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Abstract — The Universal Verification Methodology (UVM) is a powerful verification methodology that was 

architected to be able to verify a wide range of design sizes and design types. One meaning of the “Universal” in the UVM 
name is that the methodology is intended to be capable of verifying anything and everything in the universe — at least all 
things in the realm of integrated circuits. There is value to this universal capability, but it also means there will likely be 
many capabilities in UVM that are not necessary for any specific project. Indeed, the authors maintain that there are 
many things in UVM that are not necessary for most projects. Furthermore, UVM originates from a blend of other 
verification methodologies such as OVM and VMM. These roots mean there are parts of UVM that were inherited from 
other methodologies, but which are not really needed in a pure UVM testbench. This paper focusses on defining a subset 
of the UVM base classes, methods, and macros that will enable engineers to learn UVM more quickly and become 
productive with using UVM for the verification of most types and sizes of digital designs modeled in VHDL, Verilog or 
SystemVerilog. You might be surprised at just how small of a subset of UVM is really needed in order to verify complex 
designs effectively with UVM. 

 

1.0 Introduction 

The Universal Verification Methodology, commonly referred to as UVM, is purposely designed to have 
capabilities for verifying all types of digital logic designs, large or small, FPGA or ASIC or full-custom, and 
control-oriented or data-oriented or processor-oriented. This universal nature of UVM means there are constructs 
and capabilities in the methodology that, though perhaps useful for certain verification projects, are not necessary 
for most projects. The heritage of UVM further complicates the complexity of the methodology. UVM was not 
created from a clean slate. Rather, the UVM base class libraries and general testbench architecture were leveraged 
from other methodologies that have proven effective for verification of digital designs.  

The universality and heritage of UVM has led to a bloated library of classes, methods, and macros. There are 
often multiple classes, methods or macros that do nearly the same thing, with only slight, often obscure, differences. 
For example, UVM provides both a resource data base and a configuration data base. A quick search of the internet 
will reveal scores of conflicting opinions as to which data base is best, or which data base should be used in this 
circumstance or that circumstance.  Another example of redundancy is how UVM provides multiple ways to 
“report” a message. There are nearly identical reporting methods, such as uvm_report_error(), and reporting 
macros, such as `uvm_error. 

The nature of Object Oriented Programming adds to the complexity of the UVM class libraries. Only some of the 
classes listed in the UVM Class Reference Manual are intended to be used by those who write UVM-based 
testbenches. These classes, following good OOP practices, extend and inherit from other base classes. 
Unfortunately, the UVM Class Reference Manual documents all of these classes – which it should – but the manual 
does not make it clear which classes are intended for end users of UVM to use in a UVM testbench, and which 
classes are intended for internal use within the UVM methodology. 

The goal of this paper is to simplify learning and adopting UVM by suggesting preferred choices when 
redundancy exists, and clarifying which classes are for end-use of UVM. We will show that nearly all verification 
projects can be achieved with a simple subset of UVM classes, methods and macros. This “UVM-light” subset will 
help make UVM easier to learn, easier to maintain, easier to re-use, and less prone to coding errors or non-ideal 
coding styles.  

1.1 History and Growth 

UVM draws from a long and rich history of digital logic verification that spans more than 15 years of well-
organized and documented methodologies, and many more years of company-specific ad-hoc methodologies. 
Established verification methodologies such as vAdvisor, eRm, RVM, VMM, AVM, URM and OVM have all 
contributed to the verification approaches used in UVM.  While each of these methodologies had a common goal of 
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verifying digital logic designs, these methodologies often had very different approaches for accomplishing this goal.  
It is not the intent of this paper to provide the details of this heritage, but rather to emphasize that this heritage 
affected the bloat and redundancy that exists in UVM.  

As a starting point, the UVM development committee drew substantially from the Open Verification 
Methodology (OVM) approach for architecting a verification testbench. Indeed, the first preliminary release of 
UVM, UVM 1.0EA (“EA” stood for “Early Adopter) in 2010, was mostly a direct port of OVM, with only a few 
changes or additions. UVM rapidly evolved from this early adopter version, adding in features from VMM, such as 
the Register Layer, and proven verification concepts from other documented and ad-hoc methodologies. The UVM 
1.0 version was released just 9 months after 1.0EA, and was followed only 6 months later by UVM 1.1, which was 
released in June 2011. In that short period of about 15 months, UVM had evolved to be quite different than OVM, 
though the heritage is very apparent. 

There were a number of minor updates to UVM 1.1 over the next three years, but, overall, there were no major 
evolutionary changes.  The next major change to UVM occurred in June 2014, with the release of UVM 1.2.  UVM 
1.2 adds several substantial new capabilities to UVM, some of which will be discussed later in this paper.  The 
evolution is not complete.  UVM is now in the early stages of becoming an IEEE standard (designated IEEE 
P1800.2), and will very likely see more growth during that process. 

This rapid evolution from an OVM starting point to UVM 1.1 and now to UVM 1.2 is a primary cause for the 
bloated nature of UVM.  As UVM has evolved, new approaches for architecting a testbench and writing tests have 
been added to UVM, but the older ways of doing things are still available.  Some older methodology features have 
been officially deprecated and others have been modified, but the baggage of the older features is still in the 
implementations of UVM class libraries and macros, still in use in existing UVM testbenches and Verification 
Intellectual Property (VIP), and still appears in books, papers and training courses.  UVM’s evolutionary process has 
resulted in having both older ways and newer ways to write a UVM testbench. 

As previously noted, the purpose of this paper is to move much of this excess baggage into a closet, and show a 
simple subset of UVM classes, methods and macros that can handle nearly all verification projects.  This 
recommended subset is based on UVM 1.2, but only uses constructs that are backward compatible with UVM 1.1. 

1.2 Our Approach for This Paper 

This paper examines UVM from three perspectives, the roles of the Test Writer, the Environment Writer and the 
Sequence Writer.   

Note: This is a “what-to-use” paper, not a “how-to-write” paper! 

We are not teaching how to write UVM tests, drivers, monitors and scoreboards in this paper.  Nor are we 
discussing the definition, syntax and semantics of UVM constructs.  Rather, we are focusing on what UVM 
constructs are really needed to write effective UVM tests, environments, and stimuli for most verification projects. 

A UVM testbench can be partitioned into three primary parts: the test, the environment, and the sequence 
(stimuli). UVM is structured so that different engineers can focus on writing different parts of the testbench, with 
very little knowledge about the other portions. In this paper, we will examine the what-to-use by first considering a 
simple—but complete—UVM test, environment, and sequence. We will show exactly what UVM constructs a Test 
Writer, Environment Writer and Sequence Writer need to know for this simple UVM verification project.  We will 
then look at several advanced verification situations, and discuss any additional UVM constructs needed to handle 
those more difficult testbenches. 

While the focus of this paper is on what UVM constructs are needed for simple and more advanced UVM 
verification, we will also discuss some constructs that are not needed.  This discussion of unnecessary constructs is 
not comprehensive, however.  Perhaps another way to think of this guide for a practical subset of UVM is simply: if 
a construct is not listed in the recommended subset, then you probably don’t need it. 

The UVM constructs that are not needed generally fall into one or more of four categories: 1) the construct is a 
left-over from UVM’s OVM legacy, but was replaced by a more preferred UVM construct,  2) the construct is 
redundant with a construct that is in our recommended UVM subset (in which case we chose the construct we feel is 
the easiest or most versatile,  3) the construct might only be useful for some rare verification requirement, but is not 
a construct that is needed for the vast majority of verification projects, or 4) the construct is not intended for end-
users of UVM, but rather is intended to be used internally within the UVM methodology. 
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2.0 Test Writer Guidelines 

The Test Writer is responsible for using the environment and sequences available to specify stimuli and results 
checking, in order to verify a particular set of features in the Device Under Test (DUT). UVM is set up so that the 
Test Writer can specify useful tests without having to know very much of the underlying details of the environment, 
or of UVM itself.  From the perspective of the Test Writer, the UVM environment is mostly a black box. In this 
section, we will discuss the specific tasks relegated to the Test Writer and show which UVM constructs are required 
by the Test Writer.  

2.1 Connect to the DUT 

The first task for the Test Writer is to connect the class-based UVM testbench to the module-based DUT in a 
top-level module1. This is done using the SystemVerilog interface construct. The Test Writer must make the 
instance of the interface, referred to as a “virtual interface”, available to the environment. This is done by using the 
UVM configuration database.  Example 1 shows a top-level module for a simple UVM testbench.   

NOTE: Throughout this paper, UVM-specific code is shown in bold text.  UVM-specific code that has not been 
discussed in previous examples is shown as highlighted text. 
 

module test_top; 
  import uvm_pkg::*; 
  import my_test_pkg::*; 
 
  my_dut_interface my_dut_if(); 
  my_dut_rtl my_dut(.if(my_dut_if()); 
 
  initial begin 
    uvm_config_db #(virtual my_dut_interface)::set(null, "uvm_test_top", 
                                                   "DUT_IF", my_dut_if); 
    run_test(); 
  end 
endmodule 
 

Example 1 – Top-level module 

Importing the uvm_pkg package is standard for all UVM testbenches. The code for the UVM environment is 
typically contained in one or more user-defined packages (my_test_pkg in this example). Importing this user-
defined package, and the instantiation and connection of the testbench interface (my_dut_interface) are 
standard SystemVerilog programming. The use of UVM itself in this top-level module comes into play when we use 
the uvm_config_db  data base to pass the virtual interface handle to the UVM test (and ultimately down into the 
environment). 

The uvm_config_db  data base is a parameterized class, where a parameter is used for the type of object 
being passed into the data base – in this case, a virtual interface of type my_dut_interface. The 
uvm_config_db  class includes a static method called set. The Test Writer only needs to know the syntax of 
calling this method, and not the implementation of the data base.  At this top-level, the first two arguments of the 
set() method will always be null and "uvm_test_top" respectively. In UVM, “uvm_test_top” always 
represents the instance name of the top-level test. The third argument is the “field name” in the data base, and is a 
string that will be used to identify the particular interface in the UVM test ("DUT_IF" in this example).  Larger 
verification projects will often use multiple interfaces to connect the UVM testbench to the design. Each interface is 
given a unique field name in the data base. The last argument is the name of the interface instance. The instance 
name is referred to as a virtual interface handle for that instance. A combination of the first three arguments will be 
used by the Environment Writer to get the virtual interface back out of the configuration database. 

The run_test() method is what starts UVM running. It causes an instance of the top-level test class (as 
specified on the command line via +UVM_TESTNAME=<testname> ) to be created, and its methods run 
accordingly. Creating an instance of each interface being used between the testbench and the DUT, and passing 
them into the test via the uvm_config_db using the set() call, and starting UVM using run_test(), is all 
that the Test Writer needs to do in the top-level module to get a UVM test started. 

                                                           
1 When developing a testbench for emulation, it is recommended to use dual top-level modules, as shown in [1]. 
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2.2 UVM Tests 

A UVM test has several basic responsibilities: 

 Get the virtual interface handle(s) from the configuration database 

 Instantiate the UVM environment 

 Use the configuration database to pass the virtual interface handle(s) and other information down to the 
environment 

 Instantiate and start any sequences necessary for the test case 

 Manage phase objections, to ensure the test successfully completes 

The test must be registered with the factory, and must implement the build_phase() and run_phase() 
methods. It may optionally implement other phase methods, although these are typically not required to implement 
an effective test. The following may be considered a template for a UVM test: 
 

class my_test extends uvm_test; 
  `uvm_component_utils(my_test) 
  my_env m_env; 
  my_env_config_obj m_env_cfg; 
 
  function new(string name = "my_test", uvm_component parent = null); 
    super.new(name, parent); 
  endfunction 
 
  function void build_phase(uvm_phase phase); 
    ... 
  endfunction 
 
  task run_phase(uvm_phase phase); 
    ... 
  endtask 
endclass 
 

Example 2 – A UVM test class template 

The uvm_component_utils macro is used to register the test class with the factory so that the call to 
run_test() in the top-level module will be able to create an instance of this test and run it. An advantage of the 
factory registration macros provided in UVM is that you do not need to worry about the details of how to register 
classes in the UVM factory.  It is only required that you call the macro as the first thing in your test, and include the 
test class name as the argument. Note that macro calls do not use a semicolon at the end of the line. 

The class new() constructor is the same for all UVM components. The arguments to new() are default values 
that may (and probably will) be overridden when the component is instantiated by the factory. However, since the 
test is instantiated from the call to run_test()(which was shown in Example 1), its default values will be used. 
Therefore, we specify the name to be the name of the class (so it is easily identified) and we specify null as the 
parent (because the uvm_test is at the top of the UVM hierarchy). 

2.3 Instantiate and Set up the Environment 

The test uses the build_phase to instantiate and configure the environment.  
 

function void build_phase(uvm_phase phase); 
  m_env_cfg = my_env_config_obj::type_id::create("m_env_cfg"); 
  m_env = my_env::type_id::create("my_env", this); 
  if(!uvm_config_db#(virtual my_dut_interface)::get(this, "" ,"DUT_IF", 
                                                     m_env_cfg.dut_if)) 
    `uvm_error("TEST", "Failed to get virtual interface in test") 
  // set other aspects of m_env_cfg 
  uvm_config_db#(my_env_config_obj)::set(this, "my_env", "m_env_cfg", m_env_cfg); 
endfunction 
 

Example 3 – A UVM test build_phase 
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UVM objects and components are constructed using the factory create() method, rather than the 
conventional class new() constructor. The Test Writer only needs to know the usage syntax of this create() 
method.  It is a static method call with a static path made of the typename of the class being constructed and a static 
type_id handle. The create()  method for classes extended from the uvm_object base class requires one 
argument, which is a name string.  The create()  method for classes extended from the uvm_component base 
class requires two arguments, which are a name string and a handle to the component that will contain the instance 
of the component being created. This second argument will always be this – the component being created lives 
within the component calling create(). 

The use of the configuration object, my_env_config_obj, is simply a convenience mechanism that allows 
all of the information for the environment to be encapsulated in one object, thus allowing a single 
uvm_config_db call to pass the information to the environment. The configuration object itself is simply an 
extension of uvm_object, so it is treated as any other uvm_object in that it gets created and registered with the 
factory via the `uvm_object_utils macro. 

To maximize reuse, we recommend that each layer of the hierarchy in UVM should get configuration 
information from its parent and pass the information down to the next layer. 

The environment itself is simply a UVM component, so it is created from the factory, just as any other 
component would be. It is often the case that basic operations like instantiating and configuring the environment are 
done in a “base test”, which is then extended to allow additional customization for specific testing objectives. In this 
case, we may extend the base test and use the factory to instantiate a different environment. 
 

class my_extended_test extends my_test; 
  `uvm_component_utils(my_extended_test) 
  ... 
 
  function void build_phase(uvm_phase phase); 
    my_env::type_id::set_type_override(my_env2::get_type()); 
    // optionally override type of my_env_cfg object 
    super.build_phase(phase); 
    // optionally make additional changes to my_env_cfg object 
  endfunction 
 

Example 4 – An extended UVM test that overrides the environment type 

There are a few things to note about the extended test. We use the factory override in the build_phase() 
before calling super.build_phase(), so that the override will be in place before the environment is created 
(similarly with the configuration object, if we choose to override that as well). While type overrides are more 
common, the UVM factory also includes the ability to override a type for a specific instance of an object as well2. 
The second thing to notice is that, while we obviously call super.build_phase() from the extended test, we 
do not call super.build_phase() in the base test. The general rule in UVM is as follows: 

Never call super.build_phase() in a component extended from a UVM library base class. 

The reason for this rule is that the built-in UVM component base classes in the UVM class library include code 
in their build_phase methods for auto configuration, which is unnecessary, slow, and difficult to debug.  

2.4 Starting Sequences 

In addition to setting up the environment, the test is chiefly responsible for starting specific test sequences in 
UVM that will define the behaviors actually exercised. The sequences themselves will be written by the Sequence 
Writer, but it is up to the Test Writer to start them.  

 
 

class my_extended_test extends my_test; 
  `uvm_component_utils(my_extended_test) 
  ... 
 
 

                                                           
2 my_comp::type_id::set_inst_override(my_comp2::get_type(), “top.env.c2”); 
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  function void build_phase(uvm_phase phase); 
    ... 
  endfunction 
 
  task run_phase(uvm_phase phase); 
    ... 
    my_seq seq = my_seq::type_id::create("seq"); 
    //optionally randomize sequence 
    assert(seq.randomize() with {src_addr == 32’h0100_0800; 
                                 xfer_size == 128;}); 
    seq.start(m_env.m_agent.m_sequencer); 
    ... 
  endtask 
 

Example 5 – Starting a sequence in the UVM test run_phase 

It is recommended that any particular extension of the base test should create and start a specific set of test 
sequences. In general, since the test extension is what gets called from the command line, there is no need to 
override the sequence type(s) started in the test. The only reason for the test to override a sequence type would be if 
there were a background sequence also running that is started from somewhere other than the test. 

The UVM provides a facility called a “default sequence” that lets you use the uvm_config_db to specify the 
type of a sequence that a given sequencer will start in the desired phase to act as “background traffic.” When the 
desired phase starts, the specified sequencer will automatically create, randomize, and start a sequence instance of 
the specified type. This mechanism is not recommended, because it does not provide enough control to the Test 
Writer. Instead, the Environment Writer should provide a configuration hook that will allow the Test Writer to pass 
in an instance of the desired background sequence and have the environment start the sequence in the desired phase. 
The easiest way to do this is simply to make the background sequence a member of the environment’s configuration 
object. Since all the environment does is get the sequence instance (if it exists) from the configuration object and 
start it, the test is free to pass in an extension of a base background sequence. 

Example 6 shows how an extended test class can create a background sequence and copy the handle of the 
sequence object to a background_seq handle in the configuration object.  Note that this code does not require 
the use of any additional UVM constructs beyond the simple set of constructs already discussed. 
 

class my_extended_test extends my_test; 
  `uvm_component_utils(my_extended_test) 
  ... 
 
  function void build_phase(uvm_phase phase); 
    my_env::type_id::set_type_override(my_env2::get_type()); 
    // optionally override type of my_env_cfg object 
    super.build_phase(phase); 
    my_bkgrnd_seq bkgrnd_seq = my_bkgrnd_seq::type_id::create("bkgrnd_seq"); 
    assert(bkgrnd_seq.randomize() with {burst_len == 16;}); 
    my_env_cfg.background_seq = bkgrnd_seq; 
  endfunction 
 

Example 6 – Starting a background sequence in a UVM test build_phase 

With this approach, the environment simply starts the sequence from the configuration object in the run_phase. 

It is often the case that a test will start a virtual sequence, which is responsible for coordinating the execution of 
multiple other sequences. The details of how to do this are discussed in Section 4.0, Sequence Writer. All the Test 
Writer needs to know is to how to initialize and start a virtual sequence. 
 

class my_virtual_test extends my_test; 
  `uvm_component_utils(my_extended_test) 
  ... 
  task run_phase(uvm_phase phase); 
    ... 
    my_vseq virt_seq = my_seq::type_id::create(“virt_seq”); 
    virt_seq.init(.bus_seqr(m_env.m_agent1.m_sequencer),  
                  .gpio_seqr(m_env.m_agent2.m_sequencer)); 
    virt_seq.start(null); 
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    ... 
  endtask 
 

Example 7 – Starting a virtual sequence in a UVM test run_phase  

The virtual sequence is not started on a specific sequencer, since it doesn’t actually create transactions. Rather, 
the virtual sequence has handles to the underlying sequencers on which its subsequences will run. While there are 
several alternatives on how to initialize the virtual sequence, the important point to consider is that the test will 
know which sequencers to use for the subsequences. There is no need to include a virtual sequencer in either the test 
or the environment. All the virtual sequencer does is add more inter-component connections and complexity to the 
environment, with no benefit of portability nor flexibility. 

2.5 Phasing and Objections 

In UVM, the run_phase is the only time-consuming phase of execution. In parallel with the run_phase, UVM 
includes several other phases (reset_phase, configure_phase, main_phase, shutdown_phase, and pre_/post_ variants 
thereof) that may be used to subdivide the execution of the test case, but these phases add unnecessary 
complexity[2]. All execution of all components, including the test and environment, should be handled by 
run_phase. In order to ensure that all of your desired transactions execute in your test case, you must tell UVM not 
to exit the run_phase until your desired stimuli complete. This is done using objections. 
 

class my_extended_test extends my_test; 
  `uvm_component_utils(my_extended_test) 
  ... 
  task run_phase(uvm_phase phase); 
    phase.raise_objection("Starting test"); 
    my_seq seq = my_seq::type_id::create("seq"); 
    //optionally randomize sequence 
    assert(seq.randomize() with {src_addr == 32’h0100_0800; 
                                 xfer_size == 128;}); 
    seq.start(m_env.m_agent.m_sequencer); 
    phase.drop_objection("Ending test"); 
  endtask 
 

Example 8 – Using objection flags in a UVM test run_phase 

The raise_objection() call must be made before the first nonblocking assignment is made in that phase. 
The phase method will continue until all raised objections are dropped. Since the seq.start() call is blocking, it 
will return when the stimulus sequence has completed sending its transactions. Dropping the objection upon 
completion of the sequence is usually sufficient to allow the run_phase to complete correctly. However, it is 
possible that some transactor(s) may need to delay the end of the phase to complete processing the last transaction. 
In this case, the Environment Writer will need to implement the phase_ready_to_end() method, as shown in 
Section 5.1. 

3.0 Environment Writer 

The Environment Writer is responsible for getting stimulus generated by the test into the Device Under Test 
(DUT), and verifying that the DUT responds correctly to that stimulus.  To accomplish this, the Environment 
Writer defines a UVM environment, agent and scoreboard.   

3.1 UVM Environments  

A UVM environment is a UVM component that is created and configured by a UVM test, as has already been 
discussed. The environment drives stimulus into the DUT, monitors the inputs and outputs of the DUT, and verifies 
that the DUT behaves as intended.  

A UVM environment encapsulates the structural aspects of a UVM testbench. A UVM environment contains: 

 One or more agents, each of which handles driving DUT inputs and monitoring DUT input and output activity 
on a specific DUT interface. 

 A scoreboard, which handles verifying DUT responses to stimulus 

 Optionally, a coverage collector, which records transaction information for coverage analysis 
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 A configuration component, which allows the test to set up the environment and agent for specific test 
requirements. 
 

 
Figure 1 – A basic UVM Environment 

A more complex UVM environment, such as shown in Figure 1, might contain additional components, such as 
multiple agents and a register model.  This is discussed later in this paper in the Section 5.0, Advanced Examples.  
Spoiler Alert!  We will see in these more complex environments that the Environment Writer needs to know very 
few more UVM constructs than the simple set of constructs used in a basic UVM environment. 

Example 9 illustrates the code for a simple UVM environment with a single agent and scoreboard.   
 

class my_env extends uvm_env; 
 
  `uvm_component_utils(my_env) 
 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction: new 
 
  my_agent  agent; 
  my_scoreboard scoreboard; 
 
  function void build_phase(uvm_phase phase); 
    agent = my_agent::type_id::create("agent", this); 
    scoreboard = my_scoreboard::type_id::create("scoreboard", this); 
  endfunction: build_phase 
 
  function void connect_phase(uvm_phase phase); 
    agent.dut_inputs_port.connect(scoreboard.dut_in_imp_export); 
    agent.dut_outputs_port.connect(scoreboard.dut_out_imp_export); 
  endfunction: connect_phase 
 
endclass: my_env 
 

Example 9 – UVM environment 

3.1.1 The Environment Declaration 

The environment is a user-defined class, called my_env in this example.  An environment class is extended from 
the uvm_env base class, which is derived from the uvm_component base class. UVM components are objects 
that form the hierarchy of testbench, and are objects that are generally created at the beginning of a simulation and 
retained throughout the simulation. 

At the top of the class is boilerplate code that is required for all classes extended from uvm_component.  This 
is the same general code that was discussed in Section 2.3 of this paper, and  includes registering the class name 
with the factory by using the macro `uvm_component_utils() and defining the class new() constructor. As 
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mentioned above, there is no benefit in using the auto-configuration and field-automation features of UVM, so there 
is no reason to use the `uvm_component_utils_begin/end macros to set up the field automation. 

3.1.2 The Environment Build Phase 

The UVM build_phase is used to construct the components contained in the environment. In this simple 
example, these are an agent and a scoreboard. These components are constructed using the factory 
create() method, discussed earlier, in Section 2.3. The details of agents and scoreboards are discussed later in 
this paper.  

3.1.3 The Environment Connect Phase 

The UVM connect_phase is used to establish connections between the agent and the scoreboard. UVM uses the 
Transaction Level Modeling (TLM) 1.0 communication protocol to allow UVM components to pass information 
from one class object to another object. TLM 1.0 originates from the SystemC standard. With TLM 1.0, there are 
two primary communication protocols: 

 A port/export pair – a 1-to-1 connection used to push or pull a uvm_sequence_item object handle from 
one component to another.  UVM sequencers and drivers most often use this 1-to-1 protocol. 

 An analysis port/imp export pair – a 1-to-many connection, used to broadcast a uvm_sequence_item 
object handle to zero or more destinations.  UVM monitors typically use this protocol to allow the agent to 
send information to both a scoreboard and a coverage collector. 

TLM ports and exports are classes defined in the UVM base class library.  Each port and each export is an object 
(an instance) of one of these classes.  The name of a port or export is actually the handle to that port or export object. 

Each port or analysis port has a connect() method.  The argument to this connect method is the 
corresponding export or imp export to which the port is paired.   

At the environment class level, this connect() method is the only UVM construct needed to complete the 
environment.  In Example 9, the agent contains two analysis ports, which are being connected to two imp exports on 
the scoreboard.  (The Environment Writer will need to know additional TLM methods, in order to write the driver 
and monitor, which will be shown in the discussion on those topics below.) 

3.2 UVM Agents 

A UVM agent is a low-level building block that is associated with a specific set of DUT I/O pins and the 
communication protocol for those pins.  For example, the USB bus to a DUT will have an agent for that set of ports.  
Likewise, the AXI bus would have an agent specific for that bus.  An agent contains three required components: a 
sequencer, driver and monitor.  In addition, agents may contain an optional coverage collector component. 

 

Figure 2 – A typical UVM Agent 
 

Example 10 contains the code for our simple agent.  
 

class my_agent extends uvm_agent; 
 
  `uvm_component_utils(my_agent)  // register this class in the factory 
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  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction: new 
 
  // handles for agent’s components 
  my_sequencer          sqr; 
  my_driver             drv; 
  my_monitor            mon; 
  my_coverage_collector cov; 
  my_config             m_config; 
 
  // configuration knobs 
  Localparam OFF=1’b0, ON=1’b1; 
  bit enable_coverage = OFF;                      // default of disabled 
  uvm_active_passive_enum is_active = UVM_ACTIVE; // default of active 
 
  // handles to the monitor's analysis ports 
  uvm_analysis_port #(my_tx) dut_inputs_port; 
  uvm_analysis_port #(my_tx) dut_outputs_port; 
 
  function void build_phase(uvm_phase phase); 
    ... 
  endfunction: build_phase 
 
  function void connect_phase(uvm_phase phase); 
    ... 
  endfunction: connect_phase 
 
endclass: my_agent 
 

Example 10 – A simple UVM agent 

3.2.1 The Agent Declaration 

The agent is a user-defined class, which we called my_agent in this example, and which is extended from the 
uvm_agent base class.  The class name is registered with the factory, using the macro 
`uvm_component_utils(), and the class new() constructor is defined, with its name and parent inputs. 

3.2.2 Agent Configuration Knobs 

Agents need to be configurable to meet the requirements for a specific test.  The controls for configuring UVM 
components are often referred to as “knobs”.  These knobs might have simple on/off values (typically a 1-bit 0 is 
used to represent OFF, and a 1-bit 1 to represent ON), or the knobs might be set to a value, such as the number of 
transactions a sequence should generate.   

The enable_coverage knob is used to configure the agent to either collect or not collect functional coverage 
data for the agent.  The knob has a default value of OFF (disabled). 

The is_active knob is used to configure the agent to be active or passive. An active agent can both monitor 
and drive DUT ports.  A passive agent can only monitor DUT ports.  The data type of is_active is an 
enumerated type defined in the UVM base class library called uvm_active_passive_enum, which has two 
possible enumerated values, UVM_ACTIVE and UVM_PASSIVE.  The default value for this knob is for the agent to 
be active. 

There is an is_active knob already defined in the uvm_agent base class, but this property is not 
documented in the UVM Class Reference Manual as one of the variables in this base class.  Instead, the Class 
Reference Manual documents a get_is_active() method that returns the value of the base class is_active 
property.  However, the Class Reference Manual does not provide a method for setting this knob.  Since the base 
class is_active knob is not officially documented, and there is no method for setting the variable, the authors 
recommend explicitly defining a local is_active knob, rather than using the undocumented is_active base 
class property.  Having a local is_active property also allows defining an explicit default value. There is no 
functional reason for an agent to be extended from the uvm_agent base class. An agent can also be extended from 
the uvm_component base class. 
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3.2.3 The Agent Port Handles 

The environment needs to connect the agent to a scoreboard, in order for the scoreboard to receive information 
about the DUT input and output values captured by the monitor.  This is done by declaring UVM analysis ports at 
the agent level that correspond to the same ports on the monitor.  One port will pass handles to sequence_item 
objects that contain the values of the DUT input ports being used by this agent.  The other port will pass handles to 
sequence_item objects that contain the values of the DUT output ports used by this agent.  UVM analysis ports are 
instances of a base class called uvm_analysis_port.  The uvm_agent base class contains a type parameter, 
which defines the sequence_item class type that will be communicated through the port.  In this example, both ports 
pass handles to a my_tx sequence_item type. The agent port names, dut_inputs_port and 
dut_outputs_port, are object handles, which will be assigned values in the connect_phase of the agent. 

3.2.4 The Agent Build Phase 
 

class my_agent extends uvm_agent; 
  ... 
  function void build_phase(uvm_phase phase); 
    if (uvm_config_db #(my_config)::get(this, "", "test_config", m_config)) 
      begin // get() succeeded 
        this.is_active = this.m_config.is_active; 
        this.enable_coverage = this.m_config.enable_coverage; 
      end 
    else `uvm_warning("LAB", Failed to access config_db -- using defaults instead.\n") 
    mon = my_monitor::type_id::create("mon", this); 
    if (is_active == UVM_ACTIVE) begin 
      sqr = my_sequencer::type_id::create("sqr", this); 
      drv = my_driver::type_id::create("drv", this); 
    end 
    if (enable_coverage) 
      cov = my_coverage_collector::type_id::create("cov", this); 
  endfunction: build_phase 
 

Example 11 – A simple UVM agent build_phase 

The UVM build_phase is used to construct the components contained in the agent. In this simple example, these 
are: my_monitor, driver, my_sequencer, my_coverage_collector, and a my_config. These 
components are constructed using the factory create() method, discussed earlier. The details of these 
components are discussed later in this paper.  

Before constructing the agent’s components, the build_phase first attempts to retrieve a configuration object 
from the configuration data base by using the uvm_config_db:get() static method.  Configuration objects 
provide a way for the Test Writer to configure environments and agents to meet the requirements of a specific test, 
and were discussed in Section 2.3 earlier in this paper.  

In Example 11 above, the configuration object handle is retrieved from the data base and stored into the 
m_config property.  The configuration “knobs” used by the agent are the is_active and enable_coverage 
configuration variables, which are set by the Test Writer as part of the test class. These knobs are used to determine 
whether the driver, sequencer, and coverage collector components within the agent are to be constructed.  If the test 
configures the agent as passive, then there is no driver/sequencer pair.  If the test configures the agent to not collect 
coverage, then there is no coverage collector component. 

3.2.5 The Agent Connect Phase 
 

class my_agent extends uvm_agent; 
  ... 
  function void connect_phase(uvm_phase phase); 
    // set agent's analysis ports to point to the monitor's ports 
    dut_inputs_port  = mon.dut_inputs_port; 
    dut_outputs_port = mon.dut_outputs_port; 
    if (is_active == UVM_ACTIVE) begin 
      drv.seq_item_port.connect(sqr.seq_item_export); // connect driver to sequencer 
    end 
    if (enable_coverage) 
      mon.dut_inputs_port.connect(cov.analysis_export); 
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  endfunction: connect_phase 
 

Example 12 – A simple UVM agent connect_phase 

The connect_phase of the agent is used for three purposes: to connect the sequencer and driver, to connect the 
coverage collector and monitor, and to set the agent’s analysis ports to map to the monitor’s ports.  

If the agent is configured as active, the driver’s port is connected to the sequencer’s export.  These ports and 
exports are defined in the uvm_driver and uvm_sequencer base classes, with the names seq_item_port 
and seq_item_export, respectively.  (These port names are found in the UVM Class Reference Manual.) 

Second, if the agent is configured to collect coverage, the monitor’s port is connected to the coverage collector’s 
export.  The monitor’s port is a user-defined port name, which is dut_inputs_port in this example. The 
coverage collector’s export is defined in the uvm_subscriber base class, with the name analysis_export 
(documented in the UVM Class Reference Manual). 

Third, the handles of the monitor’s ports are copied to the corresponding port handles of the agent.  The names of 
the port handles are user-defined.  In this example, the monitor and the agent use the same port names of 
dut_inputs_port and dut_outputs_port. 

There is an alternate coding style for connecting the agent’s ports to the monitor’s ports.  UVM provides a TLM 
pass-through port type called an analysis export.  An analysis export , also referred to as a hierarchical export, is 
connected to an analysis port on the monitor (which writes out sequence_item handles) and to an analysis imp 
export on the scoreboard (which receives the sequence_item handles). The analysis export passes the sequence_item 
handles from the port to the imp export. At the agent level, however, these pass-through analysis exports are not 
needed.  Since the monitor’s ports are simply object handles, it is a simpler coding style for the agent to just have a 
copy of the monitor’s port handles.  This is the style described in the preceding paragraph and used in Example 10.   

3.3 UVM Sequencers 

A sequencer serves as a router of sequence_items (transactions).  The sequencer can receive sequence_items 
from any number of sequences (stimulus generators) and route these items to the agent’s driver.  Sequencers are 
extended from the uvm_sequencer base class, and inherit all necessary routing and arbitration functionality from 
this base class. The uvm_sequencer base class contains a type parameter that defines what type of 
sequence_item class the sequencer can route.  This parameter must be defined, in order to specialize the sequencer 
to match the driver to which it will be connected. 

Since the uvm_sequencer base class functionality does not need to be extended, it is possible to use the base 
class directly within an agent, by simply defining the sequencer’s type parameter to a specific sequence_item type. 
 

typedef uvm_sequencer #(my_tx) my_sequencer; 
 

Example 13 – Defining a sequencer using typedef 

In this example, the my_sequencer user-defined type represents a uvm_sequencer class that has been 
specialized to work with my_tx sequence_item types. 

It is also possible to define a user-defined class name that extends uvm_sequencer and specializes its type 
parameter.  The class must contain the standard boilerplate code that registers the class name with the factory and 
defines a new() constructor.  The only reason for doing this would be if the arbitration algorithms in the 
uvm_sequencer base class do not meet the verification requirements, and the sequencer needs to be extended 
with a user-defined arbitration algorithm.  The majority of verification tasks will never need to do this. 

3.4 UVM Drivers 

A UVM driver requests a handle to a sequence_item object from its associated sequencer, and assigns values in 
the sequence_item properties to corresponding signals in a SystemVerilog interface, thus driving the DUT inputs.   

Example 14 illustrates the UVM driver for the simple example used in this paper.  
 

class my_driver extends uvm_driver #(my_tx); 
 
  `uvm_component_utils(my_driver) 



UVM Rapid Adoption: A Practical Subset of UVM – Sutherland and Fitzpatrick – DVCon, March 2015 

13 

 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  virtual tb_if tb_vif;  // virtual interface pointer 
 
  function void build_phase(uvm_phase phase); 
    if (!uvm_config_db #(virtual my_dut_interface)::get(this, "", "DUT_IF", tb_vif)) 
      `uvm_fatal("NOVIF", Failed to get virtual interface from uvm_config_db.\n") 
  endfunction: build_phase 
 
  task run_phase(uvm_phase phase); 
    my_tx tx; 
    forever begin 
      @tb_vif.clk  // drive values synchronized to interface clock 
      seq_item_port.get_next_item(tx);  // get a transaction 
        tb_vif.operand_a <= tx.operand_a; 
        tb_vif.operand_b <= tx.operand_b; 
        tb_vif.opcode    <= tx.opcode; 
      seq_item_port.item_done(); 
    end 
  endtask: run_phase 
endclass: my_driver 
 

Example 14 – A simple UVM driver 

3.4.1 The Driver Declaration 

A UVM driver is extended from the uvm_driver base class.  This base class contains a type parameter that 
defines what type of sequence_item the driver will receive from its associated sequencer.  When uvm_driver is 
extended, this parameter must be defined, in order to specialize the driver to this sequence_item type. 

The class name is registered with the factory using the `uvm_component_utils()macro, and the class 
new() constructor is defined, with its required name and parent inputs. 

3.4.2 Driver/Sequencer Communication 

The uvm_driver base class has a TLM port called seq_item_port, which is inherited by the my_driver 
derived class.  As shown previously in Example 10, the agent connects this port to the sequencer’s export.  This 
port/export pair is used to pass a handle to a sequence_item object, which was created by the sequence class, and 
routed through the sequencer. 

3.4.3 Driver/Interface Communication 

The driver sends values to the DUT by assigning values to variables in a SystemVerilog interface, which the top-
level module instantiated and connected to the DUT.  This interface is specific to the agent, and encapsulates the 
DUT signals required for a specific bus protocol used by the DUT.  If, for example, the DUT had a USB bus and an 
AXI bus, there would be a separate interface and corresponding agent (with its driver) for each bus. 

In order for a class definition to assign values to interface variables, the class needs to have a pointer to the 
interface instance.  This pointer is referred to as a virtual interface.  The top-level module discussed earlier in this 
paper (see Section 2.1) instantiates the interface and copies the virtual interface into UVM’s configuration data base.  
The driver retrieves the virtual interface using the static uvm_config_db::get() method.  This method was 
discussed previously, in Section 2.3.   

3.4.4 The Driver’s Run Phase 

The real work of a driver takes place in the UVM run_phase.  Typically, a UVM driver is written as an infinite 
loop, which can be done using the SystemVerilog forever loop or a while(1) loop.  Although the driver is 
coded as an infinite loop, the run_phase itself is not left to run for all of infinity.  The Test Writer uses UVM’s 
objection flags to control how long the run_phase actually runs, as discussed early in this paper. 
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Within the driver’s run_phase, the driver will synchronize with the DUT clocks and with the UVM sequence that 
is generating stimulus values.  This double synchronization is discussed in the following paragraphs. 

3.4.5 Driver/DUT Synchronization and Race Avoidance 

In order to coordinate the transfer of values from the driver to the interface variables, the driver synchronizes 
with DUT using a clock signal available in the interface.  This is the same clock used by the DUT for the specific 
bus protocol handled by the UVM agent. 

In all digital verification, regardless of the verification methodology employed, the testbench must avoid race 
conditions with the DUT.  Simply stated, the testbench must drive stimulus early enough before the DUT’s clock 
edge so that the stimulus is stable when the DUT registers trigger and store the input values (setup time).  The 
SystemVerilog methodology expects – but does not mandate – that this synchronization between the testbench and 
the DUT be handled by the interface that sits between the UVM driver and the DUT.  Moving this synchronization 
to the interface has important advantages: 

 The driver code is significantly simplified – all the driver needs to do is assign values to the interface signals, 
and leave it up to the interface to avoid race conditions with the DUT. 

 Variations of a driver can be extended from the user-defined driver class, without having to duplicate complex 
synchronization timing.   

The monitor will also need to avoid race conditions with the DUT, and only observe DUT outputs at times in 
which those outputs are stable.   

Note that the driver and monitor may be written to access signals in the virtual interface directly, or they may be 
written to call tasks in the interface to further simplify the testbench and leave the details to the interface writer [1]. 
A SystemVerilog clocking block may be used to help with race avoidance, but this construct is generally 
incompatible with emulation, which should be considered when designing drivers and monitors. Having these 
components call interface tasks allows the choice of the synchronization mechanism to be deferred to the interface 
as well. 

3.4.6 Driver/Sequence Synchronization 

The values that a UVM driver will drive into the DUT are stored in a UVM sequence_item object.  This object is 
created, and its values generated, by a UVM sequence.  The driver needs to synchronize with the sequence for when 
the driver obtains sequence_item handles.  This synchronization is done with a pair of methods, 
get_next_item() and item_done().  These methods are defined as part of the driver’s TLM port, which is 
connected to a corresponding sequencer.  All that the Environment Writer needs to know is that calling 
get_next_item() will block the execution of the driver and wait for a sequence to create a sequence_item 
object.  The complex code to actually handshake with one or more sequence stimulus generators is handled 
completely within the UVM base class methods used by the driver and sequence.  Figure 3 illustrates the basic 
handshaking that takes place between the driver and the sequence. 

 
Figure 3 – Test/sequence/driver handshaking 

The handshaking steps that synchronize the driver and sequence are: 

1. The test class (from the Test Writer) raises its objection flag and calls a sequence’s start() method, 
which invokes the sequence body() method.  The start() method blocks (waits at that point) until the 
body() method exits. 

2. The sequence body() method calls a start_item() method.  start_item() blocks (waits) until the 
driver asks for a transaction (a sequence_item object handle). 
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3. The driver calls the seq_item_port.get_next_item() method to request (pull) a transaction.  The 
driver then blocks (waits) until a transaction is received. 

4. The sequence generates the transaction values and calls finish_item(), which sends the transaction to 
the driver.  The sequence then blocks (waits) until the driver is finished with that transaction. 

5. The driver assigns the transaction values to the interface variables, and then calls the 
seq_item_port.item_done() method to unblock the sequence.  The sequence can then repeat steps 
2 through 5 to generate additional stimulus. 

6. After the sequence has completed generating stimulus, the sequence body() exits, which unblocks the 
test’s start() method.  The test will then continue with its next statements, which includes dropping its 
objection flag and allowing the run_phase to end. 

The beauty of UVM is that all the Test Writer needs to know is the proper usage of the start() method and 
objection flags.  All the Sequence Writer needs to know is the proper usage of the start_item() and 
finish_item() methods, and all the Environment Writer needs to know is the proper usage of the 
get_next_item() and item_done() methods.  Each Writer needs to know very little about the internals of 
what the other Writers need to code, or how the UVM base classes handle the complexities of synchronization 
between the classes. 

3.5 UVM Monitors 

A UVM monitor observes the DUT inputs and outputs for a specific interface, captures the observed values into 
one or more sequence_items, and broadcasts handles to those sequence_items to other UVM components (such as a 
scoreboard and a coverage collector).  UVM is strict about what a monitor should do, but allows ample flexibility on 
how that functionality should be implemented – perhaps too much flexibility, which has led to a wide variety of 
monitor implementation styles and opinions on how to best implement monitors.  The only UVM rules for monitors 
are: 1) Monitors are part of an agent, and therefore closely coupled with the specific bus protocol handled by that 
agent.  2) Monitors are strictly passive components – a monitor is only permitted to observe activity, and can never 
change values.  3) Monitors observe both DUT inputs and outputs.  Even though the driver knows what values are 
being driven into the DUT, UVM requires that only the monitor communicate these input values to the scoreboard 
or other components.  One reason for this requirement is that agents can be configured to be passive, and passive 
agents have a monitor, but no driver or sequencer. Example 15 shows the code for a basic UVM monitor. 
 

class my_monitor extends uvm_monitor; 
 
  `uvm_component_utils(my_monitor) 
 
  function new(string name, uvm_component parent); 
    super.new(name, parent); 
  endfunction 
 
  virtual my_dut_interface tb_vif;  // virtual interface 
 
  uvm_analysis_port #(my_tx) dut_inputs_port;  // analysis port for DUT inputs 
  uvm_analysis_port #(my_tx) dut_outputs_port; // analysis port for DUT outputs 
 
  function void build_phase(uvm_phase phase); 
    dut_inputs_port  = new("dut_inputs_port", this);  // construct the analysis port 
    dut_outputs_port = new("dut_outputs_port", this); // construct the analysis port 
    if (!uvm_config_db #(virtual my_dut_interface)::get(this, "", "DUT_IF", tb_vif)) 
      `uvm_fatal("NOVIF", Failed to get virtual interface from uvm_config_db.\n") 
  endfunction: build_phase 
 
  task run_phase(uvm_phase phase); 
    my_tx tx_in, my_tx tx_out, tx_copy; 
    fork 
      // monitor DUT inputs synchronous to the interface clock 
      forever @(tb_vif.clk) begin 
        // create a new tx_write object for this cycle 
        tx_in  = my_tx::type_id::create("tx_in"); 
        tx_in.operand_a = tb_vif.operand_a; 
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        tx_in.operand_b = tb_vif.operand_b; 
        tx_in.opcode    = tb_vif.opcode; 
        dut_inputs_port.write(tx_in); 
      end 
 
      // monitor DUT outputs synchronous to the cb2 clocking block 
      // create a tx_tmp object to reuse each pass of the loop 
      tx_out = my_tx::type_id::create("tx_out"); // tx_out is reused each loop pass 
      forever @(tb_vif.clk2) begin 
        tx_out.result    = tb_vif.result; 
        tx_out.exception = tb_vif.exception; 
        // create a copy of tx_out to send to the scoreboard 
        $cast(tx_copy, tx_out.clone()); 
        dut_outputs_port.write(tx_copy); 
      end 
    join 
  endtask: run_phase 
endclass: my_monitor 
 

Example 15 – A simple UVM monitor 

3.5.1 The Monitor Declaration 

A UVM monitor is extended from the uvm_monitor base class.  This base class is not parameterized, so there 
is no parameter redefinition.  As with all UVM testbench components, the class name is registered with the factory 
using the `uvm_component_utils()macro, and the class new() constructor is defined, with its required 
name and parent inputs. 

3.5.2 Monitor Communication 

UVM monitors use TLM ports to communicate with scoreboards and coverage collectors.  TLM ports pass 
handles to sequence_items.  The UVM methodology allows the Environment Writer to decide what types of 
sequence_items will be communicated through the TLM ports.  The most common styles are: 

 The same sequence_item type is used to capture DUT input values and DUT output values.  Although the 
same sequence_item type is used, inputs and outputs are captured into different objects, since these values are 
captured at different simulation times.   This is the style shown in Example 15. 

 Different sequence_item types are used to capture DUT inputs and DUT outputs.  For example there might be 
a my_tx_in sequence_item class that only has variables for storing the DUT inputs, and a my_tx_out 
sequence_item class that only has variables for storing the DUT outputs for a specific interface. 

UVM also allows the Environment Writer to determine how many communication ports the monitor needs, in 
order to pass information to the scoreboard and coverage collector.  A common coding style is to use two ports, one 
for the sequence_item object handles containing the DUT inputs and a different port for the sequence_item object 
handles containing the DUT outputs. The monitor shown in Example 15 uses two ports.  Both ports communicate 
handles to a my_tx sequence item type, which has variables to capture both DUT input values and DUT output 
values. Depending on the protocol, there may alternatively be request and response item types, or whatever set of 
items may be appropriate. 

These ports are TLM analysis ports, which permit a one-to-many connection.  This allows the handle to the 
sequence_item object containing the DUT input values to be passed to both the scoreboard and a coverage collector.  
The uvm_analysis_port is a parameterized class, which must be specialized to work with a specific 
sequence_item class type (which is my_tx, in this example).   

The ports are constructed in the build_phase of the monitor.  Note that ports are constructed using the class 
new() constructor, instead of the factory.  The uvm_analysis_port base class name is not registered with the 
factory, and therefore cannot be constructed by the factory.  Nor is there a reason to do so.  The purpose of the 
factory is to allow a Test Writer to substitute one class type for another (for example, to replace all USB 2.0 
sequence_items with USB 3.0 sequence_items).  It would not make sense for a test to change what type of ports a 
monitor uses, and therefore the factory is not needed for constructing ports. 
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3.5.3 Monitor/Interface Communication 

The monitor observes the DUT input and output values by reading the variables in the interface that the top-level 
module instantiated and connected to the DUT.  The monitor retrieves the virtual interface that points to the 
interface using the static uvm_config_db::get() method, in exactly the same way a driver retrieves the virtual 
interface.  

3.5.4 The Monitor’s Run Phase 

The actual monitoring of DUT input and output values takes place in the UVM run_phase.  Typically, inputs 
and outputs are captured at different simulation times, and possibly on different clocks.  To synchronize to different 
times and clocks, the run_phase forks off two infinite loops, which run in parallel with each other.  Like the driver, 
the monitor is coded with infinite loops, so that monitoring will continue as long as the run_phase is running.  The 
Test Writer controls how long the run_phase actually executes by using UVM’s objection flags. 

For each cycle of these loops, the monitor creates a sequence_item object, captures DUT values into that object, 
and then broadcasts the handle of the object out the analysis port by using a write() method.  The actual 
functionality of this write() method will be implemented in each analysis imp export to which the analysis port is 
connected.  We will see this implementation of the write() method in the code for the coverage collector (Section 
3.6) and scoreboard (Section 3.7) components. 

It is important that the monitor create a new sequence_item object for each pass of the monitor loop.  The 
scoreboard will receive a handle to the sequence_item object.  Problems will arise if the scoreboard saves this handle 
for evaluation at some future time and the monitor did not create a new object for each pass of the loop.  Each pass 
will capture new DUT values.  If these new values were saved in the same object that was used in the previous pass, 
the scoreboard will end up saving multiple object handles that all reference the same object, which is only storing 
the last set of values captured.  There are two coding styles that can be used to create new sequence_item objects in 
each pass of the loop: using the factory create() method at the beginning of each pass, or using the 
sequence_item clone() method at the end of each loop.  For illustration purposes, the code in Example 15 shows 
each of these styles, although most Environment Writers would probably use one style or the other. 

3.6 UVM Coverage Collectors 

Functional coverage is a vital aspect of verifying complex designs, especially when using constrained random 
verification.  Functional coverage is an integral part of the SystemVerilog language, and includes covergroup, 
coverpoint, and bins definitions, and a sample() method.  UVM does not dictate where the coverage 
constructs should be used.  They are simply SystemVerilog constructs that can be used in any SystemVerilog code.  
Though not mandated by the methodology, the UVM agent is an ideal location for collecting functional coverage 
information in a UVM testbench.  The agent’s monitor is observing the DUT inputs and outputs for a specific bus 
protocol, and coverage can be collected on the values observed for that bus. 

UVM also does not specify where in the agent coverage should be collected.  Some engineers prefer to make 
coverage an integral part of the monitor.  This is a simple approach, and does not involve the use of TLM ports to 
communicate values to the coverage collection code.  The authors, however, recommend defining a separate 
coverage collector component that can be instantiated in the agent.  Using a separate component requires a little 
more coding (though not much more), but has some advantages.  A coverage collector component encapsulates the 
coverage definitions and functionality for the agent in one place, instead of having the coverage code fragmented 
within the monitor.  Also, a separate component can be constructed by the factory, which makes it easier to use the 
factory to customize coverage to meet the requirements of specific tests. 

A simple coverage collector component is shown in Example 16. 
 

class my_coverage_collector extends uvm_subscriber #(my_tx); 
 
  my_tx tx;  // the transaction object on which value changes will be covered 
 
  covergroup dut_inputs; 
    option.per_instance = 1; // track coverage for each instance 
    Opc: coverpoint tx.opcode; 
    Opa: coverpoint tx.operand_a; 
    Opb: coverpoint tx.operand_b; 
  endgroup 
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  `uvm_component_utils(my_coverage_collector) 
 
  function new(string name, uvm_component parent ); 
    super.new(name, parent); 
    dut_inputs = new();  // construct the covergroup 
  endfunction: new 
 
  function void write(my_tx t); 
    tx = t;  // copy transaction handle received from the monitor 
    dut_inputs.sample(); 
  endfunction: write 
 
  function void report_phase(uvm_phase phase); 
    `uvm_info("DEBUG", $sformatf("\n\n Coverage for instance %s = %2.2f%%\n\n", 
              this.get_full_name(), this.dut_inputs.get_inst_coverage()), UVM_HIGH) 
  endfunction: report_phase 
endclass: my_coverage_collector 
 

Example 16 – A simple coverage collector 

3.6.1 The Coverage Collector Declaration 

A UVM coverage collector can be extended from the uvm_subscriber base class.  This base class is a 
generic component type that can be used for a variety of purposes.  The uvm_subscriber base class has a built-
in TLM analysis imp export, that can be connected to the monitor’s analysis port.  The uvm_subscriber base 
class contains a type parameter that defines what type of sequence_item class the component will receive through 
the analysis imp export (my_tx in this example). 

As with the previous examples, the coverage collector class name is registered with the factory by using the 
`uvm_component_utils()macro, and the class new() constructor is defined.  However, the new() 
constructor for this coverage collector is a little different from other components we have defined.  A requirement of 
the SystemVerilog language is that cover groups defined in a class can only be constructed in the class’ new() 
constructor.  In this example, the dut_inputs cover group is constructed. 

3.6.2 The Coverage Collector write() Method 

The analysis port in the monitor calls a write() method to broadcast out a handle to a sequence_item.  Each 
analysis imp export connected to the port must implement this write() method.  The implementation in this 
coverage collector is to copy the sequence_item handle passed from the monitor to the coverage collector’s tx 
handle (the cover group’s cover points are on variables within tx).  The coverage sample() method is then called 
to actually collect coverage information. 

3.6.3 The Coverage Collector Report Phase 

For debug purposes, this coverage collector example reports the coverage percentage achieved for this specific 
collector.  This is reported in UVM’s report_phase.  The informational message generated by the `uvm_info 
macro uses a UVM_HIGH verbosity filter, which means the debug message will only be reported if simulation is run 
in a highly verbose mode.  In a normal simulation, this message would not appear, and coverage statistics would be 
analyzed using the simulator’s coverage reporting tools. 

3.7 UVM Scoreboards 

The primary role of a scoreboard in UVM is to verify that actual DUT outputs match predicted output values.  
UVM dictates that this verification functionality is part of the UVM environment, but that is where the methodology 
ends.  How expected results are predicted and DUT outputs verified is SystemVerilog programming, and left up to 
the creativity of the Environment Writer.  This flexibility allows UVM to be truly universal in its ability to handle 
any size and type of design, but it also has led to a great deal of variance in recommendations from UVM “experts”.   
This paper puts forth some guidelines for UVM scoreboards that follow the well-known KISS principle – “Keep It 
Simple, Stupid”. 
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The KISS guideline is that the scoreboard functionality should be encapsulated into a UVM component that is 
instantiated at the environment level.  The environment provides connectivity to one or more agents, which gives the 
scoreboard component access to the DUT input and output values observed by these agents.  The Test Writer can 
configure the environment, which includes configuring the scoreboard component to meet the needs of a specific 
test.  When the scoreboard functionality is encapsulated into a UVM component, the scoreboard can be more easily 
reused, and can be extended to add test-specific functionality.  The UVM factory can swap the standard scoreboard 
component with extended versions.  This KISS guideline also allows for verifying more complex designs that utilize 
multiple environments to verify different portions of a design. 

The functionality of a relatively simple scoreboard can be coded directly in the scoreboard component (a flat 
hierarchy).  The flattened scoreboard component will typically contain a method to predict expected results and a 
method to compare the predicted results to the actual DUT outputs.  The scoreboard component can also have 
hierarchy within it.  The prediction algorithms and verification algorithms can be defined in classes that are 
instantiated with the scoreboard.  These sub blocks can also be configurable, and can be registered with the factory 
in order to enable factory creation and override capabilities. 

Example 17 shows simple scoreboard component with a flat hierarchy for a single agent.  
 

`uvm_analysis_imp_decl(_verify_outputs) 
 
class my_scoreboard extends uvm_subscriber #(my_tx); 
 
  `uvm_component_utils(my_scoreboard) 
 
  function new(string name, uvm_component parent ); 
    super.new(name, parent); 
  endfunction: new 
 
  uvm_analysis_imp_verify_outputs #(my_tx, my_scoreboard) dut_out_imp_export;          
 
  mailbox #(my_tx) expected_fifo = new;  // SystemVerilog mailbox for my_tx handles 
 
  int num_passed, num_failed;  // score cards 
 
  function void build_phase(uvm_phase phase); 
    dut_out_imp_export  = new("dut_out_imp_export", this); 
  endfunction 
 
  // implement the write() method called by the monitor for observed DUT inputs; 
  // predict what the DUT results should be for a set of input values 
  function void write (my_tx t); 
    ... 
  endfunction: write 
 
  // implement the write() method called by the monitor for actual DUT outputs; 
  // compare the DUT outputs to the predicted results 
  function void write_verify_outputs(my_tx t); 
    ... 
  endfunction: write_verify_outputs 
 
  function void report_phase(uvm_phase phase); 
    ... 
  endfunction: report_phase 
 
endclass: my_scoreboard 
 

Example 17 – A simple UVM scoreboard component (flat hierarchy) 

This small example uses a flattened hierarchy – both the prediction and verification algorithms are coded directly 
in the scoreboard class.  Later sections of this paper will discuss more complex verification challenges.  (Spoiler 
Alert: We will see that the added verification complexity will not require adding to the complexity of UVM 
constructs required for effective scoreboarding.  The KISS principle for writing scoreboards also minimizes the 
UVM constructs that are required for effective verification!) 
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3.7.1 The Scoreboard Declaration 

UVM provides a uvm_scoreboard base class, but there is no requirement to use this base class to write a 
scoreboard component.  In this example, the uvm_subscriber base class is used instead.  The reason to use this 
base class is that it has a built-in TLM analysis imp export, which can be connected to the monitor’s analysis port.  
The uvm_subscriber  type parameter is specialized to the my_tx sequence_item type. 

3.7.2 Scoreboard/Monitor Connections 

The monitor example shown earlier in Example 15 has two analysis ports, one for monitoring DUT input values 
and one for monitoring DUT output values.  The scoreboard needs two corresponding analysis imp exports.  The 
uvm_subscriber base class provides one of these analysis imp exports.  The user-defined code that extends this 
base class must add the second imp export. 

Each of these analysis imp exports must implement the write() method for its corresponding port. This is a 
problem!  The SystemVerilog language does not have “function overloading”, and does not allow two methods with 
the same name to exist in a class, but our scoreboard needs to implement two write() methods.  UVM provides a 
solution to this dilemma in the form of a macro called `uvm_analysis_imp_decl().  The argument to this 
macro, which is _verify_outputs in this example, is used to uniquify an analysis imp export declaration and its 
associated write() method.  Thus, the export that is built into the uvm_subscriber base class has a write() 
method, but the second analysis imp export being added to the scoreboard has been “uniquified”.  The export is 
declared with the class type uvm_analysis_imp_verify_outputs and the associated write() method is 
now called write_verify_outputs().  The monitor does not know that this name change has occurred.  The 
monitor calls a write() method for its port, but when that port is connected to a uniquified (made different) 
export, the uniquified write_verify_outputs()method name is actually invoked. 

3.7.3 The Scoreboard Expected Results Prediction 

The monitor captures DUT input values and stores them in a my_tx object.  The monitor then calls the port’s 
write() method to send out a handle to this object.  The write() method implementation in the scoreboard uses 
these input values to predict what the DUT outputs should be.   
 

class my_scoreboard extends uvm_subscriber #(my_tx); 
  ... 
  // implement the write() method called by the monitor for observed DUT inputs; 
  // predict what the DUT results should be for a set of input values 
  function void write (my_tx t); 
    my_tx expected_tx; 
    $cast(expected_tx, t.clone()); // create new my_tx object and preserve input vals 
    // calculate expected results and store in FIFO 
    Case (t.opcode) 
      ADD: expected_tx.result = t.operand_a + t.operand_b; 
      SUB: expected_tx.result = t.operand_a - t.operand_b; 
      ... 
    endcase 
    expected_tx.exception = ... 
    expected_fifo.put(expected_tx); // save transaction handle 
  endfunction: write 
 

Example 18 – A simple UVM scoreboard expected results predictor (flat hierarchy) 

The predicted results need to be stored.  In this example, the my_tx sequence_item type contains variables for 
both the DUT inputs and the DUT outputs.  The write() method receives a my_tx object handle from the 
monitor. The name of this handle is t (this name is defined in the base class for TLM analysis ports, and cannot be 
changed to a different name). This t object contains the DUT inputs values observed by the monitor. 

The predictor creates a second my_tx object, in which to store the predicted results.  This second object could 
be constructed using the factory create() method.  However, in this simple example, the my_tx sequence_item 
clone() method is used to create this second my_tx object.  The clone is called predicted_tx. By cloning 
the my_tx object received from the monitor, the scoreboard has a place to store the predicted results, and the values 
that led to those predicted results are copied into the clone.  Later on, should the DUT outputs be found to be 
incorrect, having access to these input values can help in debugging the incorrect results.   
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The write() method containing the prediction algorithm is called by the monitor, based on the timing used by 
the monitor.  The actual outputs from the DUT for that set of inputs will most likely not occur until one or more 
clock cycles later.  In the example of the monitor shown earlier (Example 15), capturing DUT input values used a 
different clock than capturing DUT output values.  We don’t know which clock is faster, and the monitor and 
scoreboard should be coded so that it does not matter.  In this example scoreboard, the prediction routine stores a 
handle to the predicted_tx sequence_item into a SystemVerilog mailbox, which serves as a FIFO.   

3.7.4 The Scoreboard Results Verification 

The portion of the monitor that captured the actual DUT outputs is also called a write()method. Through 
port/export connections and the `uvm_analysis_imp_decl() macro, the call invokes the 
write_verify_outputs() method.  This method can get the predicted_tx handle back from the FIFO 
when the DUT output is available.  If the FIFO is empty, the call to get() will block and wait for a predicted 
result.  With a handle to a my_tx object that contains the actual DUT output values, and a handle to a my_tx 
object that contains the expected values, the write_verify_outputs() can verify that the DUT outputs are 
correct.  
 

`uvm_analysis_imp_decl(_verify_outputs) 
 
class my_scoreboard extends uvm_subscriber #(my_tx); 
  ... 
  // implement the write() method called by the monitor for actual DUT outputs; 
  // compare the DUT outputs to the predicted results 
  function void write_verify_outputs(my_tx t); 
    my_tx expected_tx; 
    expect_fifo.get(expected_tx);  // blocks if FIFO is empty 
    if (t.result !== expected_tx.result || t.exception !== expected_tx.exception) 
      begin: mismatch 
        `uvm_error("SCBD_ERR:", "DUT outputs did not match expected results") 
        `uvm_info("DUT OUT:", t.convert2string(), UVM_HIGH) 
        `uvm_info("EXPECTED:", expected_tx.convert2string(), UVM_HIGH) 
        num_failed++; 
      end: mismatch 
    else num_passed++ 
  endfunction: write_verify_outputs 
 

Example 19 – A simple UVM scoreboard actual output verifier (flat hierarchy) 

3.7.5 Reporting the Scoreboard Score 

Scorecard counters keep track of how many evaluations passed and how many failed.  The totals for these 
counters are reported at the end of simulation in the report phase. 
 

class my_scoreboard extends uvm_subscriber #(my_tx); 
  ... 
 
  function void report_phase(uvm_phase phase); 
    `uvm_info("Scoreboard:", $sformatf("\n passed=%0d  failed=%0d\n", 
       num_passed, num_failed), UVM_NONE) 
  endfunction: report_phase 
 

Example 20 – A simple UVM scoreboard scorecard reporter (flat hierarchy) 

4.0 Sequence Writer 

The Sequence Writer is responsible for supplying the Test Writer with a set of sequences that define stimulus 
and response functionality to be used in a particular test case. In keeping with the modularity goals of UVM, the 
Test Writer need not know the inheritance hierarchy, or even the details of what is in the sequence. All the 
Sequence Writer needs to provide is a list of sequence types and enough information so that the Test Writer knows 
on which sequencer(s) to start them.  
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4.1 Define a sequence_item 

The basic unit of communication in a UVM testbench is the uvm_sequence_item, also referred to as a 
transaction. It is derived from a uvm_object, and encapsulates the fields and methods necessary to pass 
information between the sequence and the driver. The UVM infrastructure depends on sequence items having 
certain methods implemented, so it is always the case that your sequence items will be extended from the 
uvm_sequence_item base type, and you must supply implementations of the following methods [3]: 

 do_copy() 
 do_compare() 
 convert2string()3 
 do_record() 
 do_pack() and do_unpack() 

Example 21 illustrates a simple sequence_item definition. The implementation of the do_xxx methods (where 
“xxx” represents any of the methods listed above) is not shown in this example. It is beyond the scope of this paper 
to discuss how to write the implementation of these do_xxx methods. The code is primarily SystemVerilog 
programming, and does not require more than a couple additional UVM constructs beyond those discussed in this 
paper. Good information on implementing the do_xxx methods can be found in [3], [6] and [7]. 
 

class my_tx extends uvm_sequence_item; 
  rand   bit   [23:0] operand_a; 
  rand   bit   [23:0] operand_b; 
  randc  opcode_t     opcode; 
         logic [23:0] result; 
 
  function new(string name = "my_tx"); 
    super.new(name); 
  endfunction 
 
  virtual function void do_copy(uvm_object rhs); 
    ... // implementation not shown 
  endfunction 
 
  virtual function bit do_compare(uvm_object rhs, uvm_comparer comparer); 
    ... // implementation not shown 
  endfunction 
 
  ... // implementation of remaining do_xxx methods 
endclass: my_tx 
 

Example 21 – A UVM sequence_item (aka “transaction”) 

These do_xxx methods can be implemented and populated using `uvm_field_xxx macros, but the resultant 
code is inefficient, hard to debug, and can be prone to error. The authors of this paper differ in opinion on whether it 
is preferred to use field macros or manually write the implementation of these methods. We agree, however, that 
manually coded do_xxx methods will improve both simulation performance and simulation memory footprint. 
Sutherland feels that, most of the time, the ease of use of the field macros is worth the trade-off of performance, and 
that manually writing the methods is only worthwhile if performance profiling shows a specific field macro code is 
causing a performance problem. Fitzpatrick feels the impact on performance can be significant on large verification 
projects, and it is, therefore, worth investing the time up front to manually write the implementation of the do_xxx 
methods. 

Once the sequence_item is defined, it gets created in a sequence using the factory, and is subject to factory 
overrides as any other UVM object, as seen in the next section. 

                                                           
3 UVM also provides print() and sprint() methods, but we recommend calling convert2string() 
directly in order to get a string representation of the contents of the sequence_item. 
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4.2 Sequence Body Method 

The heart of a UVM sequence is the body() method, which is a user-defined method that defines the behavior 
of the sequence. 
 

class tx_sequence extends uvm_sequence#(my_item); 
  `uvm_object_utils(tx_sequence) 
   ... 
  task body(); 
    repeat(50) begin 
      tx = my_seq_item::type_id::create("tx"); 
      start_item(tx); 
      ... 
      finish_item(tx); 
    end 
  endtask 
endclass:tx_sequence 
 

Example 22 – A UVM sequence body() method 

4.3 Virtual Sequence 

As previously mentioned in Section 2.4, the virtual sequence is used to coordinate the execution of other 
sequences on specific sequencers. 

 
    

Figure 4 – The Virtual Sequence 

The virtual sequence includes sequencer handles that will be set to point to the specific sequencers in the 
environment. Because the virtual sequence is a uvm_object, and not a uvm_component, we defer its creation 
to the run_phase. The sequencer pointers must be initialized in the virtual sequence before starting it. 
 

typedef uvm_sequence #(uvm_sequence_item) uvm_virtual_sequence; 
  
  // Virtual sequence example: 
  class my_vseq extends uvm_virtual_sequence; 
  ... 
  // Handles for the target sequencers: 
  bus_sequencer_t bus_sequencer; 
  gpio_sequencer_t gpio_sequencer; 
 
  virtual function void init(uvm_sequencer bus_seqr, 
                             uvm_sequencer gpio_seqr); 
    bus_sequencer = bus_seqr; 
    gpio_sequencer = gpio_seqr; 
  endfunction 
  
  task body(); 
    ... 
    // Start interface specific sequences on the appropriate target sequencers: 
    aseq.start( bus_sequencer , this ); 
    bseq.start( gpio_sequencer , this ); 
  endtask 
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endclass 
 

Example 23 – A UVM virtual sequence 

How you choose to initialize your virtual sequence is a matter of preference[8]. The key is that the Sequence 
Writer and the Test Writer agree on the mechanism. After that, there isn’t anything UVM-specific to do. It’s a 
simple matter of programming. 

5.0 Advanced Examples 

The preceding sections have outlined everything you need to know to be able to use UVM to verify the vast 
majority of designs you will encounter. However, there are some situations that may arise which may require the use 
of a few more UVM constructs. 

5.1 The phase_ready_to_end Method 

As discussed earlier, phase execution is controlled by raising and dropping objections. As long as an objection is 
raised, the phase in which it was raised will continue to execute until all phase objections are dropped. The Test 
Writer is responsible for raising and dropping objections before and after sequences are executed, respectively, in 
the test’s run_phase. Usually, this is sufficient to ensure that all transactions complete, but it is sometimes the case 
that a component needs to keep the phase executing until it has completed processing the last transaction. This may 
require additional time after the sequence that generated the transaction has completed. For performance reasons, we 
do not want this component to raise and drop an objection for every transaction, but there still must be a way for a 
component, such as an end-to-end scoreboard, to delay the termination of the phase. To accomplish this, we use the 
phase_ready_to_end() method. 
 

function void my_component::phase_ready_to_end( uvm_phase phase ); 
  if( !is_ok_to_end() ) begin 
    phase.raise_objection( this , "not yet ready to end phase" ); 
    fork begin 
      wait_for_ok_end(); 
      phase.drop_objection( this , "ok to end phase" ); 
    end 
    join_none 
  end 
endfunction : phase_ready_to_end 
 

Example 24 – Implementing phase_ready_to_end() 

The phase_ready_to_end() method is called automatically for each component when all objections to the 
current phase have been dropped, giving the component an opportunity to raise an objection again, in order to 
prevent the phase from ending (in this example, until the wait_for_ok_end() task returns). 

5.2 Pipelines 

In a pipelined bus protocol[4], a data transfer (“transaction”) is broken down into two or more stages which are 
executed one after the other, often using different groups of signals on the bus. This type of protocol allows several 
transfers to be in-progress at the same time, with each transfer occupying one stage of the pipeline. In order to model 
a pipelined protocol successfully, the driver needs to have multiple threads running, each of which takes a sequence 
item and runs it through each of the pipeline stages. To keep the pipeline full, and thus to stress the design as much 
as possible, the driver needs to unblock the sequencer to get the next sequence item, once the first pipeline stage is 
complete, but before the current item has fully completed its execution. Also, the sequence itself needs to have 
separate generation and response threads, so that the generation thread can send items to keep the pipeline full and 
the response thread can handle responses when they come in.  

Because the response will necessarily come back separately from the request, it is necessary to add one small 
piece of functionality to the sequence. 
 

class my_pipelined_seq extends uvm_sequence #(my_seq_item); 
  `uvm_object_utils(my_pipelined_seq) 
  ... 
  task body(); 
    my_seq_item req = my_seq_item::type_id::create("req"); 
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    use_response_handler(1); 
    ... 
    start_item(req); 
    ... 
    finish_item(req); 
    ... 
  endtask 
 
  function void response_handler(uvm_sequence_item response); 
    ...  
  endfunction 
endclass: my_pipelined_seq 
 

Example 25 – Pipelined UVM Sequence 

The response_handler() function is automatically called when the driver returns a response transaction. 
This provides the separate response thread that allows the main generation thread in the sequence to keep the 
pipeline as full as possible. In order to facilitate this, we use a slightly different protocol in the driver. 

 
 

class my_pipelined_driver extends uvm_driver #(my_seq_item); 
  `uvm_component_utils(my_pipelined_driver) 
  ... 
  semaphore pipeline_lock = new(1); 
 
  task run_phase(uvm_phase phase); 
    ... 
    fork 
      do_pipelined_transfer; 
      do_pipelined_transfer; 
    join 
  endtask 
 
  task do_pipelined_transfer; 
    my_seq_item req; 
    forever begin 
      pipeline_lock.get(); //unblock when semaphore is available 
      seq_item_port.get(req); // instead of get_next_item(req); 
      ...// execute first pipeline phase 
      pipeline_lock.put(); // unlock semaphore 
      ...// execute second pipeline phase 
      seq_item_port.put(req);  
    end 
  endtask 
endclass 
 

Example 26 – Pipelined UVM Driver 

The get() call in the driver unblocks the finish_item() call in the sequence, and the put() call sends the 
transaction back to the sequence to be processed by the response_handler() method. The UVM includes 
built-in functionality to be able to match the response transaction with the original request transaction, if necessary. 

6.0 UVM Features to Avoid 

6.1 Phase Jumping 

The inclusion of the reset_phase, configure_phase, main_phase and shutdown_phase in UVM, which execute 
sequentially (along with their pre- and post- variants) in parallel with the run_phase, was perhaps one of the most 
unfortunate results of the inevitable “design by committee” approach used in developing UVM. While there may be 
some scenarios in which advanced UVM users find the use of the phases to be necessary, the vast majority of users 
will never need to use them. These phase methods should never be implemented in components like drivers and 
monitors and, when used, should only be used in tests to determine which sequence(s) to run at particular times in 
the simulation. This is what virtual sequences do. 
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The other reason not to use these phase methods is that it invites the user to experiment with jumping between 
phases, which is a use-model that is extremely complicated, with side effects that can lead to difficult-to-debug 
scenarios that ultimately make the use of these phases not worth considering. 

6.2 Callbacks 

Another feature of UVM that should be avoided is the use of callbacks. This mechanism of customizing behavior 
without using inheritance requires many convoluted steps to register and enable the callbacks, which have a non-
negligible memory and performance footprint. In addition, this macro-driven feature suffers from a lack of control 
of the ordering in which various callbacks may be called.  

Instead of callbacks, standard object-oriented programming (OOP) practices should be used. One OOP option 
would be to extend the class that you want to change, and then use the UVM factory to override which object gets 
created (which is what the UVM factory is for). Another OOP option would be to create a child object that gets 
functionality delegated to it from within the parent object. The functionality could be controlled via a configuration 
setting or a factory override. 

6.3 UVM 1.2 Features 

In addition to several features that have been in UVM for some time, there are a number of new features in UVM 
1.2 that should also be avoided[5]. Among these are the uvm_coreservice_t class and the extended messaging 
macros (e.g. `uvm_info_begin/`uvm_info_end). These new features are not necessary for the verification of 
nearly all types of designs, and only make learning UVM and maintaining UVM testbenches more difficult. 

7.0 Conclusion 

The UVM Committee is to be congratulated for producing such an extensive and useful implementation of the 
UVM class library. UVM delivers on its goals of enabling the creation of modular reusable verification components, 
environments and tests. However, it is important to realize that when using UVM, most of the implementation of the 
library is dedicated to infrastructure and support of the relatively small set of features that Test Writers, 
Environment Writers and Sequence Writers will actually use. Indeed, the set of features identified in this paper 
consists of 10 classes, 30 methods and 7 macros that users need to be familiar with, in order to use UVM (in 
addition to proper SystemVerilog coding and general use-model approaches). When compared to the 357 classes 
and 1037 unique methods (938 functions and 99 tasks) that comprise UVM1.2, this means that UVM users really 
only need to learn 3% of UVM (2% of classes and 3% of methods) to be productive. 

Given the anecdotal feedback from many current and prospective UVM users that UVM is too complicated and 
too hard to learn, this paper should serve to allay those fears to some degree. Those feelings surely are exacerbated 
when one considers that the UVM Reference Manual, which is the “official documentation” for UVM, includes 
documentation for such a large number of classes and methods that will never (and in reality were never meant to) 
be deployed by UVM users. Perhaps the Accellera UVM Working Group could use this as an opportunity to 
streamline the UVM Specification to focus on including only the “user-facing” API in the version that it contributes 
to the IEEE. 
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9.0 Appendix 

This appendix contains a summary of the practical subset of UVM recommended in this paper. These are the 
relatively small number of UVM constructs that end users of UVM need to know, in order to write effective UVM 
tests, environments and sequences. 
 
UVM Base Classes: 
1) uvm_test 
2) uvm_env 
3) uvm_agent 
4) uvm_sequencer 
5) uvm_driver 
6) uvm_subscriber 
7) uvm_sequence 
8) uvm_sequence_item 
9) uvm_analysis_port 
10) uvm_analysis_imp_export  (or uniquified version)          
 
Method Definitions: 
1) function new() (for uvm_objects and uvm_components) 
2) function void build_phase() 
3) function void connect_phase() 
4) function void report_phase() 
5) task run_phase() 
6) task body() 
7) function void write()  (or uniquified version) 
8) function void my_component::phase_ready_to_end() 
9) function void response_handler() 
 
Method Calls: 
1) run_test(); 
2) uvm_config_db #(<type>)::set() 
3) uvm_config_db #(<type>)::get() 
4) obj_type::type_id::create() 
5) component_type::type_id::create() 
6) component_type::type_id::set_type_override() 
7) component_type::type_id::set_inst_override() 
8) super.build_phase() 
9) sequence.start() 
10) virtual_sequence.start() 
11) phase.raise_objection() 
12) phase.drop_objection() 
13) dut_inputs_port.connect() 
14) seq_item_port.get_next_item()   
15) seq_item_port.item_done() 
16) seq_item_port.get()  
17) seq_item_port.put() 
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18) analysis_port.write() 
19) start_item() 
20) finish_item() 
21) use_response_handler() 
 
Macros: 
1) `uvm_object_utils() 
2) `uvm_component_utils() 
3) `uvm_fatal() 
4) `uvm_error() 
5) `uvm_warning() 
6) `uvm_info() 
7) `uvm_analysis_imp_decl() 
 
Miscellaneous: 
1) import uvm_pkg::*; 
 


