UVM Reactive Stimulus Techniques

Clifford E. Cummings Heath Chambers Stephen DOnofrio
Sunburst Design, Inc. HMC Design Verification, Inc. Paradigm Works
cliffc@sunburst-design.com hmcdvi@msn.com stephen.donofrio@paradigm-works.com

Abstract - UVM reactive stimulus techniques allow sequences to receive feedback from a Design Under Test (DUT) to
determine what stimulus should be sent next. Existing documentation and examples describe some of the requirements to
create sequences and drivers with both request (REQ) type and response (RSP) type parameters, but the descriptions are
somewhat incomplete regarding how to create the response (RSP) transaction that is sent back to the sequence.

This paper describes all of the necessary steps to create efficient reactive stimulus sequences. The paper describes how
those techniques can be used to test an example synchronous FIFO design.

I. INTRODUCTION

It is very common for a UVM test to execute a pre-defined set of sequences regardless of the status of the Design
Under Test (DUT). An alternate approach is to execute stimulus that reacts to status from the DUT.

Reactive stimulus is stimulus that executes commands based on feedback from the DUT. The execution of stimulus
is not just a fixed sequence of commands, but a set of commands that execute until a certain condition is detected.
Frequently, stimulus reacts to status bits that are returned from the DUT. For example, the stimulus generation
source might execute a series of write and read commands with more frequent write operations until a FIFO is full,
then it might execute a series of reads commands with intermittent write commands until the FIFO is empty.

UVM drivers, sequencers and sequences can be configured in a UVM test environment to be reactive in nature.

Il. UVM_DRIVER & UVM_SEQUENCER PARAMETERS

The uvm_driver and uvm_sequencer base classes are both parameterized classes with two parameters
each. Each of these classes has a type REQ=uvm_sequence__item parameter and a type RSP=REQ parameter.
The second parameter is typically only modified if reactive stimulus is used where the RSP (response transaction
type) is different from the REQ (stimulus transaction type) as shown in Table 1.

Stimulus generation without

C RSP type not specified
examining response

Stimulus generation examining response

: . RSP type not specified
using same transaction type yp P

Stimulus generation examining response

using different transaction type RSP type IS used

Table 1 - REQ / RSP type parameter usage

Ill. REQ/RSP HANDLES

The OVM/UVM User Guides use req and rsp handles in examples, but they are never explained in the User
Guide [2]. This is just one of many places where User Guide examples are confusing and poorly explained.

| Equivalent testl-~,
class tb driver extends SR X
uvm_driver # (transl) ; tr sequence I
o .
_{ class tb driver extends 7 A f-b_ﬂge"lhl
i . vl
uvm_driver # (transl, transl); transi | ' | transi |
f — \
class tb sequencer extends REQ m l +!
uvm_sequencer # (transl); t.h_sequ%ncer
REQ RSP ﬁ
class tr se tend
~_sequence extends = dr:l._Jver
uvm_sequence # (transl); =
xe0] “frar] |

Figure 1 - Same trans1 REQ / RSP parameters used by drivers, sequencers and sequences

Users extend the uvm_driver base class with a user-defined driver class (for example: tb_driver) and pass
the transaction type as the REQ parameter (for example transl) as shown in Figure 1. From observation, it appears
that most users then declare their own local transl tr handle and use that tr handle to drive stimulus to the
virtual interface handle, also declared in the tb_driver class. This is actually completely unnecessary as the
inherited base class has already declared an req handle of the REQ parameter type, and this type could be used in
the th_driver classin place of the user-declared tr handle. That being said, since the req handle documentation
is both inadequate and frequently misunderstood, we recommend declaring your own local transl tr handle,
which is common practice. The latter is much better understood by most verification engineers.

Similarly, the inherited base class has already declared an rsp handle of the RSP parameter type, so if a response
transaction is returned to the reactive stimulus source, it is unnecessary to declare a local response handle name.
Again, this is poorly understood so we recommend declaring your own response handle name.

IV. UVM_DRIVER BASE CLASS PARAMETERS & PORTS

The uvm_driver base class is extended from the uvm_component base class, and includes the following code:
class uvm_driver #(type REQ=uvm_sequence_item,
type RSP=REQ) extends uvm_component;

uvm_seq_item pull_port #(REQ, RSP) seq_item_port;
uvm_analysis_port #(RSP) rsp_port;

REQ req;

RSP rsp;
Figure 2 - uvm_driver class header & declarations

The uvm_driver base class header in Figure 2, shows that this class is parameterized with two type parameters.
Type parameter #1: type REQ=uvm_sequence_item

The first type parameter defines the REQ (request) type with a default value of uvm_sequence_item base
class type. All user-defined transaction types are derivatives of the uvm_sequence_ i tem type, so any transaction
type can be assigned to the REQ type.

UVM compares the driver REQ type to the sequencer REQ type to ensure that there is a type match between the
sequencer and the driver. If the types do not match, UVM issues a fatal error message. Depending on the simulator,
the fatal message is reported in either the compilation or simulation steps.

Type parameter #2: type RSP=REQ

The second type parameter defines the RSP (response) type and the default value is also the
uvm_sequence_item base class type. All user-defined transaction types are derivatives of the
uvm_sequence_item type, so any transaction type can be assigned to the RSP type. As shown in Figure 2, the
default RSP type is the same as the REQ type.

V. UVM_SEQUENCE BASE CLASS PARAMETERS & PORTS

The uvm_sequence base class is extended from the uvm_sequence_base base class, and includes the
following code:

uvm_sequence_item,
REQ) extends uvm_sequence_base;

virtual class uvm_sequence #(type REQ
type RSP

REQ req;
RSP rsp;
Figure 3 - uvm_sequence class header & declarations

The uvm_sequence base class header in Figure 3, shows that this class is also parameterized with same two
type parameters that are used in the uvm_driver base class, as described in Section IV.

The user-define tr_sequence class shown in Figure 4, is extended from the uvm_sequence base class shown
in Figure 3. The sequence definition includes declarations and factory creation of the request (tr) transaction and
might include a response (rsp) transaction. Each command called by the body() task uses the request (tr)
transaction and, if the sequence is reactive, the command will also get the response (Fsp) transaction.

class tr_sequence extends uvm_sequence #(transl);
transl tr transl::type_id::create(''tr');
transl rsp = transl::type_id::create(''rsp'); // Used by reactive sequence

task body;
commandl1();

endtask

task commandl;
start_item(tr);
.randomize transaction..
finish_item(tr);
get_response(rsp); // Used by reactive sequence

endtask

Figure 4 - User defined tr_sequence class header & common body() and command task

The user can use req of the REQ type if desired, or declare another request type to use, as shown in Figure 4.
The UVM User Guide shows examples that use the req transaction type without describing where the req type
comes from. As can be seen above, the req type is inherited from the uvm_sequence base class. That being said,
most users declare their own request transaction type.

The user can also use rsp of the RSP type if desired, or declare another response type to use as shown in Figure
5. The default RSP type matches the REQ type, but a user can choose to use a second response type. Most users
tend to use the same default transaction type as the request transaction type.

testl-~,
class tb driver extends ¥

env
uvm_driver # (transl, trans2); tr sequence I

tb L
o] [pe] | | [eemid

vl
transl | 1, [trans2 |
]
class tb sequencer extends !
uvm_sequencer # (transl, trans2); tb_sequencer
REQ RSP O
class tr sequence extends [
- tb driver
uvm_segquence # (transl, trans2); —
sea| [

Figure 5 - Different trans1 / trans2 REQ / RSP parameters used by drivers, sequencers and sequences

V1. RESPONSE TRANSACTION USAGE

When the test is required to examine some form of DUT status to calculate the next desired stimulus, then a
response transaction is returned to the stimulus source for examination.

Using response transactions typically requires small but important modifications to the driver, sequencer and
sequence coding styles that were not required in non-reactive stimulus generation. The following subsections give
an overview of those high-level actions.

A. General

The driver, sequencer and sequence must all declare the same stimulus and response transaction handles. If the
same transaction type is used for both the stimulus and response, then the driver, sequencer and sequence will just
declare the same transaction handle types. If a different transaction type is used to pass a response to the sequence,
then the driver, sequencer and sequence will list the second transaction type as additional class parameters as was
shown in Figure 5.

B. Driver

For reactive stimulus generation, the driver needs both stimulus transaction (tr) and response transaction (rsp)
handles. The handles might be declared as the same transaction type as shown in Example 1, or they might be
declared as different transaction types as shown in Example 2.

transl tr = transl::type_id::create(''tr');
transl rsp = transl::type_id::create(''rsp™);

Example 1 - Stimulus and response, both of the trans1 type

transl tr = transl::type_id::create(''tr');
trans2 rsp = trans2::type_id::create(''rsp');

Example 2 - Stimulus and response, declared as different transl and trans2 types

The driver's run_phase() needs a modified version of the forever loop with the following three
modifications, (1) after getting the next item, the response needs to capture the transaction id using the
rsp.set_id_info(tr), (2)thedrive_item(tr, rsp) include both the tr and rsp handles, and (3) the
seg_item_port.item_done(rsp) method must return the response transaction handle. These modifications
are highlighted in Example 3.

task run_phase(uvm_phase phase);
transl tr;

forever begin
seq_item_port.get next_item(tr);
rsp.set_id_info(tr);
drive_item(tr, rsp);
seq_item_port.item_done(rsp);
end

endtask
Example 3 - Driver run_phase() modifications for reactive stimulus generation

C. Sequencer

For reactive stimulus generation, the sequencer needs both stimulus transaction (tr) and response transaction
(rsp) handles declared in the class header as was shown in Figure 5. This is the only modification required for the
reactive version of the sequencer.

D. Reactive Sequence

The reactive sequence needs access to the DUT outputs, including the important status signals, that were sampled
by the drive_item() task in the driver's forever loop. The driver sent the response transaction handle (rsp)
back through the sequencer to the reactive sequence using the seq_item_port. item_done(rsp) command
shown in Example 3, and it is the reactive sequence's job to retrieve that handle using the get_response(rsp)
after the Finish_item(tr) command as highlighted in Example 4.

task commandl;
start_item(tr);
.randomize transaction..
finish_item(tr);
get_response(rsp);

endtask
Example 4 - Command task example used by a reactive sequence

VII. STiIMULUS CODING TECHNIQUES
Stimulus can be coded at least three different ways, (1) send stimulus without examining any type of response
status, (2) send stimulus and examine the response status using the same transaction type, and (3) send stimulus

and examine the response status using the a different transaction type.

The first two styles do not require any special modifications to the sequencer code, while the third style simply
requires the sequencer code to be parameterized to both request and response transaction types.

The coding considerations for the three styles are described in this section.

A. Stimulus without response transactions

UVM verification engineers are generally familiar with sequences and drivers that do not have response
transactions.

The class headers for the tr_sequence, tb_sequencer and tb_driver shown in Example 5, Example 6
and Example 7 are all required to be parameterized to the same transaction type, transl in these examples.

class tr_sequence extends uvm_sequence #(transl);
task body;
command1();
command2();

endtask

task commandl;
start_item(tr);
..randomize transaction..
finish_item(tr);

endtask

task command2;
start_item(tr);
..randomize transaction..
finish_item(tr);

endtask

Example 5 - Sequence with no response transaction

class tb_sequencer extends uvm_sequencer #(transl);

Example 6 - Sequencer with no response transaction
class tb_driver extends uvm_driver #(transl);

task run_phase(uvm_phase phase);
transl tr;

forever begin
seq_item_port.get_next_item(tr);
drive_item(tr);
seq_item_port.item_done();
end
endtask

Example 7 - Driver with no response transaction

As shown in the tb_driver of Example 7, stimulus without response transactions finishes communicating with
the sequencer by issuing the command: seq_item_port.item_done();

Note that the item_done() command does not return a transaction handle. Non-response stimulus that
returns a transaction handle is a mistake, which causes sequencer FIFO overflows as describe in Section 0.

B. Stimulus with matching request and response transaction types

There is reasonable existing documentation that shows how to code sequences and drivers with matching request
and response transaction types.

When sequences, sequencers and drivers use matching request and response transaction types (tranl in these
examples), the class headers for the tr_sequence and tb_driver shown in Example 8 and Example 9 are the
same as the class headers used in the non-response versions of tr_sequence and tb_driver shownin Example
5 and Example 7. It should be noted that there is no modification required to use the th_sequencer shown in
Example 6 in a UVM testbench with matching request and response transaction types.

The user-defined sequence declares and creates the transl tr and rsp transaction objects. The body () task
of a sequence typically calls other command tasks, which in turn might call additional nested command tasks.

Each command () task called by the body() task is going to start_item(tr), randomize the transaction,
then issue the Finish_item(tr) command. The command() task will then do a get_response(rsp)
command to get the returned response-transaction as shown below in Example 8. The rsp handle can then be used
by the sequence to test individual response fields, as will be shown in Section X.

class tr_sequence_rsp extends.. #(transl);
transl tr transl::type_id::create(''tr');
transl rsp = transl::type_id::create("'rsp");

task body;
command1();
command2();

endtask

task commandl;
start_item(tr);
.randomize transaction..
finish_item(tr);
get_response(rsp);

endtask

task command2;
start_item(tr);
.randomize transaction..
finish_item(tr);
get_response(rsp);

endtask

Example 8 - Sequence with response transaction

class tb_driver extends uvm_driver #(transl);
task run_phase(uvm_phase phase);
transl tr;
forever begin
seq_item_port.get _next_item(tr);
rsp.set_id_info(tr);

drive_item(tr, rsp);
seq_item_port.item_done(rsp);
end
endtask

task drive_item (transl tr, output transl rsp);
transl resp;
if(1$cast(resp,tr.clone())) “uvm fatal("'DRVI™, "cast to resp failed")
vif.cbl.rst_n <= resp.rst_n;
vif.cbl.din <= resp.din;
vif.cbl.write <= resp.write;
vif.cbl.read <= resp.read;
@vif_cbl;
// sample all outputs at end of cycle into resp handle

resp.full = vif.cbl.full;

resp.af = vif.cbl.af;

resp.empty = vif.cbl.empty;

resp.ae = vif.cbl.ae;

resp.dout = vif.cbl.dout;

rsp = resp; // copy resp handle to drive_item rsp output handle

endtask
endclass

Example 9 - Driver with response transaction

The tb_driver run_phase() shown in the top part of Example 9, uses a Forever loop that executes the
following set of commands:

1. seq_item_port.get_next_item(tr)

2. The rsp transaction needs to set the id (rsp.set_id_info(tr)) of the driven transaction so that
responses can be matched to the corresponding driven transactions.

3. Drive the item executing the user-defined drive_item(tr, rsp) task with both stimulus
transaction and response transaction handles, tr and rsp.

4. Then finish communication with the sequencer using the seq_item port.item_done(rsp)
command.

Note that the item_done(rsp) command returns a response transaction (rsp) handle, which will be passed
through the sequencer back to the sequence. The sequence may then use response transaction fields to determine
the next set of commands to be executed by the sequence.

The drive_item() method shown at the bottom of Example 9 has input and output transl handles called
tr and rsp. A transl resp handle must then be declared beneath the drive_item() prototype, but the

creation of this local resp object is accomplished by cloning of the tr input transaction handle using the command
if(1$cast(resp,tr.clone())) ..

The resp object, cloned from the tr input transaction, now has a copy of both the input and output transaction
fields. The input transaction fields will be returned with the response transaction, but the output transaction fields
are only copied from the virtual interface after the drive_item() method is first synchronized to the next
posedge clk (@viT.cbl) and then the output fields are sampled just before the @vif.cbl using the clocking
block defined inside of the interface. The reason for sampling the outputs at the end of the cycle are described in
Cummings [1]. The sampled outputs have now been placed into the resp transaction and the final step is to copy
the resp transaction handle to the output rsp handle.

The sampling of the transaction outputs at the end of the cycle and copying them to the output fields of the resp
transaction is the step that is poorly documented in most sources that we have examined.

C. Stimulus with different request and response transaction types

When creating responsive stimulus, verification engineers typically use the same transaction type for both the
request and response types. Verification engineers must include declarations for the desired response fields in this
one and only transaction type and frequently these response fields are status bits that were already defined in the
transaction. This makes it possible to use the simple responsive stimulus techniques described in the previous
subsection.

If a verification engineer has a compelling reason to use a different transaction type, small modifications to the
previous procedure are required.

For the transaction sequence, the first difference is that the tr_sequence prototype is now parameterized to
two different transaction types (transl, trans2) as shown in the class header of Example 10.

The second difference is that both transaction types must be declared and factory-constructed inside of the
tr_sequence class, also highlighted near the top of Example 10. The rest of the transaction code is the same as
was shown in the tr_sequence of Example 8.

class tr_sequence extends uvm_sequence #(transl, trans2);
transl tr transl::type_id::create('tr');
trans2 rsp = trans2::type_id::create(''rsp');

task body;
command1();
command2();

endtask

task commandl;
start_item(tr);
.randomize transaction..
finish_item(tr);
get_response(rsp);

endtask

task command2;
start_item(tr);
.randomize transaction..
finish_item(tr);
get_response(rsp);

endtask

Example 10 - Sequence with different response transaction type

The driver must also be declared with two transaction types in the class header, where the second transaction
type is the response type, as shown in Example 11. Even though declaring the RSP type to be trans2, and even
though the driver would inherit the declaration trans2 rsp; (since RSP = trans2) we still recommend that
engineers make the trans2 rsp; declaration shown near the top of Example 11. As long as the response handle
name matches rsp, this declaration is not really necessary.

class tb_driver extends uvm_driver #(transl, trans2);

trans2 rsp;
task run_phase(uvm_phase phase);
transl tr;

forever begin
seq_item_port.get next_item(tr);
drive_item(tr, rsp);
rsp.set_id_info(tr);
seq_item_port.item_done(rsp);
end
endtask

task drive_item (transl tr, output trans2 rsp);
trans2 resp = trans2::type_id::create(''resp");
vif.cbl.rst n <= tr.rst _n;
vif.cbl.din <= tr.din;
vif.cbl.write <= tr.write;
vif.cbl.read <= tr.read;
@vif.cbl;
// sample all outputs at end of cycle into resp handle

resp.full = vif.cbl.full;
resp.af = vif.cbl.af;
resp.empty = vif.cbl.empty;
resp.ae = vif.cbl.ae;
resp.dout = vif.cbl.dout;

rsp = resp; // copy resp handle to drive_item rsp output handle
endtask
endclass
Example 11 - Driver run_phase() with drive_item(tr,rsp) and rsp.set_id_info(tr)

The second difference in the driver is that the trans2 resp handle inside of the drive_item() task is
typically not cloned from the tr input transaction, as it was in Example 9. This is because the second transaction
type might not include all of the input fields that were defined in the transl transaction type and therefore the
second transaction type might not be $cast-compatible with the tr transaction type. Instead, in the
drive_item() task, the sampled output fields that are required by the resp transaction type are sampled using
the clocking block timing in the virtual interface and directly assigned to the output fields of the resp transaction.

VIIl. REACTIVE STIMULUS TEST PLAN FOR 1-CLOCK FIFO EXAMPLE

To demonstrate the use of reactive stimulus, we will use as an example a well-understood design block, a 1-clock
(synchronous), 16-deep FIFO design. The test plan for this type of FIFO might include the following desirable stimulus
generation operations:

Write specific word to FIFO.

Read word from FIFO.

Random Block-writes to FIFO with fixed word pattern.

Random Block-writes to FIFO with random word patterns.

Random Block-reads from FIFO.

Write until not Almost Empty (AE) - intended to take the design from FIFO-empty to a safe fill-depth by
continuously writing patterns - this requires reactive stimulus to monitor the AE flag on the DUT.

Write until Almost Full - this requires reactive stimulus to monitor the AF flag on the DUT.

Write until Full - this requires reactive stimulus to monitor the Full flag on the DUT.

o Attempt to write past full, which should not succeed. This can be accomplished by writing until full and then
performing more random write commands without simultaneous read commands. This tests to make sure
that the FIFO Full flag does not change and that the current FIFO contents are not over-written.

e Read until Almost Empty - this requires reactive stimulus to monitor the AE flag on the DUT.

e Read until Empty - this requires reactive stimulus to monitor the Empty flag on the DUT.

e Attempt to read past empty, which should not succeed. This can be accomplished by reading until empty
and then performing more random read commands without simultaneous write commands. This tests to
make sure that the FIFO Empty flag does not change.

e Reset the FIFO - this should cause the Empty flag to be set (if not already set) and the Full flag to be cleared
(if it was set). Reset testing should be executed in at least three scenarios: (1) when the FIFO is already
empty, (2) when the FIFO is neither full nor empty, and (3) when the FIFO is full.

Five of the above operations require the examination of DUT status and therefore use reactive stimulus. The five
operations that use reactive stimulus are: (1) Write until not Almost Empty, (2) Write until Almost Full, (3) Write
until Full, (4) Read until Almost Empty, (5) Read until Empty.

IX. FIFO DESIGN TB_DRIVER - DEVELOPMENT OF THE DRIVE_ITEM() METHOD

The testing of the 1-clock, 16-deep FIFO design is described in this section. The drive_item() task used in the
th_driver to test this FIFO example was shown in Example 9. In this section, the development of the different
parts of the drive_item() task will be explained in more detail.

The drive_item() task for the FIFO design samples the FIFO flag outputs at the end of the cycle and stores
them into the response transaction. The step that is poorly described in descriptions of request/response stimulus
generation is how the response transaction fields are sampled and assigned.

In the FIFO example, the FIFO inputs, reset, input data (din), write and read signals, are driven to the DUT
20% of the cycle past the posedge clk. The recommended use of the 20% / 80% stimulus generation times is
described in [1].

The driving of the inputs is accomplished in the drive_item() task snippet in the user-define tb_driver, as
shown below:

task drive_item (input transl tr, ...);

“uvm_info('drive_item”, tr.input2string(), UVM_FULL)

vif.cbl.rst_n <= tr.rst_n;

vif.cbl.din <= tr.din;

vif.cbl.write <= tr.write;

vif.cbl.read <= tr.read;

@vif.cbl; // Synchronizes to the next active clock edge
endtask

Example 12 - Driver drive_item() method part 1 - drives DUT inputs using clocking block timing

If the sequence uses response transactions, the response transaction might return both the driven inputs and the
sampled outputs. To capture the driven inputs, it is a good practice to take a clone of the drive_item()
transaction, and then just use the cloned inputs to drive those same inputs in the drive__item task, thus ignoring
the tr signals altogether after the tr transaction has been cloned, as highlighted in Example 13.

In part 2, as shown in the modified snippet of Example 13, a transl resp handle has been declared just below
the drive_item task prototype and then the input transl tr handle was cloned and $cast to the resp
handle. Now that the tr and resp handles are identical, the resp signals can be used to drive to the corresponding
viFinput signals using clocking block timing.

task drive_item (input transl tr, ...);

transl resp;

“uvm_info('drive_item”, tr.input2string(), UVM_FULL)
if(I$cast(resp,tr.clone()))
“uvm_fatal ("'DRVI™, "cast to resp failed™)

vif.cbl.rst_n <=
vif.cbl.din <=
vif.cbl.write <=
vif.cbl.read <=
@vif.cbl;

endtask

resp.rst_n;
resp.din;
resp.write;
resp.read;

Example 13 - drive_item() part 2 - uses cloned response transaction

The FIFO outputs, Ful I, af (almost full), empty, ae (almost empty), and output data (dout) signals, should be
sampled at the end of the cycle just before the next posedge clk.

In part 3, as shown in the modified snippet of Example 14, an output transl rsp handle declaration has been

added to the header of the drive_

item() task.

At the end of the cycle, the drive_item() task re-synchronizes to the next posedge clk defined in the
interface clocking block using the @vif.cb1 syntax, and then uses clocking block timing to sample the outputs just
before the posedge clk edge using the viT.cbl.signal name syntax. Each sampled signal is then assigned
to the corresponding output signal in the resp transaction, and finally the resp transaction handle is copied to the
drive_itemoutput transl rsp handle, to be returned to the calling transaction sequence.

task drive_item (input transl tr, output transl rsp);

transl resp;

“uvm_info("'drive_

item”, tr.input2string(), UVM_FULLG)

if(!$cast(resp,tr.clone()))
“uvm_fatal (""'DRVI™, "cast to resp failed™)

vif.cbl.rst_n <=
vif.cbl.din <=
vif.cbl.write <=

resp.rst_n;
resp.din;
resp.write;
resp.read;

// copy all outputs at end of cycle to resp

vif.cbl.read <=
@vif.cbl;
resp.full = vif.
resp.af = vif.
resp.empty = vif.
resp.ae = vif.
resp.dout = vif.
rsp = resp;
endtask

cbl.full;
cbl.af;
cbl.empty;
cbl.ae;
cbl.dout;

Example 14 - drive_item() part 3 - samples DUT outputs input response transaction using clocking bock timing

This last part of sampling DUT outputs at the end of the cycle and assigning them to the response transaction is
what is frequently missing from existing examples. The response transaction now has the sampled FIFO output flags
and output data at the end of the cycle, which can be examined and tested in the reactive sequence.

X. FIFO DesiIGN COMMAND TASKS

Many of the FIFO tr_sequence command tasks randomize the transaction data fields and it is important that
the randomization be tested to ensure that the constraints are met. Since this randomization is a common activity,
we included a macro definition to print a consistent "RANDOMIZE FAIL" message as shown in Example 15.

A. RANDOMIZE_FAIL message macro
Each call to tr.randomize() inthe reset(), do_item(),write() and read () tasks calls the common
RANDOMIZE_FAIL macro that was placed just before the tr_sequence class, as shown in Example 15.

“i1fndef RANDOMIZE_FAIL
“define RANDOMIZE_FAIL \

“uvm_fatal (""TR_S", "tr_sequence randomization failed")

“endif

Example 15 - Common RANDOMIZE_FAIL macro

The tr_sequence class declares and factory-creates the stimulus transaction tr and the response transaction
rsp, as shown in Example 16.

class tr_sequence extends uvm_sequence #(transl);
“uvm_object _utils(tr_sequence)

transl tr
transl rsp

transl::type_id::create("tr');
transl::type_id::create("'rsp");

function new (string name = "tr_sequence');

super .new(name) ;

endfunction

Example 16 - Transaction sequence declares and creates transaction and response-transaction

B. FIFO tr_sequence body() task
The body () task (stimulus command source) of the tr_sequence is shown below in Example 17 and the
sequence executes the following stimulus actions:

Line 2 -
Line 3 -
Line 4 -
Line 5 -
Line 6 -
Line 7 -
Line 8 -
Line 9 -
Line 10 -

Line 11 -
Line 12 -
Line 13 -
Line 14 -

Line 15 -
Line 16 -

The stimulus first resets the FIFO for two clock periods.

Then completely fills the FIFO.

Later, after the FIFO is detected to be full, the stimulus reads the FIFO until it is empty.

The FIFO is written until it is past the Almost Empty mark.

Then 6 random read/write commands are issued.

The FIFO is then written until it is Almost Full.

Then 10 random read/write commands are issued.

The FIFO is written until full.

An attempt is made to randomly do 4-8 additional write commands, which should not change anything
in the FIFO.

Read until the FIFO is AlImost Empty.

Write until the FIFO is full.

Read until the FIFO is empty.

An attempt is made to randomly do 5-9 additional read commands, which should not change anything
in the FIFO.

Write until the FIFO is Almost Full.

Do 100 random read/write commands. And finish this sequence.

17

task body;
repeat(2) reset(tr);
write_until_full(tr);
read_until_empty(tr);
write_until_not AE(tr);
repeat(6) do_item(tr);
write_until_AF(tr);
repeat(10) do_item(tr);
write_until_full(tr);
repeat($urandom_range(4,8)) write(tr);
read_until_AE(tr);
write_until_full(tr);
read_until_empty(tr);
repeat($urandom_range(5,9)) read(tr);
write_until_AF(tr);
repeat(100) do_item(tr);

endtask

Example 17 - Sequence body task to test FIFO design

C. reset() and do_item() tasks

There are two general purpose testing tasks called reset() and do_item(). The reset() task does
randomization with tr.rst_n asserted as shown in Example 18, while the do_ i tem() task does randomization
with tr.rst_n disabled, as shown in Example 19. The do_item() task will randomly generate write() and
read() commands.

task reset (transl tr);

“uvm_info('do_item”, "executing", UVM_FULL)

start_item(tr);

if (1(tr.randomize() with {tr.rst_n=="0;})) “RANDOMIZE_FAIL
Finish_item(tr);

get_response(rsp);

“uvm_info("'reset", tr.convert2string(), UVM_DEBUG)

endtask

Example 18 - reset() task

task do_item (transl tr);

“uvm_info("'do_item", "executing', UVM_FULL)

start_item(tr);

if (I(tr.randomize() with {tr.rst n=="1;})) “RANDOMIZE_FAIL
Finish_item(tr);

get_response(rsp);

“uvm_info('do_item", tr.convert2string(), UVM_DEBUG)

endtask

Example 19 - do_item() task

D. FIFO write commands
The FIFO write commands are composed of the following simulation tasks:

write(), which does the start_item(tr) command, followed by transaction randomization with inline
constraint that sets the tr.write bit, clears the tr.read bit and disables the tr.rst_n input. Then the
write() command completes by calling the Finish_item(tr) and get_response(tr) commands.

task write(transl tr);
start_item(tr);
if (1(tr.randomize() with {tr.write=="1; tr.read=="0;
tr.rst_n=="1;})) “RANDOMIZE_FAIL
finish_item(tr);
get_response(rsp);
“uvm_info(""FLAGS", sample_flags(rsp), UVM_HIGH)
endtask

Example 20 - FIFO write () command task
Three additional reactive write commands call this write () command:

write_until_full(transltr) usesawhille (Trsp.full) loop to continue writing until rsp. ful l
is detected in the response, as shown in Example 21. This task also prints the message "starting
write_until_full" with leading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH
command switch is enabled. The HIGH verbosity message can be helpful during test and sequence development
and the sample test-run shown in Figure 6 shows these messages enlarged in the simulation output transcript.

task write_until_full(transl tr);
“uvm_info(""body™, "\n\nstarting write_until_full\n", UVM_HIGH)
whille (Trsp.full) write(tr);

endtask

Example 21 - FIFO write_until_full() command task

write_until_AF(transl tr) usesawhile (Irsp.af) (while not Almost-Full) loop to continue writing
until rsp.af is detected in the response, as shown in Example 22. This task also prints the message "starting
write_until_AF" with leading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH command
switch is enabled. Figure 6 shows these messages enlarged in the simulation output transcript.

task write_until_AF(transl tr);
“uvm_info("'body™, "\n\nstarting write_until_AF\n", UVM_HIGH)
whille (Irsp.af) write(tr);

endtask

Example 22 - FIFO write_until_AF() command task

write_until_not AE(transl tr) uses a while (rsp.ae) (while Almost-Empty) loop to continue
writing while rsp.ae is still true in the response, as shown in Example 23. This task also prints the message
"starting write_until_not AE" with leading and trailing blank lines when the runtime
+UVM_VERBOSITY=HIGH command switch is enabled. Figure 6 shows these messages enlarged in the simulation
output transcript.

This command is used after resetting the FIFO to continue writing until the Almost Empty flag is cleared, which
allows data values to partially fill the FIFO buffer right after releasing reset.

task write_until_not_AE(transl tr);
“uvm_info("body™, "\n\nstarting write_until_not_AE\n", UVM_HIGH)
whille (rsp.ae) write(tr);

endtask

Example 23 - FIFO write_until_not_AE() command task

E. FIFO read commands
The FIFO read commands are composed of the following simulation tasks:

read(), which does the start_item(tr) command, followed by a transaction randomization with inline
constraint that clears the tr.write bit, sets the tr.read bit and disables the tr.rst_n input. Then the
read() command completes by calling the Finish_item(tr) and get_response(tr) commands.

task read(transl tr);
start_item(tr);
if (1(tr.randomize() with {tr.write=="0; tr.read=="1;
tr.rst_n=="1;})) “RANDOMIZE_FAIL
finish_item(tr);
get_response(rsp);
“uvm_info(""FLAGS", sample_flags(rsp), UVM_HIGH)
endtask

Example 24 - FIFO read() command task
Two additional reactive read commands call this read () command:

read_until_empty(transl tr) uses a while (Irsp.empty) loop to continue reading until
rsp.empty is detected in the response, as shown in Example 25. This task also prints the message "starting
read_until_empty" with leading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH
command switch is enabled. Figure 6 shows these messages enlarged in the simulation output transcript.

task read_until_empty(transl tr);
“uvm_info("'body™, "\n\nstarting read_until_empty\n", UVM_HIGH)
whille (Trsp.empty) read(tr);

endtask

Example 25 - FIFO read_until_empty() command task

read_until_AE(transl tr) uses a while (Irsp.ae), (while not Almost-Empty), loop to continue
reading until rsp.ae is detected in the response, as shown in Example 26. This task also prints the message
"starting read_until_AE"withleading and trailing blank lines when the runtime +UVM_VERBOSITY=HIGH
command switch is enabled. Figure 6 shows these messages enlarged in the simulation output transcript.

task read_until_AE(transl tr);
“uvm_info("'body*, "\n\nstarting read_until_AE\n", UVM_HIGH)
while (Irsp.ae) read(tr);

endtask

Example 26 - FIFO read_until_AE() command task

F. sample_flags() method

The write() and read() commands, which are also called by the other wr i te-variation and read-variation
commands, both call the sample_flags() method shown in Example 27 to display the ful | /af /ae /empty
flags when run-time simulation verbosity is increased to UVYM_HIGH

function string sample_flags(transl rsp);
return($sformatf("ful lI=%b / af=%b / ae=%b / empty=%b",
rsp.full, rsp.af, rsp.ae, rsp.empty));
endfunction

Example 27 - sample_flags() function

G. FIFO simulation printout

An abbreviated printout of the simulation results with +UVM_VERBOSITY=HIGH is shown in Figure 6. The write
and read task messages have been enlarged to help review the simulation transcript. Also many of the individual
write and read command display messages have been removed and replaced by "..." to help show the abbreviated
results.

cuneseeweaes [INIT] Initialize (time @0)

UVM_INFO @

UVM_INFO @ 5: uvm_test_top.e.shd.cmp [PASS] Expected:di read=x rst_n: full=0 af=0 empty=1 a dout=xx RESET Actual:ful af=0 empty=1 ae=1 dout=xx RESET
UVM_INFO @ 15: uvm_test_top.e.sbd.cmp [PASS] Expected: read=1 af=0 empty=1 ae=1 dout=xx RESET Actual:fu 0 af=0 empty=1 ae=1 dout=Ff RESET
UVM_INFO @ 25: uvm_test_top.e.agnt.sqr@@seq [body]

UVM_INFO @ 25: uvm_test_top.e.sbd.cmp [PASS] Expected:din=cc write=0 read=0 rst_n=0 full=0 af=0 empty=1 ae=1 dout=xx RESET Actual:full=0 af=0 empty=1 ae=1 dout=Ff RESET
UVM_INFO @ 35: uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=1

UVM_INFO @ 35: uvm_test_top.e.sbd.cmp [PASS] Expected:din=eb write=1 read=1 rst_n=0 full=0 af=0 empty=1 ae=1 dout=xx RESET Actual:full=0 af=0 empty=1 ae=1 dout=eb RESET
UVM_INFO @ 45: uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=0

UVM_INFO @ 45: uvm_test_top.e.shd.cmp [PASS] Expected =7d write=1 read=0 rst_n=1 full=0 af=0 empty=0 ae=1 dout=7d Actual:fu 0 af=0 empty=0 ae=1 dout=7d

UVM_INFO @ 55: uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=0

UVM_INFO @ 175: uvm_test_top.e.shd.cmp [PASS] Expected:din=48 write=1 read=0 rst_n=1 af=1 empty=0 ae=0 dout=7d Actual:full=0 af=1 empty=0 ae=0 dout=7d
UVM_INFO @ 185: uvm_test_top.e.agnt.sqr@@seq [FLAGS] fu 0 / af=1 / ae=0 / empty=0

UVM_INFO @ 185: uvm_test_top.e.shd.cmp [PASS f2 write=1 read=0 rst_n=1 af=1 empty=0 ae=0 dout=7d Actual:full=0 af=1 empty=0 ae=0 dout=7d
UVM_INFO @ 195: uvm_test_top.e.agnt.sqr@@seq 1=1 / af=1 / ae=0 / empty=0

UVM_INFO @ 195: uvm_test_top.e.agnt.sqr@@seq

starting read_until_empty

UVM_INFO @ 195: uvm_test_top.e.shd.cmp [PASS] Expected:din=5d write=1 read=0 rst_n=1 af=1 empty=0 ae=0 dout=7d Actual:full=1 af=1 empty=0 ae=0 dout=7d
UVM_INFO @ 205: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=1 / af=1 / ae=0 / empty=0
UVM_INFO @ 205: uvm_test_top.e.shd.cmp [PASS] Expected 57 write=l read=0 rst_n=1 empty=0 ae=0 dout=7d Actual:full=1 af=1 empty=0 ae=0 dout=7d
UVM_INFO @ 215: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=1 / ae=0 / empty=0

UVM_INFO @ 345: uvm_test_top.e.sbd.cmp [PASS] Expected:din=91 write=0 read=1 rst_n=1 af=0 empty=0 ae=1 dout=f2 Actual:full=0 af=0 empty=0 ae=1 dout=Ff2

UVM_INFO @ 355: uvim_test_top.e.agnt.sqra@seq

UVM_INFO @ 355: uvm_test_top.e.shd.cmp [PASS af=0 empty=0 ae=1 dout=5d Actual:full=0 af=0 empty=0 ae=1 dout=5d

UVM_INFO @ 365: uvm_test_top.e.agnt.sqr@@seq

UVM_INFO @ 365: uvm_test_top.e.agnt.sqr@@seq [body]

starting write_until_not_AE

UVM_INFO @ 365: uvm_test_top.e.sbd.cmp [PASS] Expected:din=06 write=0 read=1 rst_n=1 af=0 empty=1 ae=1 dout=7d IGNORED Actual:full=0 af=0 empty=1 ae=1 dout=7d IGNORED
UVM_INFO @ 375: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=1 / empty=1

UVM_INFO @ 375: uvm_test_top.e.shd.cmp [PASS] Expected:din=85 write=0 read=1 rst_n=1 af=0 empty=1 ae=1 dout=7d IGNORED Actual:full=0 af=0 empty=1 ae=1 dout=7d IGNORED
UVM_INFO @ 385: uvm_test_top.e.agnt.sqr@@seq [FLAGS] fu 0 / af=0 / ae=1 / empty=0

UVM_INFO @ 385: uvm_test_top.e.shd.cmp [PASS Expected 6Ff write=1 read=0 rst_n=1 af=0 empty=0 ae=1 dout=6f Actual:full=0 af=0 empty=0 ae=1 dout=6f

UVM_INFO @ 395: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=1 / empty=0

UVM_INFO @ 465: uvm_test_top.e.shd.cmp [PASS] Expected: 7 write=0 read=0 rst_n=1 af=0 empty=0 ae=0 dout=65 Actua empt dout=65
UVM_INFO @ 475: uvm_test_top.e.shd.cmp [PASS] Expected:d bd write=1 read=0 rst_n=1 af=0 empty=0 ae=0 dout=65 Actual empty=0 ae=0 dout=65

UVM_INFO @ 485: uvm_test_top.e.agnt.sqr@@seq [body]

starting write_until_AF

UVM_INFO @ 485: uvm_test_top.e.sbd.cmp [PASS] Expected:din=5d write=0 read=1 rst_n=1 enpty=0 ae=0 dout=f3 Actual:full=0 af=0 empty=0 ae=0 dout=F3
UVM_INFO @ 495: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=0 / empty=0
UVM_INFO @ 495: uvm_test_top.e.sbd.cmp [PASS] Expected:din=40 write=1 read=1 rst_n=1 empty=0 ae=0 dout=06 Actual:full=0 af=0 empty=0 ae=0 dout=06
UVM_INFO @ 505: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=0 / empty=0

UVM_INFO @ 645: uvm_test_top.e.shd.cmp [PASS] Expected: b write=0 read=1 rst_n=1 empty=0 ae=0 dout=40 empty dout=40
UVM_INFO @ 655: uvm_test_top.e.sbd.cmp [PASS] Expected:din=2f write=0 read=1 rst_n=1 empty=0 ae=0 dout=ee empty=0 ae=0 dout=ee
UVM_INFO @ 665: uvm_test_top.e.agnt.sqr@@seq [body]

starting write_until_full

UVM_INFO @ 665: uvm_test_top.e.shd.cmp [PASS Expected n=32 write=1 read=0 rst_n=1 af=0 empty=0 ae=0 dout=ee Actual:full=0 af=0 empty=0 ae=0 dout=ee
UVM_INFO @ 675: uvm_test_top.e.agnt.sqr@@seq [FLAGS] fu 0 / af=0 / ae=0 / empty=0

UVM_INFO @ 675: uvm_test_top.e.sbd.cmp [PASS] Expected:din=e3 write=0 read=1 rst_n=1 af=0 empty=0 ae=0 dout=4e Actual:full=0 af=0 empty=0 ae=0 dout=de
UVM_INFO @ 685: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=0 / empty=0

UVM_INFO @ 755: uvm_test_top.e.shd.cmp [PASS Expected:din=c8 write=1 read=0 rst_n=1 af=1 empty=0 ae=0 dout=4e Actual:full=1 af=1 empty=0 ae=0 dout=4e
UVM_INFO @ 765: uvm_test_top.e.agnt.sqr@@seq 1 / af=1 / ae=0 / empty=0

UVM_INFO @ 765: uvm_test_top.e.sbhd.cmp [PASS 30 write=1 read=0 rst_n=1 full=1 af=1 empty=0 ae=0 dout=4e Actual:full=1 af=1 empty=0 ae=0 dout=4e
UVM_INFO @ 775: uvm_test_top.e.agnt.sqr@@seq 1/ af=1 / ae=0 / empty=0

UVM_INFO @ 775: uvm_test_top.e.agnt.sqr@@seq

starting read_until_AE

UVM_INFO @ 775: uvm_test_top.e.shd.cmp [PASS] Expected 63 write=l read=0 rst_n=1 af=1 empty=0 ae=0 dout=4e Actual: af=1 empty=0 ae=0 dout=4e
UVM_INFO @ 785: uvm_test_top.e.agnt.sqr@@seq [FLAGS] fu 1 / af=1 / ae=0 / empty=0

UVM_INFO @ 785: uvm_test_top.e.sbd.cmp [PASS] Expected 5d write=1 read=0 rst_n=1 af=1 empty=0 ae=0 dout=de Actual: =1 af=1 empty=0 ae=0 dout=4e
UVM_INFO @ 795: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=1 / ae=0 / empty=0

UVM_INFO @ 885: uvm_test_top.e.shd.cmp [PASS Expected:din=7c write=0 read=1 rst_n=1 full=0 af=0 empty=0 ae=0 dout=f9 Actual:full=0 af=0 empty=0 ae=0 dout=f9
UVM_INFO @ 895: uvm_test_top.e.agnt.sqr@@seq 0 / af=0 / ae=0 / empty=0

UVM_INFO @ 895: uvm_test_top.e.sbhd.cmp [PASS in=e7 write=0 read=1 rst_n=1 af=0 empty=0 ae=0 dout=35 Actual:full=0 af=0 empty=0 ae=0 dout=35
UVM_INFO @ 905: uvm_test_top.e.agnt.sqr@@seq 1=0 / af=0 / ae=1 / empty=0

UVM_INFO @ 905: uvm_test_top.e.agnt.sqr@@seq

starting write_until_full

UVM_INFO @ 905: uvm_test_top.e.sbd.cmp [PASS] Expected:din=32 write=0 read=1 rst_n=1 full=0 af=0 empty=0 ae=1 dout=64 Actual:full=0 af=0 empty=0 ae=1 dout=64
UVM_INFO @ 915: uvm_test_top.e.agnt.sqra@seq 0 / af=0 / ae=1 / empty=0
UVM_INFO @ 915: uvm_test_top.e.shd.cmp [PASS in=21 write=0 read=1 rst_n=1 af=0 empty=0 ae=1 dout=8a Actual:full=0 af=0 empty=0 ae=1 dout=8a
UVM_INFO @ 925: uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=1 / empty=0

UVM_INFO @ I uvm_test_top.e.shd.cmp [PASS] Expected:din=ca write=1 read=0 rst n=1 full=0 af=1 empty=0 ae=0 dout=8a Actual:full=0 af=1 empty=0 ae=0 dout=8a
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=1 / ae=0 / empty=0

UVM_INFO @ uvm_test_top.e.shd.cmp [PASS] Expecte =ef write=1 read=0 rst_n=1 full=0 af=1 empty=0 ae=0 dout=8a Actual:full=0 af=1 empty=0 ae=0 dout=8a
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=1 / af=1 / ae=0 / empty=0

UVM_INFO @ 1045: uvm_test_top.e.agnt.sqr@@seq [body]

starting read_until_empty

UVM_INFO : uvm_test_top.e.shd.cmp [PASS] Expected:din=| b9 write=1 read=0 rst_n=1 full=l af=l empty=0 ae=0 dout=8a Actual:full=l af=l empty=0 ae=0 dout=8a

@
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=1 / af=1 / ae=0 / empty=0
UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expecte =74 write=1 read=0 rst_n=1 full=1 af=1 empty=0 ae=0 dout=8a Actual:full=1 af=1 empty=0 ae=0 dout=8a
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=1 / ae=0 / empty=0
UVM_INFO @ - uvm_test_top.e.shd.cmp [PASS] Expectet =fa write=0 read=1 rst_n=1 af=0 empty=0 ae=1 dout=b9 Actual:full=0 af=0 empty=0 ae=1 dout=h9
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=1
UVM_INFO @ : uvm_test_top.e.sbd.cmp [PASS] Expected:din=1f wi read=1 rst_n=1 af=0 empty=1 ae=1 dout=8a IGNORED af=0 empty=1 ae=1 dout=8a IGNORED
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful 7 af=0 / ae=1 / empty=1
UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expected:din=d6 write=0 read=1 rst_n=1 af=0 empty=1 ae=1 dout=8a IGNORED af=0 empty=1 ae=1 dout=8a IGNORED
UVM_INFO @ I uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=1
UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expected:din=d9 write=0 read=1 rst n=1 full=0 af=0 empty=1 ae=1 dout=8a IGNORED Actual: af=0 empty=1 ae=1 dout=8a IGNORED
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=1
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [body]

starting write_until_AF

UVM_INFO @ : uvm_test_top.e.sbd.cmp [PASS] Expected:din=3b write=0 read=1 rst_n=1 af=0 empty=1 ae=1 dout=8a IGNORED af=0 empty=1 ae=1 dout=8a IGNORED
UVM_INFO @ : uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=1 / empty=1

UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expected:din=66 write=0 read=1 rst_n=1 af=0 empty=1 ae=1 dout=8a IGNORED =0 af=0 empty=1 ae=1 dout=8a IGNORED
UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq [FLAGS] ful / af=0 / ae=1 / empty=0

UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expected: =c9 write=1 read=0 rst_n=1 af=0 empty=0 ae=1 dout=c9 Actual:full=0 af=0 empty=0 ae=1 dout=c9

UVM_INFO @ I uvm_test_top.e.agnt.sqr@@seq [FLAGS] full=0 / af=0 / ae=1 / empty=0

UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq / af=0 / ae=0 / empty=0

UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS =50 write=1 read=0 rst_n=1 full=0 af=0 empty=0 ae=0 dout=c9 Actual:full=0 af=0 empty=0 ae=0 dout=c9

UVM_INFO @ uvm_test_top.e.agnt.sqr@@seq / af=1 / ae=0 / empty=0

UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS read=0 rst_| af=1 empty=0 ae=0 dout=c9 Actual:ful af=1 empty=0 ae=0 dout=c9

UVM_INFO @ - uvm_test_top.e.shd.cmp [PASS] Expected: 1 read=0 rst_| af=1 empty=0 ae=0 dout=c9 Actual:ful af=1 empty=0 ae=0 dout=c9

UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expected: din—OG writ 1 read=0 rst7 af=0 empty=0 ae=1 dout=63 Actual:ful af=0 empty=0 ae=1 dout=63

UVM_INFO @ uvm_test_top.e.sbd.cmp [PASS] Expected: =1 read=0 0 af=0 empty=0 ae=1 dout=63 Actual:ful af=0 empty=0 ae=1 dout=63

UVM_INFO verilog_src/uvm-1.1d/src/base/uvm_objection.svh(1268) @ 2395 reporter [TEST DONE] " phase is ready to proceed to the “extract® phase

UVM_INFO @ 2395: uvm_test_top.e.sbhd.cmp [PASSED]

*** TEST PASSED - Vectors: 240 Ran / 240 Passed ***

UVM Report Summary

** Report counts by severity
UVM_INFO = 374
UVM_WARNING : 0
UVM_ERROR : 0
UVM_FATAL : 0

** Report counts by id
[FLAGS] 121

[INIT] 1

[PASS 1] 240

[PASSED] 1

[RNTST] 1
[TEST_DONE] 1
[body] 9

Figure 6 - FIFO simulation messages using responsive stimulus generation

XI. COMMON RESPONSE TRANSACTION CODING MISTAKE

A common driver coding mistake is to cut-and-paste the seq_item_port.get next item(tr) to
seq_item_port.item_done(tr) after the drive_item(tr) task-call, as shown in Example 28. For
sequences that do not require a response, this will cause a tr handle to be pushed onto the sequencer response
queue to overflow a reactive stimulus source. When the stimulus is driven as a non-reactive source, the
item_done() method should not include the tr handle.

seq_item_port.get_next_item(tr);
drive_item(tr);
seq_item port.item _done(tr);

Example 28 - Common driver response-transaction error

Per the UVM Class Reference [3], the sequencer has a response queue with a default depth of 8 response
transactions. Using seq_item_port.item_done(tr) pushes a tr handle into the response queue. If the
sequence does not do a get_response(tr) command, then the response queue will fill up and start to issue
Response queue overflow, response was dropped error messages, as shown in the partial simulation
output messages of Figure 7. This was from a driver that improperly used item_done(tr) commands

UVM_INFO @ O: [RESET] Initial reset

UVM_INFO @ 5: [PASS] Expected:din=0000 1d=0 inc=0 rst_n=0 dout=0000 Actual:dout=0000
UVM_INFO @ 15: [PASS] Expected:din=Ffff 1d=1 inc=1 rst n=0 dout=0000 Actual:dout=0000
UVM_INFO @ 25: [PASS] Expected:din=73b9 1d=0 inc=1 rst_n=0 dout=0000 Actual:dout=0000
UVM_INFO @ 35: [PASS] Expected:din=7cl5 1d=0 inc=1 rst _n=1 dout=0001 Actual:dout=0001
UVM_INFO @ 45: [PASS] Expected:din=f946 1d=0 inc=1 rst_n=1 dout=0002 Actual:dout=0002
UVM_INFO @ 55: [PASS] Expected:din=011la [1d=0 inc=1 rst_n=1 dout=0003 Actual:dout=0003
UVM_INFO @ 65: [PASS] Expected:din=f801 1d=0 1inc=1 rst_n=1 dout=0004 Actual:dout=0004
UVM_INFO @ 75: [PASS] Expected:din=7ccb 1d=0 inc=1 rst_n=1 dout=0005 Actual:dout=0005
UVM_INFO @ 85: [PASS] Expected:din=5359 1d=0 inc=1 rst_n=1 dout=0006 Actual:dout=0006
UVM_ERROR @ 95: [uvm_test_top.e.agnt.sqr.seq] Response queue overflow, response was dropped
UVM_INFO @ 95: [PASS] Expected:din=d8c3 1d=0 inc=1 rst _n=1 dout=0007 Actual:dout=0007
UVM_ERROR @ 105: [uvm_test top.e.agnt.sqgr.seq] Response queue overflow, response was dropped
UVM_INFO @ 105: [PASS] Expected:din=3657 1d=0 inc=1 rst _n=1 dout=0008 Actual:dout=0008
UVM_ERROR @ 115: [uvm_test top.e.agnt.sqr.seq] Response queue overflow, response was dropped
UVM_INFO @ 115: [PASS] Expected:din=990b 1d=0 inc=1 rst _n=1 dout=0009 Actual:dout=0009
UVM_ERROR @ 125: [uvm_test top.e.agnt.sqgr.seq] Response queue overflow, response was dropped

UVM_ERROR @ 1015: [uvm_test top.e.agnt.sqgr.seq] Response queue overflow, response was dropped
UVM_INFO @ 1015: [PASS] Expected:din=4caf 1d=0 inc=1 rst _n=1 dout=ae39 Actual:dout=ae39
UVM_INFO @ 1015: reporter [TEST_DONE] "run® phase is ready to proceed to the “extract® phase
UVM_INFO @ 1015: [PASSED]

*** TEST PASSED - Vectors: 102 Ran / 102 Passed ***

Figure 7 - Response queue overflow messages

As an interesting side-note, even though the response queue overflow error messages were reported, since the
stimulus did not need the response transactions, the simulation runs successfully as can be seen by the Test Passed
message at the bottom of Figure 7. Despite the passing simulation result, the stray error messages should be
removed by correcting the i tem_done() method call.

XIl. SUMMARY & CONCLUSIONS

This paper has shown how to develop a UVM testbench for reactive stimulus generation, including the very
important step of sampling status signals at the end of the cycle.

When the sequencer queues up a transaction from a test sequence, there are two primary modes of operation.
(1) The sequence is a non-reactive sequence and transactions are driven without expecting responses to be
gueued by the sequencer.
(2) The sequence IS reactive and transactions are driven and then the sequence issues a
get_response(rsp) command to accept response transactions that are sent from the driver using the
seq_item port.item_done(rsp), through the sequencer, back to the test sequence.

The request/response transaction types of the sequencer, driver and sequence must all match. Using the same
transaction type for both request and response transaction types is a straightforward technique as described in
Section 2. If different request and response transaction types are desired, then the techniques described in Section
3 can be used.

The user-defined sequence (extended from the uvm_sequence base class), the user-defined sequencer
(extended from the uvm_sequencer base class) and the user-defined driver (extended from the uvm_driver
base class), are already parameterized to default request (eq) and response (rsSp) transaction types. The driver is
not required to declare separate transaction and response handles, but we generally recommend doing so, to avoid
confusion.

One of the keys to creating sequences that examine response transactions is to have the driver both drive signals
into the virtual interface, from the driven transaction, AND to have the driver sample the output signals from the
virtual interface at the end of the cycle. It is this sampling at the end of the cycle that is not well documented in
many industry examples.

This paper also included a test plan for a 1-clock, 16-deep FIFO design and showed how to create the reactive
stimulus commands that were executed by a sequence to satisfy the test plan.

Finally, this paper showed that if a sequence is not reactive, which is to say it does not get a response transaction,
and if the driver issues the command, seq_item_port.item_done(tr), the sequencer response queue will
overflow and issue many, possibly thousands of response error messages of the form: Response queue
overflow, response was dropped. These error messages typically do not impact the simulation results
but are annoying and completely avoidable by not returning a transaction seq_item_port.item_done()
command.

REFERENCES
[1] Clifford E. Cummings, "Applying Stimulus & Sampling Outputs - UVM Verification Testing Techniques," SNUG (Synopsys Users Group)
2016 (Austin, TX). Also available at: www.sunburst-design.com/papers/CummingsSNUG2016AUS Verification TimingTesting.pdf
[2] Universal Verification Methodology (UVM) 1.1 Users Guide - May 2011
[3] Universal Verification Methodology (UVM) 1.2 Class Reference - June 2014

