
UVM Random Stability
Don’t leave it to chance

Avidan Efody

Mentor Graphics, Corp.

10 Aba Eban Blvd.

Herzilya 46120, Israel

avidan_efody@mentor.com

Abstract— “Random stability” is a powerful tool that Hardware

Verification Languages (HVLs) put at our disposal, allowing us

to repeat specific parts of random simulations, even after

significant changes to the Device Under Test (DUT) and

testbench. Unfortunately, due to lack of awareness and proper

planning users are often painfully reminded of this concept only

when it breaks down unexpectedly, in which case it can make

simulation results appear non-consistent or non-intuitive, and

considerably slow down debugging.

In this paper, we aim to demystify random stability in

SystemVerilog and the Universal Verification Methodology

(UVM) and show how it can easily be tamed to our benefit. First

we will define the concept of random stability/instability and take

a quick look at the benefits of the first and at the problems

associated with the latter. We will then give an overview of the

default random stability behavior of SystemVerilog and the API

that can be used to customize it. Simple examples will be used to

clarify why the default SystemVerilog behavior is usually not

sufficient when working with UVM or any other advanced

verification methodology, and to explain why UVM customizes

this behavior the way it does.

Although UVM can be used to create a well planned random

stable testbench, there are quite a few areas where clear coding

guidelines must be followed to achieve that goal. Diving deeper

into the technical details of UVM’s random stability layer, we list

the loopholes that exist and how they could be avoided. In the

case of sequences and sequence items we also provide some UVM

code that wraps around the API and helps users keep out of the

problematic areas.

Finally we show how the isolation of the random parts of a

random stable testbench can be used for individual seeding.

Individual seeding allows users to run many simulations with

some random parts kept constant, and some randomly changing.

It makes is possible to quickly test some complex modes that

would be hard to describe from a test, or to generate similar but

not identical scenarios to a scenario that exposed a bug. Here

again, we provide some simple UVM code to help users get

started.

Keywords- random stability, SystemVerilog, UVM

I. INTRODUCTION

A. What is Random Stability?

In SystemVerilog random stability can be defined as the
resistance of random results to code changes. It is not, as some
mistakenly think, the ability to repeat the same random
sequence twice given identical code (on identical software
version, identical OS, etc). The first is dependent on the
structure of the user code and the usage it makes of
SystemVerilog random stability features, while the second
depends on the vendor’s simulator code, and is out of the scope
of this paper.

Any SystemVerilog code that randomizes something is
random stable and instable to some degree. It is always
possible to change it in a way that won’t affect random results
(say by adding a variable declaration), or in a way that will (say
by adding an additional $urandom() or randomize() at the right
place). However, in the case of “random stable testbench” (i.e.
well, planned testbench from the “random stability” point of
view), the changes that could affect random results are easily
traceable back to a limited area in the code, whereas in the case
“random instable testbench” (i.e. badly planned testbench from
the “random stability” point of view), random results could be
affected by code changes practically anywhere.

B. Why is Random Stability Important?

1) Intuitive results
With a random instable testbench small modifications in

testbench code might result in big simulation differences that
do not match what the user expects. To take a simple example,
adding one random transaction to the stimuli, might trigger a
change of all random transactions from that point on.

With random stable testbenches, what you see is what you
get. Adding a transaction in the middle of stimuli would make
the simulator generate identical transactions up to the point
where the transaction is inserted, and after the point where the
transaction is inserted. The only difference the user would
observe is, as expected, the additional transaction in between.

2) Consistent results

Storing a test/seed pair as means of rerunning a specific
case at some later stage is never guaranteed to work with
constrained-random testbenches if modifications to DUT or
testbench code take place. Unfortunately the alternative –
writing coverage for the specific case and running the entire
regression to find a new seed/pair each time – is so time
consuming that users do often work with test/seed pairs. With
random stable testbenches test/seed pairs are more likely to
give the same results, and, when not, it should be easy to
understand why. With non-random stable testbenches the
generated scenario might change so radically that users will
doubt their earlier observations. Often this causes a bug to
“disappear”, only to be found later on at another regression run.

3) Replicating bugs

In today’s complex verification environments debugging is
rarely a single person’s task. A typical case can involve a
verification engineer, an integration engineer, and a few
owners of specific IPs. In some cases, they could all work in
the single workspace where a specific bug was found. In many
others, they would need to replicate it in a private workspace
with their own private settings.

As defined above, in a random instable testbench the results
of randomization can be dependent on code differences in a
very wide perimeter from where actual randomization occurs.
The chances that two different code bases would show a
similar behavior are small. Therefore users are often forced to
create fully identical copies, including private modifications in
order to reproduce a bug. As almost every user who worked in
a large environment knows, the effort spent on this task often
outweighs the debugging effort that follows it.

4) Testing bug fixes

Once a bug has been fixed it often makes sense to test it
under similar conditions to those in which the bug has been
exposed. As we will see below, a random stable can be easily
written in a way that would allow users to freeze the random
state in some areas, and allow other areas to change, with or
without additional constraints. This might help in creating a
pin-pointed test, designed to check the robustness of a specific
bug fix.

II. UNDERSTANDING SYSTEMVERILOG RANDOM

STABILITY

There are several methods of creating random values in
SystemVerilog, but either way the values generated depend, at
least to some extent, on the location of the randomization
instruction in the execution flow. By default, the random
values will depend on the absolute location of the
randomization instruction. Relative location dependency with
regards to a specific known point in the code can be achieved
through the manual seeding feature of the SystemVerilog API
(also referred to as reseeding throughout this text). The save
and restore capability of the API allows for execution path
modifications without affecting the results of any subsequent
random instructions. In this section we will first understand the
default behavior, then look at the ways to manipulate it via the

SystemVerilog API [1]. Since UVM makes extensive use of
this API, this is a first required step in order to be able to make
the most of UVM random stability support.

A. Absolute path dependency

The element responsible for generating random values in
SystemVerilog is called Random Number Generator,
abbreviated RNG. Each thread, package, module instance,
program instance, interface instance, or class instance has a
built-in RNG. Thread, module, program, interface and package
RNGs are used to select random values for $urandom(),
$urandom_range(), std::randomize(), randsequence, randcase,
and shuffle() and to initialize the RNGs of child threads or child
class instances. A class instance RNG is used exclusively to
select the values returned by the class’s predefined randomize()
method. All examples and text below refer to either
$urandom() or randomize(). The remaining randomization
instructions (i.e. $urandom_range(), std::randomize(),
randsequence, randcase, shuffle()) behave in the same way as
$urandom() so every occurrence of $urandom() in the text that
follows should be read as referring to either of those.

Whenever an RNG is used either for selecting a random
value or for initializing another RNG, it will “change state” so
that the next number or set of numbers it generates is different.
Therefore, the value a specific randomization call returns,
depends on the number of times the RNG has been used and on
its initialization. The RNG’s initialization, in turn, depends on
the number of times its parent RNG has been used and on the
parent RNG initialization. The topmost RNG is always a
module, program, interface or package RNG, and all of these
RNGs are initialized to the same value, which is chosen by the
simulator according to the simulation seed.

Fig. 1 illustrates the paragraph above and shows how the
values returned by randomization calls are affected by the
execution of earlier code. The value a given $urandom(),
returns, is determined by the RNG of the thread executing it.
Since the point where this thread was initialized by its parent
thread, its RNG changed state for every earlier call it made to
$urandom(), for every earlier object it instantiated, and for
every earlier child thread it forked. Its initialization value was
determined by the RNG state of its parent thread at the moment
when it was forked, and this RNG state depended once again
on any earlier use of the same three types of instructions : calls
to $urandom(), object instantiations, and forks. This goes all
the way back to the static thread that started the whole tree. In
the vast majority of cases this static thread is an always or
initial block whose RNG was initialized by the RNG of the
module, program or interface that contains it. That RNG is
initialized by the simulator to some seed-dependent value, then
changes state for every static call to $urandom(), every static
instance created and every static thread that is forked.

Figure 1. Execution path influence on SystemVerilog randomization

methods. Green rounded squares reprenet new RNG initialization. Yellow

squares show RNG state modifying instructions.

For a given randomize() call the process is essentially the
same up to the point where the object is allocated. Once the
object is allocated it gets its own RNG which, unlike package,
module, program, interface or thread RNGs, changes state only
when randomize() is called. Therefore, from instantiation point
onwards the only instructions that affect the results of a given
randomize() call, are earlier randomize() calls

1
.

The code below shows an example of the instructions that
will affect the results of a given $urandom() and randomize()
calls. Lines colored in red (with the comment “both”) affect

1 Note that an object randomize() might be called from several threads.

However, this is rarely done, and in any case, a bad coding practice.

both the $urandom() and randomize() calls in bold blue (with
the commend “endpoint”). Lines colored in purple (with the
comment “$urandom() only”) affect only the $urandom() call.
Lines colored in green (with the comment “randomize() only”),
only the randomize() call. Everything that’s in black doesn’t
affect either.

package my_pkg;

 class some_class;

 endclass

 class my_class;

 rand int x;

 endclass

endpackage

module my_top();

 import my_pkg::*;

 my_class cls = new();
2
 //->both

 int j = $urandom();
3
 //->both

 initial;

 initial begin

 automatic int i;

 some_class sc;

 fork

 some_thread(); //->both

 join_none

 sc = new();
4
 //->both

 i = $urandom(); //->both

 fork

 my_thread(); //->both

 join_none

 end

 task some_thread();

 #1;

 endtask

 task my_thread();

 automatic int i;

 some_class sc;

 my_class mc;

 fork

 some_thread(); //->both

 join_none

 mc = new(); //->both

 sc = new(); //->$urandom() only

 i = $urandom(); //->$urandom() only

2
 Although this line should affect both the $urandom() and randomize() at the

bottom, in some simulators it doesn’t.

3 Same for this line
4
 With some simulators this line doesn’t affect results unless some_class has

some rand variables in it

$urandom() call randomize() call

Earlier calls to

randomize()

Object

instantiated

Earlier calls to $urandom()

Earlier object instantiations

Earlier forked threads

Thread started

Earlier calls to $urandom() from static

functions/tasks

Earlier static object instantiations

Earlier static threads

Top module, program or

interface instantiated

 mc.randomize(); //->randomize() only

 fork

 some_thread();//->$urandom only

 join_none

 mc.randomize();//->randomize() endpoint

 $display("randomize result is %d", mc.x);

 i = $urandom();//->$urandom() endpoint

 $display("urandom result is %d", i);

 endtask

endmodule

B. Relative Path Dependency

Dependency on absolute execution path will make random
results extremely sensitive to code changes even in a small size
project. By manually setting an RNG to a specific known state,
the execution path up to a certain point becomes a don’t care.
This is referred to as “manual seeding” and makes any
subsequent random results depend only on the relative
execution path from the manual seeding point onwards. The
code below shows how this is done for a thread or an object.

class my_class;

 rand int y;

 task not_random();

 process p = process::self();

 p.srandom(1); // thread reseeding

 $display("constant result %d",

$urandom());

 this.srandom(2); // object reseeding

 randomize();

 $display("and another one %d", y);

 endtask

endclass

In a constrained random testbench this code doesn’t make a
lot of sense because it is too stable:
it will make randomization results constant in every simulation
because they are no longer dependent on the simulation seed.
To prevent this, the argument to srandom() is usually a
function of the simulation seed, preferably one that is evenly
distributed to prevent constant repetition of same value.

C. Saving and Restoring State

In some cases it is required to add code that won’t affect
any subsequent random results, i.e. RNG state. To achieve this,
the SystemVerilog API provides means for saving and
restoring and RNG state. The code below shows how this is
used to protect an additional object instantiation from changing
a $urandom() result later on.

class class_a;

endclass

class class_b;

 task main();

 class_a a;

 string rand_state;

 process p = process::self();

 rand_state = p.get_randstate();

 $display(“first random value %d”,

$urandom());

 a = new();

 p.set_randstate(rand_state);

 $display(“and a second identical one %d”,

$urandom());

 endtask

endclass

III. UNDERSTANDING UVM RANDOM STABILITY

In a typical UVM testbench, the following areas are random
to some extent:

1. Random Bus Functional Model (BFM) parameters
such as delays (when not part of the transaction)

2. Random configuration parameters (for example
register values)

3. Sequences and transactions

For 1) and 2) randomization is usually done inside a static
uvm_component. For 3) it is usually done inside a dynamic
uvm_sequence or uvm_sequence_item. We will now look at the
random stability mechanisms available in each, understand
their limitations, and suggest the best ways to cope with those.

A. uvm_component random stability

1) The requirement

During a project life cycle some components are expected
to be added or removed from a UVM hierarchy. Also, UVM
testbenches are often highly configurable and components or
clusters of components might be added or removed based on
test configuration parameters. Users expect all of these changes
not to affect the random values generated by specific
components in the hierarchy for a given seed. This simplifies
orientation in a simulation with a new configuration, since all
the parts that were there before continue to behave in much the
same way. It will also allow for quicker isolation of bugs.

In Fig. 2 For example, adding the component in red with
additional instantiations, forks and randomizations, should not
affect any randomization that takes place in the components in
blue.

Figure 2. Adding the red component with instantiations, forks and

randomizatios (not shown), should not change any random results in the blue

components

2) The solution

We have seen earlier that by default, the values returned by
various SystemVerilog randomization API commands are
dependent on the absolute execution path. Looking at
SystemVerilog verification methodologies such as UVM,
OVM and VMM, it becomes apparent that relying on absolute
execution path would make it impossible to comply with the
requirement above. In these methodologies (and others) the
phase that does the actual running, and therefore most of the
randomization, is preceded by a testbench construction phase,
in which most testbench elements are instantiated. Relying on
the absolute execution path would mean that any additional
instance created in the testbench construction phase would end
up changing all random results in the run phase.

UVM addresses the problem by cutting the execution path
into a multitude of slices, each of which protected by its own
srandom() call. Any observed change in the random results
generated, can then be easily traced back to a fairly limited area
in the code. For uvm_components the executing thread is
manually seeded before each function or task phase, and the
component itself is manually seeded after its creation [2]. This
means that any change in the results returned by a $urandom()
within a specific component must be due to an additional
instantiation, fork, or $urandom() call within the same function
or task phase and within that same component. Any change in
the results returned by a randomize() call of a specific
component must be due to some additional calls to randomize()
of the same component. Inside these well defined borders, it
should be easy to understand where changes are coming from.

As mentioned above, the seeds to different srandom() calls
should be unique and evenly distributed, or else they might
make a random testbench less random than users actually
expect it to be. For example, if two instances of the same BFM
are always manually seeded with the same value, they would
always operate in sync, leaving other situations untested. In the
case of uvm_components this problem is relatively easily
solved by using an integer value extracted from their unique
full name as a parameter to srandom() (Calls to srandom()
before a function or task phase simply append the phase name
to the full name of the component). Note that this ties all

random values generated by a component to its location in the
UVM hierarchy, which makes sense, since users don’t expect
two instances in different testbench parts to produce the same
results. It also means that if a testbench becomes a part of a
bigger testbench (i.e. vertically reused), it can no longer be
expected to produce the same random results.

3) Limitations

a) Thread Stability in UVM-1.1 and Earlier

Manual seeding prior to execution of function and task
phases has been added to UVM only since UVM-1.1a, and
isn’t a part of earlier UVM (or OVM) versions. In its absence,
some randomization instructions will fall back to the default
SystemVerilog random stability. This is most probably an
unwanted behavior. Fortunately, it can be easily prevented.

One case where this would happen is shown by the code
example below. The value returned by $urandom() is
dependent on the thread RNG and since with UVM-1.1 and
earlier this RNG is not manually seeded prior to the execution
of the thread, its state depends on the absolute execution path
up to this point. Therefore additional components instantiated
during the build_phase() construction phase by this component
or elsewhere would influence it, making it unstable.

class my_bfm extends uvm_component;

 //…

 task run_phase(uvm_phase phase);

 int unsigned response_delay;

 //…

 response_delay = $urandom_range(0, 20);

 //…

 endtask

endclasss

To make this code stable with UVM-1.1 and earlier, just

replace $urandom() calls with a call to randomize() (Note that
this requires making the randomized variable a rand class
member):

class my_bfm extends uvm_component;

 //…

 rand int unsigned response_delay;

 task run_phase(uvm_phase phase);

 //…

 randomize(response_delay) with

{(response_delay >= 0) && (response_delay <=

20);};

 //…

Comp_A Comp_B

Top_env

Comp_C

build_phase()
 randomize()

run_phase()

 $urandom();

build_phase()
 obj = new()

run_phase()

 fork…join

build_phase()
 randomize()

run_phase()

 $urandom();

 endtask

endclasss

This would make the results depend on the component
RNG, and since this one is manually seeded in UVM-1.1 (and
OVM), it means that the random value returned would be
affected only by other calls to randomize() of the same object.

The following code shows a similar case:

class rand_config extends uvm_object;

 `uvm_obejct_utils(rand_config)

 rand bit config_field1;

 rand int unsigned config_field2;

endclass

class some_env extends uvm_env;

 //…

 rand rand_config rand_config_i;

 function void build_phase(uvm_phase phase);

 rand_config_i =

rand_config::get_type::create(“rand_config_i”)

;

 assert(randomize(rand_config_i)); //1

 assert(rand_config_i.randomize()); //2

 endfunciton

 //…

endclass

Although the green line (with the comment “1”) and the red
line (with the comment “2”) might appear equivalent, from a
random stability point of view they are not: while the first
randomize() call would select the object values based on the
parent component RNG, the second randomize() call would
select them based on the object’s own RNG. Since objects
don’t have unique names and are not manually seeded during
their creation, their RNG initialization depends on the RNG
state of the thread that instantiated them. In a UVM-1.1a
testbench, however, both methods would be stable enough,
because the instantiating function phase is manually seeded
prior to its execution. Unfortunately, with UVM-1.1 and earlier
this is not the case, and when the second option is used, the
values of the object will once again end up being chosen based
on the absolute execution path.

B. uvm_sequence/uvm_sequence_item random stability

1) The requirement

Assume a user runs the blue sequence shown in the Fig. 3
below, then for some reason modifies it by adding the red
sequence item.

Figure 3. An additional sequence item is not expected to change items before

or after it

What the user would expect after running is that TR_A and
TR_B remain identical, and a new random sequence item is
added between them. This would allow for quicker orientation
in the results of the new test, and enable accurate fine-tuning of
sequences in order to simulate corner cases. For example, a
transaction that fills up a FIFO to a certain level could be added
in the middle of an existing sequence to target a specific
problematic area.

Looking at a slightly more general example in Fig. 4 users
would expect that any of the red extensions to the blue
sequence hierarchy would not modify the results. Original
sequence stimuli should stay the same when new items and
sequences are added anywhere in the hierarchy, or when other
sequences are started on the sequencer in parallel.

Figure 4. Sequence hierarchy modifications that are not expected to alter

original results

2) The Solution

Although a component hierarchy stays the same throughout
a simulation, while an entire sequence hierarchy could be
created and destroyed multiple times, the random stability
requirements in both cases are very similar: A change in

 Main_sequence

TR_A TR_NEW TR_B TR_C

 Main

sequence

Sub

Sequence

New sub

Sequence

TR_N

TR_A

TR_B

TR_A

TR_B

 Parallel

sequence

TR_A

TR_B

Sequencer

hierarchy should not affect existing elements. Therefore, UVM
tries to address this problem with a similar approach to the one
taken with components. Sequences and sequence items are
isolated from each other and from the rest of the testbench by
manual seeding which is based on their full name. Since users
do not expect identical sequences running on different
sequencers to produce identical results (that would be too
stable), UVM prefixes a sequence or sequence item full name
with the full component path of the sequencer it is executed on.
For example, TR_A in Fig. 3 about would be manually seeded
based on the following name:

[Name of uvm_sequencer on which Main_sequence is
running].Main_sequence.TR_A

3) Limitations

a) Unique Naming not Enforced

Although the whole concept of sequence random stability
rests on the assumption that every sequence and sequence item
are uniquely identifiable by their full name, UVM doesn’t force
sequences and sequence items to have a unique name, or even
have a name at all. In the absence of unique names, manual
seeding becomes meaningless, since al items sharing a name
would be reseeded based on some sort of a counter to
differentiate them from each other. Random stability as
described in Fig. 3 or Fig 4. simply can’t be achieved in this
case, all the more so because users themselves can’t identify
transactions by any other means except for counting. It is very
likely that in such situation, all random results within a specific
sequence hierarchy would change due to an additional
instantiation or an additional call to $urandom() in the thread
that started the top most sequence.

We strongly advice users to assign sequences and sequence
items with unique names. This is not only a pre-condition for
random stability as shown in Fig. 3 and Fig. 4 above, but also
makes debugging of long sequences of transactions much
easier. As mentioned above, if transactions and sequences are
not uniquely named, the only way to match them with, for
example, whatever shows in the waveform viewer, is by
counting. This is time consuming and error prone.

To enforce unique naming it is possible to extend the
uvm_sequence/uvm_sequence_item and uvm_sequencer
classes, so that they check if a name of a top level sequence,
child sequence, or item has already been used prior to
execution. A simple implementation of these extensions for
UVM 1.1a is shown in appendix A.

b) Sequence thread is not manually seeded

In the section dedicated to components we have mentioned
that UVM manually seeds every function and task phase before
they’re executed. This makes calls to randomization methods
that are dependent on the thread RNG, insensitive to anything
that occurs outside the specific function or task in which they
are used. It also makes any objects created within the function

or task more random stable, since their RNG initialization
depends only on code inside that same function or task.

Unfortunately with UVM-1.1a neither the sequence tasks,
nor its main thread which calls all of them are reseeded. Users
wishing to avoid random stability issues can either make sure
their code complies with the guidelines given in the
uvm_components section for UVM-1.1 users. Or, they can
derive their own base class from uvm_sequence, and
implement manual seeding during the pre_start() phase. The
code below, which could be placed in a sequence base class,
shows how to do this.

 class reseed_seq#(type REQ =

uvm_sequence_item,type RSP = REQ) extends

uvm_sequence#(REQ, RSP);

 function new(string name = "");

 super.new(name);

 endfunction: new

 virtual task pre_start();

 process proc = process::self();

proc.srandom(uvm_create_random_seed("bo

dy", get_full_name()));

 endtask

 endclass

c) Reseeding timing doesn’t match use model

UVM lets users choose between two ways for creating,
randomizing and running sequences – using `uvm_do macros,
or using create, randomize and start. These ways are shown
below, in red and blue corresponding:

class my_sub_sequence extends

 //…

 rand int unsigned num_of_items;

 //…

uvm_sequence#(my_item);

 //…

endclass

class my_sequence extends

uvm_sequence#(my_item);

 my_sub_sequence sub_sequence;

 task body();

 // using create/randomize/start

 sub_sequence =

my_sub_sequence::type_id::create(“sub_sequence

”);

 sub_sequence.randomize();

 sub_sequence.start(get_sequencer(),this);

 //using `uvm_do
 `uvm_do(sub_sequence)

 endtask

endclass

Both options are equivalent to a large extent, but not from a
random stability point of view. While with the `uvm_do macro
the sequence will be manually seeded before it is randomized,
with the create/randomize/start method it will be manually
seeded only after randomization. This means, for example, that
when using create/randomize/start as shown above, an
additional instantiation in the body() task of the parent
sequence will modify the rand fields of the sub-sequence (i.e.
num_of_items in the example above). Note that this is true only
for uvm_sequences that are executed using start(), and not for
uvm_sequence_items that are executed using
start_item()/finish_item().

Since using `uvm_do macros should in general be avoided
[3], we recommend that users simply reseed sequences by
themselves before they are randomized. Also, it should be
noted that `uvm_do derivatives can’t create the a top level
sequences, which must always be executed using start().
Therefore using them would solve the problem only partially.
The code below shows how to use the preferred
create/randomize/start method so that manual seeding takes
place before randomization. The solution is to insert a call to
set_item_context() before randomization. This function
initializes the sequencer and parent sequence fields for the sub
sequence and allows full name calculation and reseeding.

class my_sequence extends

uvm_sequence#(my_item);

 my_sub_sequence sub_sequence;

 task body();

 // using create/randomize/start

 sub_sequence =

my_sub_sequence::type_id::create(“sub_sequence

”);

 sub_sequence.set_item_context(this,

get_sequencer());

 sub_sequence.randomize();

 sub_sequence.start(get_sequencer(),this);

 endtask

endclass

IV. INDIVIDUAL SEEDING OF TESTBENCH PARTS

With a well planned UVM random stable testbench, all
components, sequences and sequence items are isolated from
one another. This means that modifying the code in each of
those would not affect the random results in others (unless
these random results are directly dependent on some random
field of the part modified, for example through constraints). It
also means that modifying the random results in each of these
would not affect the random results in others (with the same
restrictions as above).

Decoupling random parts from each other allows them to
be individually seeded. If a specific part is individually seeded,
only the results within it would change, but everything else
would be kept constant. As mentioned above, this can be
useful, for example, for testing a bug fix. If the bug is related to
several independent parameters and events that happen
together by chance, keeping some of those constant while
modifying others might reveal similar bugs, or find the
weaknesses of the bug fix.

As part of the work on this paper we have created a UVM
package that can be used to individually seed specific testbench
elements from the command line. The code of this package is
fully available in appendix B of this paper. It allows users to
configure a few selected components as random domain roots
(sequences as random domain roots are not supported, although
this could be implemented easily). A random domain root can
be seeded from the command line through a SystemVerilog
plusarg, or generate its own random seed, which is based on
the main simulation seed, but different from it. It then makes its
seed available to all components lower in the hierarchy as a
configuration parameter. The components lower in the
hierarchy pick up the specific domain seed from the
configuration table and reseed themselves.

Note that users of the package are required to always call
the super class phase functions and tasks, on the first line of
their own implementation. This is needed in order to reseed
execution thread before the task or function are executed.
UVM users normally do this anyhow for build_phase() and
sometimes for other phases, so that should not add too much
overhead.

The abridged example below shows how the package is
used. An environment (env) made out of two component
hierarchies that the user defines to be seeded individually:
root_comp1 and root_comp2. Each of these contains random
fields and some sub components that call $urandom(). The user
could keep each of these hierarchies constant, while changing
the seed and random values of the other. For example
(assuming the user runs the simulation with Mentor’s Questa),
running the following two commands:

vsim top –sv_seed random +SEED0=1 +SEED1=1

vsim top –sv_seed random +SEED0=1 +SEED1=2

Would keep all random values generated by the root_comp1
hierarchy constant, while changing all values of generated by
root_comp2.

 class sub_component extends

multi_seed_component;

 //…

 task run_phase(uvm_phase phase);

 super.run_phase(phase); // --> required

by multi-seed package

 $display("sub component %s random value

is %d", get_full_name(), $urandom());

 endtask

 endclass

 class root_component extends

multi_seed_component;

 rand int unsigned num_of_sub_components;

 constraint max_sub_comps_c {

num_of_sub_components < 5; };

 sub_component sub_comps[];

 //…

 function void build_phase(uvm_phase

phase);

 super.build_phase(phase); // -->

required by multi-seed package

 randomize();

 $display("root component %s generating

%d components", get_full_name(),

num_of_sub_components);

 sub_comps = new[num_of_sub_components];

 //…create sub components

 end

 endfunction

 endclass

 // instantiates two root components, each of

which is configured to be a random domain

 class env extends multi_seed_env;

 root_component root_comp1, root_comp2;

 function void build_phase(uvm_phase

phase);

 domain_root_config domain1, domain2;

 super.build_phase(phase);

 //…create components

 // define random domains

 domain1 = new();

 domain1.set_id(0);

 domain1.name = "root_comp1";

 domain2 = new();

 domain2.set_id(1);

 domain2.name = "root_comp2";

 // map them to components

 uvm_config_db#(domain_root_config)::set

(this, "root_comp1", "domain_root_config",

domain1);

uvm_config_db#(domain_root_config)::set

(this, "root_comp2",

"domain_root_config", domain2);

 endfunction

 endclass

V. ACKNOWLEDGEMENTS

VI. REFERENCES

[1] IEEE Standard for System Verilog- Unified Hardware, Design,
Specification and Verificaction Language”, IEEE std 1800-2009, 2009.

[2] UVM 1.1a Reference, www.uvmworld.org

[3] “Are OVM & UVM Macros Evil? A Cost-Benefit Analysis”, Erickson,
Adam, 2011

VII. APPENDIX A – UVM EXTENSION TO ENFORCE UNIQUE SEQUENCE/SEQUENCE ITEM NAMES

// *** This code is provided as an example only and without guarantee or any commitment to

enhancements/support ***

// This package extends UVM sequences to check for unique names

// Should be used with UVM-1.1a only!

package unique_seq_pkg;

 import uvm_pkg::*;

 `include "uvm_macros.svh"

 class unique_sequencer #(type REQ=uvm_sequence_item, RSP=REQ) extends uvm_sequencer #(REQ,

RSP);

 typedef unique_sequencer #(REQ , RSP) this_type;

 `uvm_component_param_utils(this_type)

 function new (string name, uvm_component parent=null);
 super.new(name, parent);

 endfunction

 // check for top sequences executed at sequencer

 string used_names[$];

 endclass

 class unique_sequence#(type REQ = uvm_sequence_item,type RSP = REQ) extends uvm_sequence#(REQ,

RSP);

 typedef unique_sequence #(REQ, RSP) this_type;

 string used_names[$];

 function new (string name = "uvm_sequence");

 super.new(name);

 endfunction

 // This task is copied almost as is from uvm_sequence_base

 // modifications:

 // 1. check for unique name before sequence starts

 virtual task start (uvm_sequencer_base sequencer,

 uvm_sequence_base parent_sequence = null,
 int this_priority = -1,

 bit call_pre_post = 1);

 set_item_context(parent_sequence, sequencer);

 if (!(m_sequence_state inside {CREATED,STOPPED,FINISHED})) begin

 uvm_report_fatal("SEQ_NOT_DONE",

 {"Sequence ", get_full_name(), " already started"},UVM_NONE);

 end

 if (this_priority < -1) begin

 uvm_report_fatal("SEQPRI", $psprintf("Sequence %s start has illegal priority: %0d",

 get_full_name(),

 this_priority), UVM_NONE);

 end

 if (this_priority < 0) begin

 if (parent_sequence == null) this_priority = 100;

 else this_priority = parent_sequence.get_priority();

 end

 // Check that the response queue is empty from earlier runs

 clear_response_queue();

 set_priority(this_priority); // --> changed by unique_seq_pkg to avoid use of local

variable

 if (m_sequencer != null) begin

 if (m_parent_sequence == null) begin

 m_tr_handle = m_sequencer.begin_tr(this, get_name());
 end else begin

 m_tr_handle = m_sequencer.begin_child_tr(this, m_parent_sequence.m_tr_handle,

 get_root_sequence_name());

 end

 end

 // Ensure that the sequence_id is intialized in case this sequence has been stopped

previously

 set_sequence_id(-1);

 // Remove all sqr_seq_ids

 m_sqr_seq_ids.delete();

 // Register the sequence with the sequencer if defined.

 if (m_sequencer != null) begin

 void'(m_sequencer.m_register_sequence(this));

 end

 check_unique_name(this); // --- added by unique_package

 fork

 begin

 m_sequence_process = process::self();

 m_sequence_state = PRE_START;

 #0;

 pre_start();

 if (call_pre_post == 1) begin

 m_sequence_state = PRE_BODY;

 #0;

 pre_body();

 end

 if (parent_sequence != null) begin

 parent_sequence.pre_do(0); // task

 parent_sequence.mid_do(this); // function

 end

 m_sequence_state = BODY;

 #0;

 body();

 m_sequence_state = ENDED;

 #0;

 if (parent_sequence != null) begin

 parent_sequence.post_do(this);

 end

 if (call_pre_post == 1) begin

 m_sequence_state = POST_BODY;

 #0;

 post_body();

 end

 m_sequence_state = POST_START;

 #0;

 post_start();

 m_sequence_state = FINISHED;

 #0;

 end

 join

 if (m_sequencer != null) begin

 m_sequencer.end_tr(this);

 end

 // Clean up any sequencer queues after exiting; if we

 // were forcibly stoped, this step has already taken place

 if (m_sequence_state != STOPPED) begin

 if (m_sequencer != null)

 m_sequencer.m_sequence_exiting(this);

 end

 #0; // allow stopped and finish waiters to resume

 endtask

 // this task is an exact copy of start_item from uvm_sequence_base

 // the only difference is that it checks that each item has a unique name on this sequence

 virtual task start_item (uvm_sequence_item item,

 int set_priority = -1,

 uvm_sequencer_base sequencer=null);

 uvm_sequence_base seq;

 if(item == null) begin

 uvm_report_fatal("NULLITM",

 {"attempting to start a null item from sequence '",
 get_full_name(), "'"}, UVM_NONE);

 return;

 end

 if($cast(seq, item)) begin

 uvm_report_fatal("SEQNOTITM",

 {"attempting to start a sequence using start_item() from sequence '",

 get_full_name(), "'. Use seq.start() instead."}, UVM_NONE);

 return;

 end

 if (sequencer == null)

 sequencer = item.get_sequencer();

 if(sequencer == null)

 sequencer = get_sequencer();

 if(sequencer == null) begin

 uvm_report_fatal("SEQ",{"neither the item's sequencer nor dedicated sequencer has been

supplied to start item in ",get_full_name()},UVM_NONE);

 return;

 end

 if (sequencer == null)

 sequencer = item.get_sequencer();

 if (sequencer == null) begin

 uvm_report_fatal("STRITM", "sequence_item has null sequencer", UVM_NONE);

 end

 item.set_item_context(this, sequencer);

 if (set_priority < 0)

 set_priority = get_priority();

 check_unique_name(item); // --> added by unique_package

 sequencer.wait_for_grant(this, set_priority);

 `ifndef UVM_DISABLE_AUTO_ITEM_RECORDING

 void'(sequencer.begin_child_tr(item, m_tr_handle, item.get_root_sequence_name()));

 `endif

 pre_do(1);

 endtask

 virtual function void check_unique_name(uvm_sequence_item seq_item);

 // check if name is already defined, if not add it to table, if yes give an error

 string name = seq_item.get_name();

 if (seq_item.m_parent_sequence == null)

 begin

 unique_sequencer#(REQ, RSP) unique_sqr;

 string result[$];

 if (!$cast(unique_sqr, m_sequencer))

 uvm_report_error("UNIQUE_SEQUENCR_NOT_USED", {"Trying to start the sequence ", name,

" , which is derived from unique_sequence, on sequencer ", m_sequencer.get_full_name() ," which

is not derived from unique_sequencer"}, UVM_LOW);

 result = unique_sqr.used_names.find_first with (item == name);

 if (result.size() > 0)
 uvm_report_error("TOP_SEQ_NOT_UNIQUE", {"Top level sequence by name of ", name, "

already started on the sequencer ", unique_sqr.get_full_name()}, UVM_LOW);

 else

 unique_sqr.used_names[$+1] = name;

 end

 else

 begin

 unique_sequence#(REQ, RSP) parent_unique_sequence;

 string result[$];

 if (!$cast(parent_unique_sequence, seq_item.m_parent_sequence))

 uvm_report_error("UNIQUE_SEQUENCS_NOT_USED", {"Trying to start a sequence derived

from unique_sequence from the sequence ", m_parent_sequence.get_full_name() , " which is not

derived from unique_sequence"}, UVM_LOW);

 result = parent_unique_sequence.used_names.find_first with (item == name);

 if (result.size() > 0)

 uvm_report_error("SEQ_NOT_UNIQUE", {"Sequence by name of ", name, " already started

by the sequence ", parent_unique_sequence.get_full_name()}, UVM_LOW);

 else

 parent_unique_sequence.used_names[$+1] = name;

 end

 endfunction

 endclass

endpackage

VIII. APPENDIX B – UVM EXTENSIONS TO ALLOW INDIVIDUAL SEEDING OF VARIOUS TESTBENCH PARTS

// *** This code is provided as an example only and without guarantee or any commitment to

enhancements/support ***

package multi_seed_pkg;

 import uvm_pkg::*;

 `include "uvm_macros.svh"

 `define SEED_NUM 10

 int seeds[`SEED_NUM] = get_seeds();

 typedef int seed_array[`SEED_NUM];

 function seed_array get_seeds();

 foreach(seeds[i])

 seeds[i] = $urandom();

 endfunction

 class domain_root_config extends uvm_object;

 `uvm_object_utils(domain_root_config)

 string name;

 local int unsigned id;

 static int unsigned used_ids[$];

 function new(string name = "");

 super.new(name);

 endfunction

 function bit set_id(int unsigned id);

 int unsigned results[$];

 if (id > `SEED_NUM)

 set_id = 0;

 else

 begin
 results = used_ids.find with (item == id);

 if (results.size() > 0)

 set_id = 0;

 else

 begin

 this.id = id;

 used_ids[$+1] = id;

 set_id = 1;

 end

 end

 endfunction

 function int unsigned get_id();

 return id;

 endfunction

 endclass

 // This component:

 // 1. Checks to see if it is set to be a domain root by looking for a domain_root_config

object placed for it in config table

 // A multi_seed_component configured as domain root component:

 // 1. Tries to parse its own seed from command line

 // 3. If it finds nothing, or the value it parses is "random", it takes the seed corresponding

to its id from the package seeds list

 // 4. If it finds something it takes whatever it finds

 // 5. Seeds all components under it by setting a seed configuration parameter

 // A multi_seed_component not configured as domain_root_component

 // 1. Tries to get a "seed" configuration parameter from the table

 // 2. If it finds one, it will reseed itsefl with it

 // 3. If it finds nothing, it will do nothing

 // This means that components outside any domain just depend on the seed command line

parameter for generating values.

 `define function_phase_rereseed(PHASE_NAME) \

 function void PHASE_NAME(uvm_phase phase); \

 super.PHASE_NAME(phase); \

 rereseed(phase); \

 endfunction

 `define task_phase_rereseed(PHASE_NAME) \

 task PHASE_NAME(uvm_phase phase); \

 super.PHASE_NAME(phase); \

 rereseed(phase); \

 endtask

 `define component_extension \

 \

 domain_root_config m_domain_root_config;\

 bit root_found;\

 bit seed_found;\

 int unsigned m_seed;\

 \

 function new(string name, uvm_component parent = null);\

 super.new(name, parent);\

 endfunction\

 \

 function void build_phase(uvm_phase phase);\

 super.build_phase(phase);\
 \

 root_found = uvm_config_db#(domain_root_config)::get(this, "", "domain_root_config",

m_domain_root_config);\

 \

 if (m_domain_root_config != null)\

 // component is root\

 begin\

 string plusarg_name, s;\

 int i;\

 $sformat(plusarg_name, "SEED%0d", m_domain_root_config.get_id());\

 \

 void'($value$plusargs({plusarg_name, "=%s"}, s));\

 \

 if (s == "random")\

 m_seed = seeds[m_domain_root_config.get_id()];\

 else\

 if ($value$plusargs({plusarg_name, "=%d"}, i))\

 m_seed = i;\

 else\

 uvm_report_error("CMD_LINE_ARG_WRONG", {"Got ", s, " as one of the seed values

specified on the command line. This value is wrong. Allowed values are 'random' or an integer"},

UVM_LOW);\

 \

 \

 uvm_config_db#(int unsigned)::set(this, "*", "seed", m_seed);\

 end\

 \

 seed_found = uvm_config_db#(int unsigned)::get(this, "", "seed", m_seed);\

 \

 if ((root_found) || (seed_found))\

 begin\

 int unsigned global_seed = uvm_global_random_seed;\

 uvm_global_random_seed = m_seed;\

 reseed(); // reseed component RNG\

 uvm_global_random_seed = global_seed;\

 end\

 \

 rereseed(phase); // reseed thread RNG for $urandom at build\

 endfunction\
 \

 // phase function and tasks implementations preform reseeding\

 // users are required to call these via super, prior to their own implementation\

 function void rereseed(uvm_phase phase);\

 int unsigned global_seed;\

 process p;\

 \

 if (root_found || seed_found) begin\

 global_seed = uvm_global_random_seed;\

 uvm_global_random_seed = m_seed;\

 p = process::self();\

 p.srandom(uvm_create_random_seed(phase.get_name(), get_full_name()));\

 uvm_global_random_seed = global_seed;\

 end\

 endfunction\

 \

 `function_phase_rereseed(connect_phase)\

 `function_phase_rereseed(end_of_elaboration_phase)\

 `function_phase_rereseed(start_of_simulation_phase)\

 `task_phase_rereseed(run_phase)\

 `function_phase_rereseed(extract_phase)\

 `function_phase_rereseed(check_phase)\

 `function_phase_rereseed(report_phase)\

 `function_phase_rereseed(final_phase)\

 class multi_seed_component extends uvm_component;
 `component_extension

 endclass

 class multi_seed_env extends uvm_env;

 `component_extension

 endclass

 class multi_seed_sequencer #(type REQ=uvm_sequence_item, RSP=REQ) extends uvm_sequencer#(REQ,

RSP);

 `component_extension

 endclass

 class multi_seed_driver #(type REQ=uvm_sequence_item, RSP=REQ) extends uvm_driver#(REQ, RSP);

 `component_extension

 endclass

 class multi_seed_test extends uvm_test;

 `component_extension

 endclass

endpackage

