
UVM-Multi-Language Hands-On

Thorsten Dworzak (Verilab GmbH)
Angel Hidalga (Infineon Technologies AG)

© Accellera Systems Initiative 1

Introduction
• UVM-ML version 1.2

– add-on library to UVM
– vendor/simulator independent
– Accelera Multi-Language working group
– easy integration of different HVLs (e, SV, SystemC)
– inter-language communication via TLM2 sockets

© Accellera Systems Initiative 2

Verification Focus (1)
• DUT is ARM CPU IP
• Different UVM-SV testbenches (DUT hierarchy)
• SystemC reference model

– joint development between software and hardware-verification team

© Accellera Systems Initiative 3

Verification Focus (2)
• SystemC model must support 3 use-cases

© Accellera Systems Initiative 4

C-Model Requirements
• Specification compliance (Model and DUT output must match)
• Windows+Linux cross-platform development
• C++11 wrapped in System-C modules
• High performance (for stand-alone ISS)
• Support all use-cases with minimal code overlap
• More than one instance (careful with static classes)
• Error injection possible
• State roll-back support

© Accellera Systems Initiative 5

UVM Environment

© Accellera Systems Initiative 6

ISG and MEM IF Environment

ISG Agent

CPU+Mem
SysC Model

DUT (CPU)

Instr IF AgentData Agent

D-Mem

Scoreboard
(Compare)

D-Mem

CPU
SysC Model

state

store

load

state

fetch

fetch

RE
GF

IIL
E

LSU

PFU

EXC

DEC

load+
store

Instruction Stream Generation (1)
• Instruction base class contains all properties that define an assembler

instruction
• Specialized class defines required properties, e.g. opcode-size, legal

source+destination registers.
– SV code generated from specification

© Accellera Systems Initiative 7

Instruction Stream Generation (2)
• An ISG sequence contains an instruction item and several fields to

control the item generation
• Dedicated sequences to write/read registers, establish fault handlers

etc.
• Sequence API allows flexibility to do fully random instructions, specific

instructions like LDR r0,[r5,r4,LSL #3], and anything in-between
• C-Model is used to predict next PC value (e.g. branch target)
• Opcodes known to be skipped will be set to BKPT to detect DUT bugs
• Code and data memory are separate, so no problem of stack running

into code segment

© Accellera Systems Initiative 8

OSCI vs. ncsc
• OSCI 2.3.1 is reference implementation

– Software team (Windows) relied on this

• Cadence implementation used by ncsc
– Easier build-flow, used by HW-verification team

• Compatibility is "good enough"
– OSCI-based flow can be used as fall-back solution

© Accellera Systems Initiative 9

Linux vs. Windows
• Collaborative effort of software and hw-verification team
• Software team used MS Visual Studio

– UVM testbench not available
– Large suite of unit tests based on Google Test ensured up-front quality
– Several Jenkins projects continuously checked quality metrics

• e.g. make sure code-base compiles with gcc

• Software team followed Agile flow while HW-verification team uses
traditional waterfall model

• Different SCMs

© Accellera Systems Initiative 10

ML Interface Selection
• Choice of interfaces according to requirements

© Accellera Systems Initiative 11

TLM2 sockets
• Use of SV type uvm_tlm_b_<target|initiator>_socket
• Multi-socket and passthrough sockets currently not supported
• Need to use default data type uvm_tlm_generic_payload

– Benefit from existing packing/serialization facilities of UVM-ML

• Created wrapper classes for the two types of sockets
– Encapsulates standard functionality (build, register, connect, ...)
– Unique namespace for b_transport() function in target socket

© Accellera Systems Initiative 12

TLM2 Generic Payload
• UVM-ML provides packing/serialization -> less code on SV and SystemC

side
• Is intended to model memory-mapped bus transactions

– r/w, address, data, byte-enables

• Any missing functionality implemented as SV static functions
• Additional information transmitted via payload extensions

– Transaction privilege-level, initiator ID, embedded commands, ...
– Target response (type of error, busy status, ...)

• GP response_status field only used for TLM communication errors

© Accellera Systems Initiative 13

DPI-C Interface (1)
• Transmit integral types and structs across the language barrier
• Export SV methods called from C++

© Accellera Systems Initiative 14

• Tasks may consume time

export "DPI-C" function
cExpReqSysRst();

function bit cExpReqSysRst(input
byte modelType);
...

endfunction

extern "C" void
cExpReqSysRst(char modelType);

export "DPI-C" task cExpSync();

task cExpSync();
@(posedge clk);

endtask

extern "C" void cExpSync();

DPI-C Interface (2)
• Import C++ methods called from SV

© Accellera Systems Initiative 15

• context as opposed to pure attribute
– allows C++ implementation to access objects other than input parameters (e.g.

SystemC objects, call exported methods)

import "DPI-C" context task
cImpInitCpu();

int cImpInitCpu() {
...

}

Simulation Performance
• Using UVM testbench that allows drop-in replacement of DUT with C-

model, we can compare the performance

© Accellera Systems Initiative 16

Summary
• Successfully deployed UVM-ML in SystemC/SystemVerilog environment
• Not all SystemC features implemented
• Most initial tool problems solved
• UVM-ML reduces effort to cross the language boundaries

© Accellera Systems Initiative 17

Questions, Comments?

© Accellera Systems Initiative 18

	UVM-Multi-Language Hands-On
	Introduction
	Verification Focus (1)
	Verification Focus (2)
	C-Model Requirements
	UVM Environment
	Instruction Stream Generation (1)
	Instruction Stream Generation (2)
	OSCI vs. ncsc
	Linux vs. Windows
	ML Interface Selection
	TLM2 sockets
	TLM2 Generic Payload
	DPI-C Interface (1)
	DPI-C Interface (2)
	Simulation Performance
	Summary
	Questions, Comments?

