), "Finishing...", UVM_MEDIUM)

 endtask

 endclass

 class sequencerA extends uvm_sequencer #(mem_item);

 `uvm_component_utils(sequencerA)

 virtual busA vif; // For use by sequences.

 function new(string name = "sequencerA",

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 endclass

 class agentA extends uvm_agent;

 `uvm_component_utils(agentA)

 driverA driver;
 sequencerA sequencer;

 virtual busA vif;

 function new(string name = "agentA",

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 function void build_phase(uvm_phase phase);

 driver = driverA::type_id::create("driver", this);

 sequencer = sequencerA::type_id::create(

 "sequencer", this);

 driver.vif = vif;

 sequencer.vif = vif;

 endfunction

 function void connect_phase(uvm_phase phase);

 driver.seq_item_port.connect(sequencer.seq_item_export);

 driver.rsp_port.connect(sequencer.rsp_export);

 endfunction

 endclass

 class test extends uvm_test;

 `uvm_component_utils(test)

 agentA i1_agentA, i2_agentA;

 function new(string name = "test",

 uvm_component parent = null);

 super.new(name, parent);

 endfunction

 function void build_phase(uvm_phase phase);

 virtual busA vif1;

 virtual busA vif2;

 if (!uvm_config_db#(virtual busA)::

 get(null, "*", "1", vif1))

 `uvm_fatal(get_type_name(), "Can't find vif for 'busA'")

 if (!uvm_config_db#(virtual busA)::

 get(null, "*", "2", vif2))

 `uvm_fatal(get_type_name(), "Can't find vif for 'busA'")

 i1_agentA = agentA::type_id::create("i1_agentA", this);

 i2_agentA = agentA::type_id::create("i2_agentA", this);

 i1_agentA.vif = vif1;

 i2_agentA.vif = vif2;

 endfunction

 task run_phase(uvm_phase phase);

 mem_sequence seq1, seq2;

 uvm_top.print();

 `uvm_info(get_type_name(), "Starting", UVM_MEDIUM)

 phase.raise_objection(this);

 for(int i = 0; i < 10; i++) begin

 seq1 = new($sformatf("mem_seq1"));

 seq2 = new($sformatf("mem_seq2"));

 fork

 seq1.start(i1_agentA.sequencer);

 seq2.start(i2_agentA.sequencer);

 join

 end

 phase.drop_objection(this);

 `uvm_info(get_type_name(), "Finished", UVM_MEDIUM)

 endtask

 endclass

endpackage

// ===

// FILE: dut.sv

// ===

module dut(

 input wire clk,

 input wire reset,

 input wire valid,

 input wire rw,

 input wire[31:0]addr,

 output reg [31:0]rdata,

 input wire[31:0]wdata);

 logic [31:0]mem[256];

 always @(posedge clk) begin

 if (valid == 1) begin

 if (rw == 1) begin // READ

 rdata = mem[addr];

 $display("DUT %m READ(%x, %x)", addr, rdata);

 end

 else if (rw == 0) begin // WRITE

 mem[addr] = wdata;

 $display("DUT %m WRITE(%x, %x)", addr, wdata);

 end

 else begin // IDLE

 $display("DUT %m IDLE");

 end

 end

 end

endmodule

// ===

// FILE: mapper.sv

// ===

package mapper_pkg;

 import uvm_pkg::*;

 class MapPidToClassHandle;

 static uvm_object class_handle_table[process];

 static function uvm_object get();

 uvm_object class_handle;

 process pid;

 pid = process::self();

 class_handle = class_handle_table[pid];

 return class_handle;

 endfunction

 static function void set(uvm_object class_handle);

 process pid;

 pid = process::self();

 class_handle_table[pid] = class_handle;

 endfunction

 // Just like get(), but call class_handle.get_full_name()

 static function string get_full_name();

 uvm_object class_handle;

 process pid;

 pid = process::self();

 class_handle = class_handle_table[pid];

 return $sformatf("%s::%0d",

 class_handle.get_full_name(), pid);

 endfunction

 endclass

endpackage

// ===

// FILE: top.sv

// ===

import uvm_pkg::*;

import deviceA_pkg::*;

import agentA_pkg::*;

module top();

 reg clk;

 reg reset;

 busA busA_1(clk, reset);

 busA busA_2(clk, reset);

 dut dut_1(clk,

 reset,

 busA_1.valid,

 busA_1.rw,

 busA_1.addr,

 busA_1.rdata,

 busA_1.wdata);

 dut dut_2(clk,

 reset,

 busA_2.valid,

 busA_2.rw,

 busA_2.addr,

 busA_2.rdata,

 busA_2.wdata);

 initial begin

 uvm_config_db#(int)::set(null, "*", "recording_detail", 1);

 uvm_config_db#(virtual busA)::set(null, "*", "1", busA_1);

 uvm_config_db#(virtual busA)::set(null, "*", "2", busA_2);

 run_test();

 end

 always begin

 clk = 1; #10;

 clk = 0; #10;

 end

endmodule

// ===

// FILE: device_driver.c

// ===

#include <stdio.h>

///

/// Device Driver Layer.

/// This code is not really a device driver, but writes

/// values to addresses using writel() and readl() on

/// memory mapped data structures (like a device driver might).

///

int

c_device_driver() {

 int addr, data, rdata;

 for (addr = 16; addr < 100; addr+=4) {

 data = addr<<8;

 my_writel(addr, data);

 rdata = my_readl (addr);

 if (rdata != data)

 printf(

"C ERROR: Mismatch. addr=%0x, wrote data=%0x, read data=%0x\n",

 addr, data, rdata);

 else

 printf(

"C INFO: Match. addr=%0x, wrote data=%0x, read data=%0x\n",

 addr, data, rdata);

 }

 return 0;

}

// ===

// FILE: os_layer.c

// ===

#include <stdio.h>

#include "dpiheader.h"

int

my_readl(int addr) {

 int rdata;

 printf("C my_readl[[%s::%s]] addr=%x\n",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name(), addr);

 sv_read(&addr, &rdata);

 printf("C my_readl[[%s::%s]] addr=%x, data=%x\n",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name(), addr, rdata);

 return rdata;

}

my_writel(int addr, int data){

 printf("C my_writel[[%s::%s]] addr=%x, data=%x\n",

 svGetNameFromScope(svGetScope()),

 sv_get_full_name(), addr, data);

 sv_write(&addr, &data);

}

