
UVM Rapid Adoption:
A Practical Subset of UVM

Stuart Sutherland, Sutherland-HDL, Inc.

Tom Fitzpatrick, Mentor Graphics Corp.

presented by Gordon Allan, Mentor Graphics, Corp

If it’s in the
library, you

have to use it!

The Problem…
• The UVM 1.2 Library has 357 classes, 938 functions, 99 tasks,

and 374 macros

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 2

How do I find
what I need in

this huge library?

I’m so
confused!

Why are there
so many different
ways to print a

message?

Which way
should I use?

The Goals of this Paper
• Understand why the UVM library is so complex

• Examine UVM from three different perspectives
– The Environment Writer

– The Test Writer

– The Sequence Writer

• Define a practical subset of UVM that meets the needs of
nearly all verification projects

– A subset makes UVM easier to learn, use & maintain!

You will be amazed at how small of
a subset of UVM you really need!

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 3

Why the UVM Library
Is Overly Large and Complex
• Why 357 classes, 1037 methods, 374 macros?
– The history of UVM adds to UVM’s complexity

• UVM evolved from OVM, VMM and other methodologies

• UVM adds to and modifies previous methodologies

• UVM contains “old ways” and “new ways” to do things

– Object Oriented Programming adds complexity
• OOP extends and inherits functionality from base classes

– uvm_driver inherits from uvm_component which inherits from
uvm_object which inherits from …

• Only a small number of UVM classes, methods and macros are
intended to be used by end users

– Much of the UVM library is for use within the library

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 4

5Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

Three Aspects of a UVM Testbench
1) The Test

 Connects the testbench to

the DUT

 Selects the sequencers

 Configures the environment

2) The Sequence
 Generates transactions

(stimulus)

3) The Environment
 Delivers stimulus

 Verifies DUT outputs

UVM Constructs Used By The

Environment Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Role of the Environment Writer
• The Environment Writer defines the testbench parts

The environment delivers

stimulus to the DUT and

verifies DUT outputs

– Agents

– Sequencers

– Drivers

– Monitors

– Scoreboards

– Coverage collectors

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 7

8

The Environment Component

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

class my_env ;

...

extends uvm_env

`uvm_component_utils(my_env)

function new(string name,

uvm_component parent);

super.new(name, parent);

endfunction: new

About the examples in this presentation:

 UVM-specific constructs are shown in blue text

 UVM constructs not shown in previous examples are shown in boxed text

To save time, we are only going to count the

number of UVM constructs required – refer to

the paper for more details on these constructs

(continued on next page) UVM

Constructs

First Time

Seen

Running

Total

Classes 2 2

Methods 0 0

Macros 1 1

Extend base class from UVM lib.

Factory registration macro

Factory will call new() constructor

See the paper for explanations of the code examples!

The Environment Component (cont.)
• Environments encapsulate

an agent and scoreboard

...

my_agent agent;

my_scoreboard scorebd;

endclass: my_env

function void build_phase(uvm_phase phase);

agent = my_agent::type_id::create("agent", this);

scorebd = my_scoreboard::type_id::create("scorebd", this);

endfunction: build_phase

function void connect_phase(uvm_phase phase);

agent.dut_inputs_port.connect(scorebd.dut_in_imp_export);

agent.dut_outputs_port.connect(scorebd.dut_out_imp_export);

endfunction: connect_phase

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 2

Methods 4 4

Macros 0 1

The “build phase” uses factory

to “create” components

The “connect phase” is used to

“connect” component ports

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 9

The Agent Component
• An agent encapsulates low-level components needed to drive

and monitor a specific interface to the DUT

class my_agent ;

`uvm_component_utils(my_agent)

function new(string name, uvm_component parent);

super.new(name, parent);

endfunction: new

// handles for agent’s components

my_sequencer sqr;

my_driver drv;

...

...

// handles to the monitor's ports

uvm_analysis_port #(my_tx) dut_inputs_port;

uvm_analysis_port #(my_tx) dut_outputs_port;

UVM

Constructs

First Time

Seen

Running

Total

Classes 2 4

Methods 0 4

Macros 0 1

extends uvm_agent

(continued on next page)

Add ports to the monitor (classes

defined in the UVM library)

Extend agent’s UVM base class

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 10

The Agent Component
• The agent’s build phase “creates”

a sequencer, driver, monitor, etc.
...

function void build_phase(uvm_phase phase);

mon = my_monitor::type_id::create("mon", this);

if (m_config.is_active == UVM_ACTIVE) begin

sqr = my_sequencer::type_id::create("sqr", this);

drv = my_driver::type_id::create("drv", this);

end

if (m_config.enable_coverage)

cov = my_cover_collector::type_id::create("cov", this);

endfunction: build_phase

...

if (!uvm_config_db #(my_cfg)::get(this, "", "t_cfg", m_cfg))

`uvm_warning("NOCFG", Failed to access config_db.\n")

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 5

Methods 1 5

Macros 1 2
(continued on next page)

The Test Writer “sets” a

configuration object

handle into UVM’s

configuration data base

The agent “gets” this

handle from the data base

Warning messages can provide debug information

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 11

The Agent Component (continued)
• The agent’s connect_phase connects the agent’s components

together
...

function void connect_phase(uvm_phase phase);

// set agent's ports to point to the monitor's ports

dut_inputs_port = mon.dut_inputs_port;

dut_outputs_port = mon.dut_outputs_port;

if (is_active == UVM_ACTIVE)

// connect driver to sequencer

drv.seq_item_port.connect(sqr.seq_item_export);

if (enable_coverage)

// connect monitor to coverage collector

mon.dut_inputs_port.connect(cov.analysis_export);

endfunction: connect_phase

endclass: my_agent

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 5

Methods 0 5

Macros 0 2

No additional UVM

constructs needed!

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 12

The Driver Component
• The driver receives transactions from a sequencer and drives

values to the DUT via a virtual interface

class my_driver ;

`uvm_component_utils(my_driver)

function new(string name, uvm_component parent);

super.new(name, parent);

endfunction

virtual tb_if tb_vif; // virtual interface pointer

function void build_phase(uvm_phase phase);

if (!uvm_config_db #(virtual my_dut_interface)::get(this,

"", "DUT_IF", tb_vif))

endfunction: build_phase

...

extends uvm_driver #(my_tx)

Extend driver’s UVM base class

`uvm_fatal("NOVIF", Failed virtutal interface from db")

A fatal error report terminates simulation

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 6

Methods 0 5

Macros 1 3

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 13

The Driver Component (continued)
• The driver receives transactions from a sequencer and drives

values to the DUT via a virtual interface

...

my_tx tx;

forever begin

@tb_vif.clk // synchronize to interface clock

tb_vif.operand_a = tx.operand_a; // drive values

tb_vif.operand_b = tx.operand_b;

tb_vif.opcode = tx.opcode;

end

endtask: run_phase

endclass: my_driver

task run_phase(uvm_phase phase);

seq_item_port.get_next_item(tx); // get a transaction

seq_item_port.item_done();

The “run phase” is a task that

can take clock cycles to execute

Port methods “block” execution flow

as part of a handshake process with

a sequence stimulus generator

written by the Sequence Writer

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 6

Methods 3 8

Macros 0 3

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 14

Additional Components

• A sequencer routes stimulus to driver
– Specializes the uvm_sequencer base class
– No additional UVM constructs are needed

• A monitor observes DUT ports via a virtual interface
– Extends the uvm_monitor base class

– Only additional UVM construct needed that has not already been
shown is an analysis port write() method

• A scoreboard verifies DUT output value correctness
– Extends uvm_subscriber or uvm_component
– Only additional UVM constructs that might be needed are:

report_phase(), `uvm_info() and `uvm_analysis_imp_decl()

• A coverage collector performs functional coverage
– No additional UVM constructs are needed

UVM

Constructs

First Time

Seen

Runnin

g Total

Classes 3 9

Methods 2 10

Macros 2 5

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 15

UVM Constructs Used By The

Test Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Role of the UVM Test Writer
• The Test Writer defines the specifics of a testcase

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 17

The test defines the

particulars of the given

testcase

– Connects the testbench to the DUT

– Selects the sequences

– Configures the environment

DUT

test

environment

interface
signals

interface
signals

in
te

rf
a

c
e

configuration and factory settings

transaction

generator

(sequence)

transaction

generator

(sequence)

The Top-Level Module
• Top-level module connects

DUT and starts test

module test_top;

import my_test_pkg::*;

my_dut_interface my_dut_if();

my_dut_rtl my_dut(.if(my_dut_if());

initial begin

end

endmodule

import uvm_pkg::*;

uvm_config_db #(virtual my_dut_interface)::set(null,

"uvm_test_top", "DUT_IF", my_dut_if);

run_test();

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 2 12

Macros 0 5

The “set” method is how the Test

Writer sends information down

the hierarchy

“run_test” is the task that

starts the UVM execution

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 18

The Base Test
• Test instantiates & configures the environment
class my_test extends uvm_test;

`uvm_component_utils(my_test)

my_env m_env;

my_env_config_obj m_env_cfg;

...

function void build_phase(uvm_phase phase);

m_env_cfg = my_env_config_obj::type_id::create("m_env_cfg");

m_env = my_env::type_id::create("my_env", this);

if(!uvm_config_db#(virtual my_dut_interface)::get(this, "" ,

"DUT_IF", m_env_cfg.dut_if))

// set other aspects of m_env_cfg

uvm_config_db#(my_env_config_obj)::set(this, "my_env",

"m_env_cfg", m_env_cfg);

endfunction

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 0 12

Macros 1 6

`uvm_error("TEST", "Failed to get virtual intf in test")

An error report indicates a serious problem

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 19

The Extended Test
• The extended test specializes the base test

class my_ext_test extends my_test;

`uvm_component_utils(my_ext_test)

...

function void build_phase(uvm_phase phase);

// optionally override type of my_env_cfg object

// optionally make additional changes to my_env_cfg object

endfunction

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 4 16

Macros 0 6

my_env::type_id::set_type_override(my_env2::get_type());

my_comp::type_id::set_inst_override(my_comp2::get_type(),

"top.env.c2");

super.build_phase(phase);

Override factory return type for

all for specific instances

A UVM “idiom”

to refer to types

Never call super.build_phase()

in components extended from

UVM base components

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 20

The Extended Test
• The test starts sequences and manages objections

class my_ext_test extends my_test;

`uvm_component_utils(my_ext_test)

...

task run_phase(uvm_phase phase);

my_seq seq = my_seq::type_id::create(“seq”);

//optionally randomize sequence

assert(seq.randomize() with {src_addr == 32’h0100_0800;

xfer_size == 128;});

endtask

phase.raise_objection("Starting test");

seq.start(m_env.m_agent.m_sequencer);

phase.drop_objection("Ending test");

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 9

Methods 3 19

Macros 0 6

Start the sequence

on a Sequencer

Raise and drop objections

to control run_phase execution

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 21

UVM Constructs Used By The

Sequence Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

The Sequence Writer
• Each sequence defines stimulus and/or response functionality

• Provide list of sequence types and sequencer types to start
them on

• Inheritance hierarchy and other details irrelevant to Test
Writer

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 23

24Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

Designing a Sequence Item
class my_tx extends

(my_tx)

rand bit [23:0] operand_a;

rand bit [23:0] operand_b;

randc opcode_t opcode;

logic [23:0] result;

function new(string name = "my_tx");

super.new(name);

endfunction

endclass: my_tx

Alternately use `uvm_field_xxx macros (73) to auto-generate the do_ methods

“Input” variables
should be rand

do_copy()

do_compare()

convert2string()

do_record()

do_pack()

do_unpack()

“Output” variables
should not be

Standard Object
constructor

User calls

copy(), compare(),
etc.

uvm_sequence_item;

`uvm_object_utils

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 10

Methods 6 25

Macros 1 7

The Sequence Body Method
• The body method defines the transactions to generate

class tx_sequence extends

`uvm_object_utils(tx_sequence)

...

task

repeat(50) begin

tx = my_seq_item::type_id::create("tx");

...

end

endtask

endclass:tx_sequence

uvm_sequence#(my_item);

UVM

Constructs

First Time

Seen

Running

Total

Classes 1 11

Methods 3 28

Macros 0 7

body();

start_item(tx);

finish_item(tx);

UVM sequence base type

The body method defines the transaction stream

Handshake with the Driver

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 25

The Virtual Sequence
• The virtual sequence starts subsequences
class my_vseq extends uvm_sequence#(uvm_sequence_item);

...

bus_sequencer_t bus_sequencer;

gpio_sequencer_t gpio_sequencer;

virtual function void init(uvm_sequencer bus_seqr,

uvm_sequencer gpio_seqr);

bus_sequencer = bus_seqr;

gpio_sequencer = gpio_seqr;

endfunction

task body();

aseq.start(bus_sequencer , this);

bseq.start(gpio_sequencer , this);

endtask

endclass

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 0 28

Macros 0 7

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 26

UVM Constructs Used For

Advanced Examples

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics

phase_ready_to_end
• Delay the end of a phase when necessary

function void my_comp::

if(!is_ok_to_end()) begin

phase.raise_objection(this , "not ready to end phase");

fork begin

wait_for_ok_end();

phase.drop_objection(this , "ok to end phase");

end

join_none

end

endfunction : phase_ready_to_end

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 1 29

Macros 0 7

phase_ready_to_end(uvm_phase phase);

Delay end of phase

when necessary

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 28

Pipelined Protocols
• Use the Response Handler in the sequence
class my_pipelined_seq extends uvm_sequence #(my_seq_item);

`uvm_object_utils(my_pipelined_seq)

...

task body();

my_seq_item req = my_seq_item::type_id::create("req");

...

start_item(req);

...

finish_item(req);

endtask

function void

...

endfunction

endclass: my_pipelined_seq

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 2 31

Macros 0 7

use_response_handler(1);

response_handler(uvm_sequence_item response);

Setup user-defined

Response Handler

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 29

Pipelined Protocols
• Driver uses one thread per pipeline stage
class my_pipelined_driver extends uvm_driver #(my_seq_item);

`uvm_component_utils(my_pipelined_driver)

...

task do_pipelined_transfer;

my_seq_item req;

forever begin

pipeline_lock.get();

...// execute first pipeline stage

pipeline_lock.put();

...// execute second pipeline stage

end

endtask

endclass: my_pipelined_seq

UVM

Constructs

First Time

Seen

Running

Total

Classes 0 11

Methods 2 33

Macros 0 7seq_item_port.get(req);

seq_item_port.put(req);

Alternate handshake

with the Sequence

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 30

UVM Features to Avoid
• Phase Jumping

• Callbacks

• Most UVM 1.2 features

• These features only make UVM
unnecessarily complex, difficult to
code, and difficult maintain, and
difficult to re-use

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 31

The Solution…

• The UVM 1.2 Library has 357 classes,
938 functions, 99 tasks, and 374 macros

• Our recommended subset in the paper uses
11 classes, 33 tasks/functions and 7 macros

• You really only need to learn 3% of UVM
to be productive!
– 2% of classes

– 3% of methods

How do I find
what I need in

this huge library?

Stu Sutherland, Sutherland-HDL, Tom Fitzpatrick & Gordon Allan, Mentor Graphics 32

