UVM Rapid Adoption:
A Practical Subset of UVM

Stuart Sutherland, Sutherland-HDL, Inc.

Tom Fitzpatrick, Mentor Graphics Corp.
presented by Gordon Allan, Mentor Graphics, Corp

Trang engeers to Menbr
J e GIraphICcs
—¥ www.sutherland-hdl.com

accellera DVCON

SYSTEMS INITIATIVE

{f SUTHERLAND

The Problem...

* The UVM 1.2 Library has 357 classes, 938 functions, 99 tasks,
and 374 macros

4 How do I find\
If it's in the what I need in

library, you this huge library?
§ g;é have to use it | - l/ ~

I'm so
confused!

Why are there
so many different
ways fo print a

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 2

The Goals of this Paper

* Understand why the UVM library is so complex

* Examine UVM from three different perspectives
— The Environment Writer %7 _ _

. ’J{F\‘ \)\ \
— The Test Writer () //@

=~
° 07
— The Sequence Writer <%\((/ Y/
— —

* Define a practical subset of UVM that meets the needs of
nearly all verification projects

— A subset makes UVM easier to learn, use & maintain!

You will be amazed at how small of W\
a subset of UVM you really need! N

IR A R
accellera DVCON

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 3

Why the UVM Library

Is Overly Large and Complex

* Why 357 classes, 1037 methods, 374 macros?

— The history of UVM adds to UVM’s complexity
* UVM evolved from OVM, VMM and other methodologies
 UVM adds to and modifies previous methodologies
* UVM contains “old ways” and “new ways” to do things

— Object Oriented Programming adds complexity
* OOP extends and inherits functionality from base classes
— uvm_driver inherits from uvm_component which inherits from
uvm_object which inherits from ...
* Only a small number of UVM classes, methods and macros are
intended to be used by end users

— Much of the UVM library is for use within the library
2015
o)) BV

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 4

Three Aspects of a UV

M Testbench

1) The Test
O Connects the testbench to
top module the DUT
O Selects the sequencers
test configuration and factory settings O Configures the environment
_/l - .
traennseizilgr transacttlo < = 2) The Sequence
9 generator O Generates transactions
(sequence) (sequence :
(stimulus)
/—\ .
= (environment)‘ 3) 1E'|he Environment
s| —m— Delivers stimulus
s coverage collector score.board O Verifies DUT outout
E) predictor: evaluator e e
= .) :)
o virtual sequencer g £
[&] = =
E g_l | ' DUT
o m
c | agent(s) = -)/ .I—
o . /" interface [
.:E mOI'IItOI' N signa's Q
£ || coverage collector Nﬁ £
2 | . interfach "g
S sequencer transactions driver signals —
a - = I I | | / \ND vsgrglé)m ™
d 'CON
\-_/ CONFERENCE AND EXHIBITION

SYSTEWMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 5

UVM Constructs Used By The
Environment Writer

accellera DVCON

SYSTEMS INITIATIVE 5, Sytherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Role of the Environment Writer

* The Environment Writer defines the testbench parts

— Agents — Monitors
— Sequencers — Scoreboards
— Drivers — Coverage collectors
=1 environment The environment delivers
k] scoreboard stimulus to the DUT and
S| EeEED cellueel L verifies DUT outputs
k=) predictor : evaluator
§| | virtual sequencer Es——¢
; = DUT
5 agent(s) £ . : // interface [
& coverage collector monitor "\ 3lgnals S
- | N 2
5 sequencer [#ansastons driver posirdly

accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 7

The Environment Component

About the examples in this presentation:

= UVM-specific constructs are shown in blue text

= UVM constructs not shown in previous examples are shown in

boxed text

|

Extend base class from UVM lib.

class my env | extends uvm env (7

T

"uvm_component utils(my env) [¢&—

Factory registration macro

N\

T

4 . .
function new(string name,

Factory will call new() constructor

uvm_component parent)y
super.new (name, parent);
_ endfunction: new

J

_‘ (continued on next page) F UVM

To save time, we are only going to count the
number of UVM constructs required — refer to
the paper for more details on these constructs

3@ See the paper for explanations of the code examples!

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

8

First Time | Running
Constructs Seen Total
Classes 2 2
Methods 0 0
Macros 1 1
DESIGN AND VE:?FQI]'T?ON‘”
DVCON

CONFERENCE AND EXHIBITION

The Environment Component (cont.)

* Environments encapsulate
an agent and scoreboard

my agent agent;
my scoreboard scorebd;

endfunction: build phase
_

UVM First Time | Running
Constructs Seen Total
Classes 0 2
Methods 4 4
Macros 0 1

The “build phase” uses factory
to “create” components

rfunction void build phase (uvm _phase phase);
agent = my agent::type id::create("agent", this);
scorebd = my scoreboard::type id::create("scorebd", this);

SN

J \.

\endfunction: connect_phase

;
function void connect phase (uvm phase phase);
agent.dut inputs port.connect (scorebd.dut in imp export);
agent.dut outputs port.connect (scorebd.dut out imp export);

endclass: my env

The “connect phase” is used to
“connect” component ports

— =T T

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 9

The Agent Component

* An agent encapsulates low-level components needed to drive
and monitor a specific interface to the DUT

class my agent | extends uvm agent | ; <= Extend agent’s UVM base class
"uvm_component utils(my agent) UVM First Time | Running
function new(string name, uvm compo| COnstructs Seen Total

super .new (name, parent) ; Classes 2 4

endfunction: new Methods 0 A
// handles for agent’s components Y 0 1
my sequencer sqgr;
my driver drv;

Add ports to the monitor (classes

// handles to the;y_ﬁez‘s/pg defined in the UVM library)
uvm_analysis port #(my_ tx) dut inputs port;

uvm analysis port # (my tx) dut outputs port;

4 (continued on next page)

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 10

The Agent Component

The Test Writer “sets” a
) : “) configuration object
* The agent’s build phase “creates handle into UVM’s

a sequencer, driver, monitor, etc. configuration data base

... The agent “gets” this
function void build p (uvm_pha;‘e/phé handle from the data base
(if ('uvm _config db # (my cfg)::get(this, "", "t cfg", m cfqg)) }

‘uvm _warning ("NOCFG", Failed to access config db.\n")

<
mon = my_moni Warning messages can provide debug information
if (m _config.Is active == egin

sgqr = my sequencer::type id::create("sqr", this);

drv = my driver::type id::cre UVM First Time | Running
end Constructs Seen Total
if (m _config.enable coverage) . 1 5
cov = my cover collector::typ
) T - Methods 1 5
endfunction: build phase
) Macros 1 2
" | (continued on next page)

accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 11

The Agent Component (continued)

* The agent’s connect _phase connects the agent’s components

together No additional UVM
constructs needed!

function void connect phase (uvm pha UVM First Time | Running
// set agent's ports to point to | Constructs Seen Total
dut inputs port = mon.dut inputs| Classes 0 5 ‘
dut outputs port = mon.dut output Methods 0 5
if (is active == UVM ACTIVE)
- . Macros 0 2

// connect driver to sequencer
drv.seq item port.connect(sqr.seq item export);

if (enable coverage)
// connect monitor to coverage collector
mon.dut inputs port.connect (cov.analysis export);
endfunction: connect phase

endclass: my agent

2015

accellera DVCeODN

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 12

The Driver Component

* The driver receives transactions from a sequencer and drives
values to the DUT via a virtual interface

class my driver | extends uvm driver # (my tx)| ;

"uvm_component utils(my_driver) v Extend driver’s UVM base class
function new(string name, uvm component parent) ;

super.new (name, parent); UVM First Time | Running
endfunction Constructs Seen Total
virtual tb if tb vif; // wvirtual i|Cjlasses 1 6
function void build phase (uvm_phase| \jethods 0 5
if ('uvm config db #(virtual my d
v, "DUT IF", tb vif)) — [Macros ! >

| “uvm_fatal ("NOVIF", Failed virtutal interface from db") |
endfunction: build_phasz\

A fatal error report terminates simulation

IR A R
accellera DVCOIN

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 13

The Driver Component (continued)

* The driver receives transactions from a sequencer and drives
values to the DUT via a virtual interface

The “run phase” is a task that

— T/ can take clock cycles to execute
[task run_phase (uvm_phase phase) ;
my tx tx;

£ beq; UVM First Time | Running
orever begin Constructs Seen Total
@tb vif.clk // synchronize to
= Classes 0 6
[seq;item;port.get_next_item(tx)
tb vif.operand a tx.operand._M(athOdS E e
tb vif.operand b = .operand | Macros 0 3
tb vif.opcode = tx.JOmpcode; 1
[seq _item port.item done ()\ Port methods “block” execution flow
end as part of a handshake process with
endtask: run phase a sequence stimulus generator
endclass: my driver written by the Sequence Writer
2015

accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 14

UVM First Time | Runnin

b T Constructs Seen g Total
Additional Componentsi-=—=—= 9
Methods 2 10
* A sequencer routes stimulus to driver |Macros 2 5

— Specializes the uvm_sequencer base class
— No additional UVM constructs are needed

* A monitor observes DUT ports via a virtual interface
— Extends the uvm_monitor base class
— Only additional UVM construct needed that has not already been
shown is an analysis port write() method
* A scoreboard verifies DUT output value correctness
— Extends uvm_subscriber or uvm_component
— Only additional UVM constructs that might be needed are:
report_phase(), uvm_info() and 'uvm_analysis_imp_decl()
* A coverage collector performs functional coverage
a@ — No additional UVM constructs are needed eV al a1

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 15

UVM Constructs Used By The
Test Writer

accellera DVCON

SYSTEMS INITIATIVE 5, Sytherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Role of the UVM Test Writer

* The Test Writer defines the specifics of a testcase
— Connects the testbench to the DUT
— Selects the sequences
— Configures the environment

The test defines the

test | configuration and factory settings particulars of the given
_ _ testcase
transaction transaction
generator generator
(sequence) seguence
Sequency) DUT

environment interface

signals

interface

interface

signals /
|

IR A R
accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 17

The Top-Level Module

* Top-level module connects —— _
UVM First Time | Running
DUT and starts test Constructs | Seen Total
Classes 0 9
module test top;
import uvm pkg: :*; Methods 2 12
import my test pkg::*; Macros 0 5
my_dut_interface my dut_if(); The “set” method is how the Test

my dut_rtl my dut(.if(my dut if()] \\riter sends information down
the hierarchy

initial begin
uvm config db #(virtual my dut interface) ::set(null,
"uvm test top", "DUT IF", my dut if);

run test ()¢
@l N “run_test” is the task that
endmodule starts the UVM execution

2015

DESIGN AND VERIFICATION™

accellera DVCON
Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 18

SYSTEMS INITIATIVE

The Base Test

* Test instantiates & configures the environment

class my test extends uvm_ test; UVM First Time | Running
‘uvm_component utils(my test) Constructs Seen Total
my env m _env; Classes 0 9
my env_config obj m env cfg; Methods 0 12
Macros 1 6

function void build phase (uvm phase phase) ;

m env_cfg = my env config obj::type id::create("m env cfg");
m env = my env::type id::create("my env", this);

if ('uvm config db#(virtual my dut interface)::get(this, "" ,

"DUT IF", m env cfg.dut if))

"TEST", "Failed to get virtual intf in test")

‘uvm error

// set other nn error report |nd|cates a serious problem
uvm config

~env'",

"m env_cfg", m env cfq);
endfunction

accellera DVCEON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 19

The Extended Test

* The extended test specializes the base test

class my ext test extends my test;
"uvm_component utils(my ext test)

function void build phase (uvm phase

Override factory return type for
all for specific instances

ase) ;

A UVM “idiom”
to refer to types

"top.env.c2");

rm.y__env::type_id::set__type__override(my_env2::get_t“;pe());
my comp::type id::set inst override (my comp2::get type(),

super.build phase (phase) ;

// optionally override type of my env_cfg object

// optionally maka _additional chan
endfunctiaon

Never call super.build_phase()
In components extended from

UVM base components

SYSTEMS INITIATIVE

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

UVM First Time | Running
Constructs Seen Total
Classes 0 9
Methods 4 16
Macros 0 6

DESIGN AND \:ERﬁ-‘%A‘T‘Ig}N‘”
DVCON

20

CONFERENCE AND EXHIBITION

The Extended Test

* The test starts sequences and manages objections

task run phase (uvm_phase phase) ;

class my ext test extends my test;
"uvm_component utils(my ext test)

UVM First Time | Running
Constructs Seen Total
Classes 0 9
Methods 3 19
Macros 0 6

|_phase raise objectlon "Start:_ng test") ;
my seq seq = my_ seq: type_ -create (“sea”) :

//optionally ' e
assert (seq.ra otartthe sequence rc |
on a Sequencer

fer size == 1283

Raise and drop objections
to control run_phase execution

seq.start{ﬁ(env.m agent.m se Y
_phase.drop objection ing test") ;

endtask

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 21

UVM Constructs Used By The
Sequence Writer

accellera DVCON

SYSTEMS INITIATIVE 5, Sytherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Sequence Writer

* Each sequence defines stimulus and/or response functionality

* Provide list of sequence types and sequencer types to start
them on

* Inheritance hierarchy and other details irrelevant to Test
Writer

DESIGN AND VE?FQJT?ON ™
accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 23

Designing a Sequence ltem

“Input” variables

class my tx extends

uvin sequence item;

“uvm_object utilsfmy tx)

should be rand rand Dbit [23:0] operand a;
rand bit [23:0] operand b;
“Output” variables randc opcode t opcode;
should not be —plogic [23:0] result;
Standard Object function new(string name = "my tx");
constructor super .new (name) ;
endfunction
do copy () -
User calls do_corf:lyare() UVM First Time | Running
copy(), compare(), - P i Constructs Seen Total
etc. convert2string()
do_record () Classes 1 10
do_pack() Methods 6 25
\do_unpack ()
endclass: my tx Macros . !

e e ——

Alternately use 'uvm_field xxx macros (73) to auto-generate the do_ methods

SYSTEMS INITIATIVE

DESTGN AND VERIFTCATTON ™

DV

CONFERENCE AND EXHIBITION

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 24

The Sequence Body Method

* The body method defines the transactions to generate

class tx sequence extends| uvm_sequencej (my item) ; I
"uvm object utils (tx sequence)
- - - UVM sequence base type
|

task(body () ; j¢*——— The body method defines the transaction stream
repeat (50) begin]

tx = my seq item::type id::create("tx");

start item (tx) ;le—_

Handshake with the Driver

. .. ”,, 1
. . . ‘
jlnlSh ltem(tx) UVM First Time | Running
en Constructs Seen Total
endtask
Classes 1 11
endclass:tx sequence
Methods 3 28
Macros 0 4
2015

accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 25

The Virtual Sequence

* The virtual sequence starts subsequences

bus_ sequencer t bus_sequencer;
gpio_sequencer t gpio_sequencer;

bus_ sequencer = bus_seqr;
gpio_sequencer = gpio_sedqr;
endfunction

task body () ;
aseq.start(bus_sequencer , this)
bseq.start(gpio sequencer , this

virtual function void init (uvm_sequencer bus_ seqr,
uvm_sequencer gpio_sedqr) ;

class my vseq extends uvm sequence# (uvm_sequence item) ;

UVM First Time | Running
Constructs Seen Total
Classes 0 11
Methods 0 28
Macros 0 7

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

endtask
endclass

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

26

UVM Constructs Used For
Advanced Examples

accellera DVCON

SYSTEMS INITIATIVE gy, Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

phase ready to end

* Delay the end of a phase when necessary

function void my_pomp::@hase ready to endiﬁgzz:fhase Phase) ;

if(!'is ok to end()) begin
phase.raise objection(this , "not ready to
fork begin
wait for ok end();

Delay end of phase
when necessary

phase.drop objection(this , "ok to end phase");

end
join none
end UVM First Time | Running
endfunction : phase ready to end Constructs Seen Total
Classes 0 11
Methods 1 29
Macros 0 7
DESIGN AND VER%-‘Q/]T?ON"
accellera DVCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 28

Pipelined Protocols

* Use the Response Handler in the sequence

class my pipelined seq extends uvm sequence #(my seq item);
"uvm_object utils(my pipelined seq)

task body() ;
my seq item req = my se item: :type id::create("req");

use response handler (1) ;

.. UVM First Time | Running
start item(req); Setup user-defined || Constructs Seen Total
T Response Handler || classes 0 11
finish item(req) ; Methods 2 31

endtask acros 5 =

function void| response”handler (uvm sequence item response);

endfunction
endclass: my
accellera DVCON

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 29

ipelined seq

Pipelined Protocols

* Driver uses one thread per pipeline stage

class my pipelined driver extends uvm driver #(my seq item);
‘uvm_component utils(my pipelined driver)

|

endclass: my pipelined seq

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 30

e UVM First Time | Running
task do_pipelined_transfer; Constructs Seen Total
RGeS Classes 0 11
forever begin
ipeline lock.get(); Methods g 33
seq item port.get (req)w Macros 0 7
...// execute first pipelin age
pipeline lock.put();
...// execute second pipeline stage | Alternate handshake
seq item port.put(req) ;je— with the Sequence
end
endtask

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

UVM Features to Avoid

* Phase Jumping
* Callbacks
* Most UVM 1.2 features

* These features only make UVM
unnecessarily complex, difficult to
code, and difficult maintain, and
difficult to re-use

IIIIIIIIIIIIIIIIIIIIIII

accellera DVEON
Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 31

SYSTEMS INITIATIVE

How do I find

The Solution... what T need in

this huge library?

* Our recommended subset in the paper uses
11 classes, 33 tasks/functions and 7 macros

* You really only need to learn 3% of UVM
to be productive!

— 2% of classes

— 3% of methods
A0 g
accellera DVCOIN

SYSTEMS INITIATIVE Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 32

