
UVM Rapid Adoption:
A Practical Subset of UVM

Stuart Sutherland, Sutherland-HDL, Inc.

Tom Fitzpatrick, Mentor Graphics Corp.

presented by Gordon Allan, Mentor Graphics, Corp

If it’s in the
library, you

have to use it!

The Problem…
• The UVM 1.2 Library has 357 classes, 938 functions, 99 tasks,

and 374 macros

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 2

How do I find
what I need in

this huge library?

I’m so
confused!

Why are there
so many different
ways to print a

message?

Which way
should I use?

The Goals of this Paper
• Understand why the UVM library is so complex

• Examine UVM from three different perspectives
– The Environment Writer

– The Test Writer

– The Sequence Writer

• Define a practical subset of UVM that meets the needs of
nearly all verification projects

– A subset makes UVM easier to learn, use & maintain!

You will be amazed at how small of
a subset of UVM you really need!

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 3

Why the UVM Library
Is Overly Large and Complex
• Why 357 classes, 1037 methods, 374 macros?
– The history of UVM adds to UVM’s complexity

• UVM evolved from OVM, VMM and other methodologies

• UVM adds to and modifies previous methodologies

• UVM contains “old ways” and “new ways” to do things

– Object Oriented Programming adds complexity
• OOP extends and inherits functionality from base classes

– uvm_driver inherits from uvm_component which inherits from
uvm_object which inherits from …

• Only a small number of UVM classes, methods and macros are
intended to be used by end users

– Much of the UVM library is for use within the library

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 4

5Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

Three Aspects of a UVM Testbench
1) The Test

 Connects the testbench to

the DUT

 Selects the sequencers

 Configures the environment

2) The Sequence
 Generates transactions

(stimulus)

3) The Environment
 Delivers stimulus

 Verifies DUT outputs

UVM Constructs Used By The

Environment Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Role of the Environment Writer
• The Environment Writer defines the testbench parts

The environment delivers

stimulus to the DUT and

verifies DUT outputs

– Agents

– Sequencers

– Drivers

– Monitors

– Scoreboards

– Coverage collectors

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 7

8

The Environment Component

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

class my_env ;

...

extends uvm_env

`uvm_component_utils(my_env)

function new(string name,

uvm_component parent);

super.new(name, parent);

endfunction: new

About the examples in this presentation:

 UVM-specific constructs are shown in blue text

 UVM constructs not shown in previous examples are shown in boxed text

To save time, we are only going to count the

number of UVM constructs required – refer to

the paper for more details on these constructs

(continued on next page) UVM

Constructs

First Time

Seen

Running

Total

Classes 2 2

Methods 0 0

Macros 1 1

Extend base class from UVM lib.

Factory registration macro

Factory will call new() constructor

See the paper for explanations of the code examples!

The Environment Component (cont.)
• Environments encapsulate

an agent and scoreboard

...

my_agent agent;

my_scoreboard scorebd;

endclass: my_env

function void build_phase(uvm_phase phase);

agent = my_agent::type_id::create("agent", this);

scorebd = my_scoreboard::type_id::create("scorebd", this);

endfunction: build_phase

function void connect_phase(uvm_phase phase);

agent.dut_inputs_port.connect(scorebd.dut_in_imp_export);

agent.dut_outputs_port.connect(scorebd.dut_out_imp_export);

endfunction: connect_phase

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 2

Methods 4 4

Macros 0 1

The “build phase” uses factory

to “create” components

The “connect phase” is used to

“connect” component ports

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 9

The Agent Component
• An agent encapsulates low-level components needed to drive

and monitor a specific interface to the DUT

class my_agent ;

`uvm_component_utils(my_agent)

function new(string name, uvm_component parent);

super.new(name, parent);

endfunction: new

// handles for agent’s components

my_sequencer sqr;

my_driver drv;

...

...

// handles to the monitor's ports

uvm_analysis_port #(my_tx) dut_inputs_port;

uvm_analysis_port #(my_tx) dut_outputs_port;

UVM

Constructs

First Time

Seen

Running

Total

Classes 2 4

Methods 0 4

Macros 0 1

extends uvm_agent

(continued on next page)

Add ports to the monitor (classes

defined in the UVM library)

Extend agent’s UVM base class

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 10

The Agent Component
• The agent’s build phase “creates”

a sequencer, driver, monitor, etc.
...

function void build_phase(uvm_phase phase);

mon = my_monitor::type_id::create("mon", this);

if (m_config.is_active == UVM_ACTIVE) begin

sqr = my_sequencer::type_id::create("sqr", this);

drv = my_driver::type_id::create("drv", this);

end

if (m_config.enable_coverage)

cov = my_cover_collector::type_id::create("cov", this);

endfunction: build_phase

...

if (!uvm_config_db #(my_cfg)::get(this, "", "t_cfg", m_cfg))

`uvm_warning("NOCFG", Failed to access config_db.\n")

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 5

Methods 1 5

Macros 1 2
(continued on next page)

The Test Writer “sets” a

configuration object

handle into UVM’s

configuration data base

The agent “gets” this

handle from the data base

Warning messages can provide debug information

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 11

The Agent Component (continued)
• The agent’s connect_phase connects the agent’s components

together
...

function void connect_phase(uvm_phase phase);

// set agent's ports to point to the monitor's ports

dut_inputs_port = mon.dut_inputs_port;

dut_outputs_port = mon.dut_outputs_port;

if (is_active == UVM_ACTIVE)

// connect driver to sequencer

drv.seq_item_port.connect(sqr.seq_item_export);

if (enable_coverage)

// connect monitor to coverage collector

mon.dut_inputs_port.connect(cov.analysis_export);

endfunction: connect_phase

endclass: my_agent

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 5

Methods 0 5

Macros 0 2

No additional UVM

constructs needed!

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 12

The Driver Component
• The driver receives transactions from a sequencer and drives

values to the DUT via a virtual interface

class my_driver ;

`uvm_component_utils(my_driver)

function new(string name, uvm_component parent);

super.new(name, parent);

endfunction

virtual tb_if tb_vif; // virtual interface pointer

function void build_phase(uvm_phase phase);

if (!uvm_config_db #(virtual my_dut_interface)::get(this,

"", "DUT_IF", tb_vif))

endfunction: build_phase

...

extends uvm_driver #(my_tx)

Extend driver’s UVM base class

`uvm_fatal("NOVIF", Failed virtutal interface from db")

A fatal error report terminates simulation

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 6

Methods 0 5

Macros 1 3

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 13

The Driver Component (continued)
• The driver receives transactions from a sequencer and drives

values to the DUT via a virtual interface

...

my_tx tx;

forever begin

@tb_vif.clk // synchronize to interface clock

tb_vif.operand_a = tx.operand_a; // drive values

tb_vif.operand_b = tx.operand_b;

tb_vif.opcode = tx.opcode;

end

endtask: run_phase

endclass: my_driver

task run_phase(uvm_phase phase);

seq_item_port.get_next_item(tx); // get a transaction

seq_item_port.item_done();

The “run phase” is a task that

can take clock cycles to execute

Port methods “block” execution flow

as part of a handshake process with

a sequence stimulus generator

written by the Sequence Writer

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 6

Methods 3 8

Macros 0 3

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 14

Additional Components

• A sequencer routes stimulus to driver
– Specializes the uvm_sequencer base class
– No additional UVM constructs are needed

• A monitor observes DUT ports via a virtual interface
– Extends the uvm_monitor base class

– Only additional UVM construct needed that has not already been
shown is an analysis port write() method

• A scoreboard verifies DUT output value correctness
– Extends uvm_subscriber or uvm_component
– Only additional UVM constructs that might be needed are:

report_phase(), `uvm_info() and `uvm_analysis_imp_decl()

• A coverage collector performs functional coverage
– No additional UVM constructs are needed

UVM

Constructs

First Time

Seen

Runnin

g Total

Classes 3 9

Methods 2 10

Macros 2 5

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 15

UVM Constructs Used By The

Test Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Role of the UVM Test Writer
• The Test Writer defines the specifics of a testcase

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 17

The test defines the

particulars of the given

testcase

– Connects the testbench to the DUT

– Selects the sequences

– Configures the environment

DUT

test

environment

interface
signals

interface
signals

in
te

rf
a

c
e

configuration and factory settings

transaction

generator

(sequence)

transaction

generator

(sequence)

The Top-Level Module
• Top-level module connects

DUT and starts test

module test_top;

import my_test_pkg::*;

my_dut_interface my_dut_if();

my_dut_rtl my_dut(.if(my_dut_if());

initial begin

end

endmodule

import uvm_pkg::*;

uvm_config_db #(virtual my_dut_interface)::set(null,

"uvm_test_top", "DUT_IF", my_dut_if);

run_test();

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 2 12

Macros 0 5

The “set” method is how the Test

Writer sends information down

the hierarchy

“run_test” is the task that

starts the UVM execution

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 18

The Base Test
• Test instantiates & configures the environment
class my_test extends uvm_test;

`uvm_component_utils(my_test)

my_env m_env;

my_env_config_obj m_env_cfg;

...

function void build_phase(uvm_phase phase);

m_env_cfg = my_env_config_obj::type_id::create("m_env_cfg");

m_env = my_env::type_id::create("my_env", this);

if(!uvm_config_db#(virtual my_dut_interface)::get(this, "" ,

"DUT_IF", m_env_cfg.dut_if))

// set other aspects of m_env_cfg

uvm_config_db#(my_env_config_obj)::set(this, "my_env",

"m_env_cfg", m_env_cfg);

endfunction

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 0 12

Macros 1 6

`uvm_error("TEST", "Failed to get virtual intf in test")

An error report indicates a serious problem

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 19

The Extended Test
• The extended test specializes the base test

class my_ext_test extends my_test;

`uvm_component_utils(my_ext_test)

...

function void build_phase(uvm_phase phase);

// optionally override type of my_env_cfg object

// optionally make additional changes to my_env_cfg object

endfunction

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 4 16

Macros 0 6

my_env::type_id::set_type_override(my_env2::get_type());

my_comp::type_id::set_inst_override(my_comp2::get_type(),

"top.env.c2");

super.build_phase(phase);

Override factory return type for

all for specific instances

A UVM “idiom”

to refer to types

Never call super.build_phase()

in components extended from

UVM base components

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 20

The Extended Test
• The test starts sequences and manages objections

class my_ext_test extends my_test;

`uvm_component_utils(my_ext_test)

...

task run_phase(uvm_phase phase);

my_seq seq = my_seq::type_id::create(“seq”);

//optionally randomize sequence

assert(seq.randomize() with {src_addr == 32’h0100_0800;

xfer_size == 128;});

endtask

phase.raise_objection("Starting test");

seq.start(m_env.m_agent.m_sequencer);

phase.drop_objection("Ending test");

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 3 19

Macros 0 6

Start the sequence

on a Sequencer

Raise and drop objections

to control run_phase execution

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 21

UVM Constructs Used By The

Sequence Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Sequence Writer
• Each sequence defines stimulus and/or response functionality

• Provide list of sequence types and sequencer types to start
them on

• Inheritance hierarchy and other details irrelevant to Test
Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 23

24Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

Designing a Sequence Item
class my_tx extends

(my_tx)

rand bit [23:0] operand_a;

rand bit [23:0] operand_b;

randc opcode_t opcode;

logic [23:0] result;

function new(string name = "my_tx");

super.new(name);

endfunction

endclass: my_tx

Alternately use `uvm_field_xxx macros (73) to auto-generate the do_ methods

“Input” variables
should be rand

do_copy()

do_compare()

convert2string()

do_record()

do_pack()

do_unpack()

“Output” variables
should not be

Standard Object
constructor

User calls

copy(), compare(),
etc.

uvm_sequence_item;

`uvm_object_utils

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 10

Methods 6 25

Macros 1 7

The Sequence Body Method
• The body method defines the transactions to generate

class tx_sequence extends

`uvm_object_utils(tx_sequence)

...

task

repeat(50) begin

tx = my_seq_item::type_id::create("tx");

...

end

endtask

endclass:tx_sequence

uvm_sequence#(my_item);

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 11

Methods 3 28

Macros 0 7

body();

start_item(tx);

finish_item(tx);

UVM sequence base type

The body method defines the transaction stream

Handshake with the Driver

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 25

The Virtual Sequence
• The virtual sequence starts subsequences
class my_vseq extends uvm_sequence#(uvm_sequence_item);

...

bus_sequencer_t bus_sequencer;

gpio_sequencer_t gpio_sequencer;

virtual function void init(uvm_sequencer bus_seqr,

uvm_sequencer gpio_seqr);

bus_sequencer = bus_seqr;

gpio_sequencer = gpio_seqr;

endfunction

task body();

aseq.start(bus_sequencer , this);

bseq.start(gpio_sequencer , this);

endtask

endclass

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 0 28

Macros 0 7

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 26

UVM Constructs Used For

Advanced Examples

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

phase_ready_to_end
• Delay the end of a phase when necessary

function void my_comp::

if(!is_ok_to_end()) begin

phase.raise_objection(this , "not ready to end phase");

fork begin

wait_for_ok_end();

phase.drop_objection(this , "ok to end phase");

end

join_none

end

endfunction : phase_ready_to_end

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 1 29

Macros 0 7

phase_ready_to_end(uvm_phase phase);

Delay end of phase

when necessary

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 28

Pipelined Protocols
• Use the Response Handler in the sequence
class my_pipelined_seq extends uvm_sequence #(my_seq_item);

`uvm_object_utils(my_pipelined_seq)

...

task body();

my_seq_item req = my_seq_item::type_id::create("req");

...

start_item(req);

...

finish_item(req);

endtask

function void

...

endfunction

endclass: my_pipelined_seq

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 2 31

Macros 0 7

use_response_handler(1);

response_handler(uvm_sequence_item response);

Setup user-defined

Response Handler

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 29

Pipelined Protocols
• Driver uses one thread per pipeline stage
class my_pipelined_driver extends uvm_driver #(my_seq_item);

`uvm_component_utils(my_pipelined_driver)

...

task do_pipelined_transfer;

my_seq_item req;

forever begin

pipeline_lock.get();

...// execute first pipeline stage

pipeline_lock.put();

...// execute second pipeline stage

end

endtask

endclass: my_pipelined_seq

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 2 33

Macros 0 7seq_item_port.get(req);

seq_item_port.put(req);

Alternate handshake

with the Sequence

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 30

UVM Features to Avoid
• Phase Jumping

• Callbacks

• Most UVM 1.2 features

• These features only make UVM
unnecessarily complex, difficult to
code, and difficult maintain, and
difficult to re-use

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 31

The Solution…

• The UVM 1.2 Library has 357 classes,
938 functions, 99 tasks, and 374 macros

• Our recommended subset in the paper uses
11 classes, 33 tasks/functions and 7 macros

• You really only need to learn 3% of UVM
to be productive!
– 2% of classes

– 3% of methods

How do I find
what I need in

this huge library?

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 32

