UVM
L.

UVM Ready: Transitioning Mixed-Signal
Verification Environments to Universal
Verification Methodology

Arthur FREITAS
Régis SANTONJA

> 4
o ™ 2014
) freescale” .-..--2:.

semiconductor DV

CONMFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Outline

Intro

Pre-UVM, Module-
Based Environment

—~

u,}'_,“" UVM Environment
Preadly

accellera -
© Accellera Systems Initiative 2
SYSTEMS INITIATIVE

DESIGN AND VERIFICATION
CONFEREMNCE AND EXHIBITION

Introduction

e QOur products’ top level is an analog schematic

* Verification requires several mixed-mode top-level
simulations

 We describe here how we augmented our existing
analog self-checking verification framework with
UVvM

 UVM gives us the power to verify hard-to-imagine
mode transitions, digital configurations and analog
setups

2014

accellera DVCCIN

© Accellera Systems Initiative 3
SYSTEMS INITIATIVE

Outline

Intro

Pre-UVM, Module-
Based Environment

US':M UVM Environment
Preadly

accellera -
© Accellera Systems Initiative 4
SYSTEMS INITIATIVE

DESIGN AND VERIFICATION
CONFEREMNCE AND EXHIBITION

PRE-UVM ENVIRONMENT

* Traditionally, most of the analog verification relied on
waveform inspection

* Many analog engineers have limited knowledge of
design verification languages

* Advanced verification methodologies are digital
centric

* Maintaining two top-level verification environments
to leverage the man power of analog designers and
verification engineers is inpratical

.....................
accellera o DV
© Accellera Systems Initiative 5 . CoNERENCEIND BXHETIoN

SYSTEMS INITIATIVE

PRE-UVM ENVIRONMENT

* Pre-uvm environment used a domain specific
language (DSL) based on:
— Pre—processor Macros

— SystemVerilog APIs

e Testbench resources controlled by OOMR from the
testcase file

* Verlilog configurations define the abstraction level of
the DUT

* All testcase information centralized in a single file

.....................
accellera o DV
© Accellera Systems Initiative 6 . CoNrERENCESND EHETION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

ENVIRONMENT

Module-Based Testbench
(Verilog-AMS)

RE-

Stimulus Control File DUT
AMS-Verification (SystemVerilog) (Verilog-AMS)

DSL initial config Netlist
begin design w.top
‘stimuli
‘checks

end endconfig

Analog
(Wreal)

Analog
(SPICE)

APIs
(SystemVerilog)

Analog Resources RTL
Verilog-AMS ANALOG (Verilog)

Supply, Bias, Loads, etc

APIs
(SystemVerilog)

Analog
(SPICE)

Digital Resources FiGiTaE

clk, rst, SPI, 12C, etc

© Accellera Systems Initiative 7

| DESIGN AND Vgﬂ-l;\l

DVLCOIN

CONFEREMNCE AND EXHIBITION

EUROPE

Voltage Divider Example (DUT)

File: vdiv_ams.v File: vdiv_wreal.vams
[* voltage divider using 2 resistors*/ [* voltage divider in wreal abstraction
“include "constants.vams" ' Assumes that the output impedance of the previous
“include "disciplines.vams™ R, stage is low and that the input impedance of the next
Vi stage is high */

module vdiv(in,out,gnd); R,

input in, gnd; L module vdiv(in,out,gnd);

output out; input in, gnd;

electrical in, out,gnd; output out;

IIvoltage divider using to resistors to gnd, out is the mid-point wreal in, out;

Resistor #(1K) ri1(in,out); assign out = (in — gnd) / 2.0;

Resistor #(1K) r2(out,gnd); endmodule
endmodule

2014
DESIGN AND VERIFICATION
accellera o DV
© Accellera Systems Initiative 8 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Voltage Divider Example (TB)

File: vbatt.vams

File: th.vams

/* This is the v source to drive the dut */
“include "'constants.vams"* fe
“include ""disciplines.vams™

module vbatt(output out);
electrical out;
parameter real trise = 1us;
parameter real tfall = 500n;
parameter real Rout = 1m; //low output impedance

real vout; //controlled by analog

real v; //controlled by digital ittt <
, Task to set vbatt
task set_vbat (input real val); - ==~ by OOMR
v =val; B -
endtask
analog begin

—— o —

vout =transition(v,0,trise,tfall); I
e ' ’ Voltage Source
I(out) <+ (V(out) - vout)/Rout; __ _ = With a series R
end B
endmodule

/* This is the testbench */
“include "'constants.vams"*
“include ""disciplines.vams

module tb;
test test(); /lthis is our testcase instance
wreal vout; //coerce vout to wreal (infers a CM)

electrical gnd;
vbatt vbatt(wl); //v source to drive the dut

vdiv dut(.in(w1l),
.out(vout),

.gnd(gnd)

7

analog begin
V(gnd) <+ 0;
end
endmodule

SYSTEMS INITIATIVE

© Accellera Systems Initiative

DESIGN AND VERIFICATION

DV

CONFERENCE AND EXHIBITION

Voltage Divider Example (Testcase)

accellera

SYSTEMS INITIATIVE

© Accellera Systems Initiative

File: test.sv

/* This is the testcase file comprising the stimuli, checks, the design configuration, and sim options */
/*API1 macro defines. Listing the macros here just for illustration.

Normally you put them in a separate file which is included here. */ I <
“define VV *1.0) Macros defining the |
“define mV *1e-3 : APls of our analog |
“define wait_for(t) #(t); ez " verification language 1
“define set_vbatt(vc) tb.vbatt.set_vbat(vc); 7~ .o 4
“define check_v_min_max(s,mi,ma) begin \

if (Mi <=s && s <= ma) begin $display(""check ok: %g < %g < %g"", mi,s,ma); \

end else begin $display("ERROR: %g < %g < %g"", mi,s,ma); errcnt++; end end
module test;

int errcnt;

initial begin

“wait_for(1ns);
/lramp up to 12V

- e e e = = =

:set__vbatt(lz‘V) -===- g Directed Test) ‘,
wait_for(2us); 7T TTo- } comprising stimulus and |
/Iperform analog check] checks |
“check_v_min_max(tb.vout, 5.8°V, 6.1°V) S - ‘
//now down to 6V S P .
‘set_vbatt(600°mV); T~ Allows for checking I
“wait_for(1lus); 1 internal nodes of the :
/Iperform analog check i DUT i
‘check_v_min_max(th.vout, 290°mV, 310°mV) e LS i -

‘wait_for(2us);
$display(""SIMULATION %sED !, (errcnt == 0) ? "PASS” : “FAIL”);
$stop;
end
endmodule

/I please notice that you can use “defines to make configurations more readable
/I for example

“define DUT_IS_WREAL instance th.dut liblist wreallib; , - T T T TTITTTTEESS
“define DUT_IS_ELECT instance tb.dut liblist amslib; ; Design configuration in verilog :
config topcfg; : syntax aIIovymg users to choose i
design simlib.tb; e eetasiats g:e ali)stractlon level of DUT i
default liblist simlib amslib wreallib; T 77--- y DO)y

/Isetting dut to ELECTRICAL abstraction. ~ ~--7-7=--=-=-==-====--~
*DUT_IS_ELECT
endconfig
/luser can put here simulation options as verilog comments so that a pre-processor script can take them into account
/Ifor example: temp=130 10

DESIGN AND VERIFICATION

DVLOIN

CONFEREMNCE AND EXHIBITION

Outline

Intro

Pre-UVM, Module-
Based Environment

US':M UVM Environment
Preadly

8008//8[‘8 o
© Accellera Systems Initiative 11
SYSTEMS INITIATIVE

DESIGN AND VERIFICATION
CONFEREMNCE AND EXHIBITION

THE UVM ENVIRONMENT

* Prerequisite:

— Backwards compatibility with well-established verification
framework

— Ability to write directed tests with the same syntax and format
that our analog engineers are familiarized with

— Re-use as much as possible the existing framework (e.g., analog
mixed-signal drivers, simulation launching scripts, etc)

— Be able to extend the framework to full-fledged UVM

2014
DESIGN AND VERIFICATION
accellera o DV
© Accellera Systems Initiative 12 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

THE UVM ENVIRONMENT

* Implementation embodiment:

— Existing mixed-signal drivers shared among UVM and
module based tests

— UVM drivers outsource signal wiggling through task calls
— Proxy systemVerilog interfaces link to existing MS drivers

— Keep same testcase format by using extern virtual tasks

SIGN AND VE RQOCJ\4I':D
accellera - DV
© Accellera Systems Initiative 13

SYSTEMS INITIATIVE

THE UVIM ENVIRONMENT

SoC Testbench
(Verilog-AMS)
//eachtest has its scenario
externvirtual task scenario();
irtual task run_phase(uvm_ph
\:I:au::);as run_phase(uvm_phase UVM_TOP_MODULE DUT
hase.raise_objection(.obj(this)); H 5
ANl ’ (SystemVerilog) (Verilog-AMS)
hase.drop_objection(.obj(this)); 1
:ndtask i : uvm_test NEtlISt
task uvmtest::scenario(); @4

/* directed test or
‘ contrained-random test *

UVM P Virtual Interfaces Analog
= c.:::fg COMPILE CFG OOMR l (SPICE)
rea d y design work.top APIS

Sl (SystemVerilog)

Analog Resources
Verilog-AMS ANALOG

Supply, Bias, Loads, etc

APIs
(SystemVerilog)

Analog
(SPICE)

Digital Resources SETT

clk, rst, SPI, 12C, etc

g DESIGN A‘ND VEgﬂgJﬂil:l
accellera - DVCLIN
© Accellera Systems Initiative 14 CONFERENCE AND EXHIBITION

P — EUROPE

Transaction and Sequence for our
Voltage Source Example

File: vbatt_transaction.sv,

File: vbatt_sequence.sv

class vbatt_transaction extends uvm_sequence_item;

—

Radom real number

(
/I the voltages | _
to drive voltages

‘uvm_object_utils_begin(vbatt_transaction)
‘uvm_field_real(vbatt, UVM_DEFAULT)
‘uvm_object_utils_end

function new (string name = "'vbatt_transaction);
super.new(name);
endfunction

endclass

class vbatt_seq extends uvm_sequence
#(vbatt_transaction);

—— o o - o oy

// the voltages . Generi N
rand real s b: eneric sequence |
. = . | which can be i
uvm_object_utils(vbatt_sed), .onstrained by the i
/I Constructor : user |
/

/I Sequence body definition _-Z--"

virtual task body();
‘uvm_do_with(req, {req.vbatt == s b; })

endtask
// Constraints go here (-1V < = Vbatt <=
constraint default_vbatt voltage {
s b>= -10 &&s b<= 15.0; }
// pre and post body to raise and drop objections

15V)

endclass

SYSTEMS INITIATIVE

© Accellera Systems Initiative

15

DESIGN AND VERIFICATION

DV

CONFERENCE AND EXHIBITION

UVM Driver and Proxy Interface

File: vbatt_driver.sv

File: vbatt if.sv

class vbatt_driver extends uvm_driver
#(vbatt_transaction);

protected virtual interface vbatt_if vif;
‘uvm_component_utils(vbatt_driver)

/I Constructor; Build Phase

task run_phase(uvm_phase phase);
super.run_phase(phase);
forever begin
/I Get new item from the sequencer
seq_item_port.get next_item(req);
// Drive the item
vif.vbatt = req.vbatt;
/[Communicate item done to the sequencer
seq_item_port.item_done();
end
endtask
endclass

interface vbatt_if ();

/I Import UVM package
import uvm_pkg::*;
“include "'uvm_macros.svh"'

real vbatt;
/I Control events
event new_drv_values; /* used by the monitor to detect

changes and by the module TB to drive vbatt - = = = = = = = <
' Eventto trigger

always @(vbatt) begin _1 external module-
#1 - - based driver |

-

“uvm_info(*'IF", ""Change on drive vbatt",UVM_LOW);

end
endinterface

SYSTEMS INITIATIVE

© Accellera Systems Initiative

DESIGN AND VERIFICATION

DV

16 CONFERENCE AND EXHIBITION

UVM Top module and Generic Test

File: uvm_top_module.sv

module tb_uvm_top; "
import uvm_pkg::*; |
Import vbatt _pkg::*; :

Virtual

event
\

vbatt_if vbatt_if_i(); //interface instarlti//.«o’n

Pz
/o

always @(vbatt_if_i. new_drv_values) pegin

/*detect transactions redirect to legacy
module-based driver */

tb.vbatt.set_vbat(vbatt_if_i.vbatt);

-~

end ' OOMRto |
; module-based |

initial | driver |
begin S e e ‘

uvm_config_db #(virtual interface vb
null, *'*.*env*", "vif",

Interface drive

) ——

tt_if)::set(
batt_if i);

File: uvm_env_test.sv

~ "include ""'uvm_macros.svh"'

: import uvm_pkg::*;
 iImport vbatt_pkg::*;
‘include "uvm th.sv"

class my_env_test extends uvm_test;
“uvm_component_utils(my env_test)
vbatt_tb vbatt tb _h;
vbatt_sequencer seqr;

/I Constructor, Build Phase, Connect Phase

[* The actual testcase is implemented in an
external task provided by the user via command line
*/
extern virtual task scenario();
virtual task run_phase(uvm_phase phase);
phase.raise_objection(.obj(this));

scenario() » ~ I/ Actual testcase provided by the user_ _

-t
—
~ "= e

CONFERENCE AND EXHIBITION

/lalways run the test case provided by diser phase.drop_objectionl.ou ..~ " External task X
run_test("'my_env_test™); endtask 7 provided by the |
end endclass X user y
endmodule " ToTTT====
DESIGN AND VERIFICATIOMN
accellera DV

© Accellera Systems Initiative
SYSTEMS INITIATIVE

17

Directed Tests using UVM

* The infrastructure allows:
— Execute the existing legacy tests

— Create constrained-random scenarios
— EXAMPLE:
Module based api:

‘define set _vbatt(vc) tb.vbatt.set vbat(vc);

API translation for UVM testcase:

‘define set_vbatt(vc) assert(vbseq.randomize() \
with {vbseq.s_b ==vc; }); \
vbseq.start(vbseqr);

2014

accellera o DVCCIN
© Accellera Systems Initiative 18

Voltage Divider Example (UVM Testcase)

File: uvm_test.sv

Macros defining the
APIs of our analog
verification language

Outsourcing error handling
to the UVM environment
with uvm_error macro

EXTERNAL
Task called by
the uvm_env_test
class

Same Syntax can be
used to write legacy
directed tests

(5]
=
4
8
=
=
n
=
Q
+
%]
>
n
@®
S
Q
©
[S]
Q
<
©

accellera NN

ONFERENCE AND EXHIBITION

P — EUROPE

METHODOLOGY ACHIEVEMENTS
AND ROADMAP

SCHEMATICS | Tk
i | SystemVerilog L“'&_/M U V M
' — L

Waveform Self-checking Mixed-Signal . Mixed-Signal
Inspections Analog Verification UVM Ready: 2013 Y UVM: 2015
< Good enough for < Adequate to mixed- < Backwards compatible to < Full-fledged UVM
small analog ICs signal ICs module-based method ¢ Result predictors, assertions
< Schematic-based % Programmable text- % Portdigital block-level UVYM and Scoreboards

based testbench tests to the top-level % Randomization to verify

1
1
1
1
1
1
1
1
testbench ! . o
. s UVM register layer integration , mode transitions, digital
1
1
1
1
1
1
1
1

% Noregression testing
¢ Mostly SPICE
configurations

% Regression testing . .
. . % Simple top-level configurations and analog
% Mixed SPICE, Wreal and setups

. randomizations X . .

Verilog-ams % Mixed SPICE, Wreal and < Mainly Wreal configurations

configurations .) . and limited use of SPICE
Verilog-ams configurations

——— and Verilog-ams models

DESIGN AND VERIFICATION

accellera DV LN

© Accellera Systems Initiative 20 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Conclusion

e Successful transition of mixed-signal verification
environment to UVM

 Methodology backwards compatible with traditional
module-based framework

e Users can choose what environment to use

e all information required to describe mixed-signal
simulation is gathered in 1 single file

* Block-level UVM can be easily ported to the top level

* Massive amount of test vectors can be produced
with very little effort

/l lllllllllllllllllllll
© Accellera Systems Initiative 22 CoNrERERCEIND EXHETIoN
SYSTEMS INITIATIVE

Questions

Finalize slide set with questions slide

,\ DESIGHN AMND Vg:%
acce/lgga DVCON

CONMFERENCE AND EXHIBITION

SYSTEMS INITIATIVE M

References

* [1] A. Freitas “Real-Valued Mixed-Signal Verification:
An Abstraction Adjustable Methodology” CDNLive
EMEA 2013, Munich.

e [2] “1800-2012 - IEEE Standard for SystemVerilog--
Unified Hardware Design, Specification, and
Verification Language”, IEEE Computer Society, USA,

2012.

e [3] “Standard Universal Verification Methodology
Class Reference, Release 1.2”, Accellera System
Initiative, USA, 2014.

/l lllllllllllllllllllll
© Accellera Systems Initiative 23 CoNrERERCEAND EXHIETION
SYSTEMS INITIATIVE

DESIGN CONFIGURATION AT
ELABORATION TIME

o

Design Schematics RTL Code Testbench Files verilog-ams Models WREAL Models

netlist

1 AN

. >
COmplle I_,/" Full-transistor ™

netlist

Schematics LIB

Elaborate

_—design configuration —
done at elaboration J)‘ ——
S~—) stage - __— (Ve Actual design \
S i configurationisin
simulate . verilogformat _~"
Commercial Simulator
)

Digital Solver Analog Solver
[

accellera

SYSTEMS INITIATIVE

© Accellera Systems Initiative 24

014

DESIGN AND VERIFICATION

DVLCOIN

CONFEREMNCE AND EXHIBITION

Typical UVM Environment

test
COVErage
env maonitor
—— "“3’ manitor
- —
SOR = driver
E DUT
J (SP1 with
sssssss monitor APB interface)
°|_ - >
SQR = driver

Source: verificationacademy.com
DESIGM AMND VEgFQJiN
accellera DVLCOIN

SYSTEMS INITIATIVE

