UVM hardware assisted acceleration
with FPGA co-emulation

Alex Grove, Aldec Inc.

ALDEC 205

accellera THE DESIGN VERIFICATION COMPANY ECVNE:EEAKT

NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Tutorial Objectives

e Discuss use of FPGAs for functional verification, and
explain how to harness FPGAs into a mainstream
verification methodology such as UVM

* Introduce a SCE-MI based approach using the Easier
UVM coding style as a reference for industry best
practice

e QOutline a methodology for a portable and
interoperable UVM simulation environment that is
acceleration ready

86'08//8[‘3 o DVCOIN
© Accellera Systems Initiative 2 . CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE

The Why? The Need For Speed..

* Moore’s law still keeps on going ..
— Now set to the doubling of transistors every two years
* Emulation that’s as old as EDA is in growth!
— Significant growth in the last three years
* Verification continues to get harder and harder
— Wilson Research Group Functional Verification Study
— Now includes S/W (HdS — Hardware Dependent Software)

aceellera » BV TN
© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

The Death Of CPU Scaling

10 i ‘," Trarssion
s (Tousanrcs)
10 - ~
: Decreasing
10° performance?
X Y Y S R R ERRES © d eekal TS Sngio-thread
Pertormrance
10 i (SpociNT)
10° - .
| | Power
10° (Wats)
. " Number of
10' r Cores
10° .

1975 1960 1585 1990 1995 2000 2005 2010 2015

Chuck Moore, "DATA PROCESSING IN EXASCALE CLASS
COMPUTER SYSTEMS", The Salishan Conference on High
Speed Computing, 2011

2015

DESIGN AND VERIFICATION™

DVOCOIN

© Accellera Systems Initiative 4 CONFERENCE AND EXHIBITION

The Why? The Need For Speed..

 The death of CPU scaling ~2010
— Multi-cores are not utilized in RTL simulation
* The rise of constrained random approaches
— Required for coverage of today’s complex designs

aceellera o DVCON
© Accellera Systems Initiative 5 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

FPGASs as a Verification Platform

* FPGAs are reprogrammable .. have replaced test chips

* Low cost as “generic” platforms

— Large devices used by leading network companies

— 0.25to 0.5 cents per gate vs. 2-5 cents of big box emulators*
* Leading edge technology node e.g. UltraScale @ 20nm

— Very large capacity with stacked silicon interconnect (SSI)
e 2000T ="~ 14 M ASIC Gates @ 60% utilization
e VU440 ="~ 29 M ASIC Gates @ 60% utilization

* FPGA Vendors provide tools with the silicon
— Tools are available before silicon for lead partners
— Have incremental build capabilities

* Only FPGAs provide the MHz performance needed for S/W

accellera o
© Accellera Systems Initiative 6

SYSTEMS INITIATIVE

The FPGA Co-Emulator/Accelerator

Hardware (HES : Hardware Emulation System)
— FPGA based system designed for verification
— PCle communication to host for SCE-MI
— Built-in emulation resources (RAM, LVDS/GTX, debug traces)

Compilers (DVM : Design Verification Manager)

— Mix of custom compilers & FPGA vendor tools
* Includes partitioner & automatic multiplexing of signals

— Automate the mapping of the design to the FPGA system
Run-time environment

— Full control and observability
* RTL like debug capabilities (dynamic & static probes)

— Integration with HDL simulators (similar use model)

* VIP
— Transactors (SCE-MI) for standard interfaces AXI, AHB, SPI, PCI, USB ..
— Speed Adaptors for hardware interfaces (USB, Ethernet, PCle)

aceellera o DVCON
© Accellera Systems Initiative 7 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

10,000 Feet View Hardware Assisted

>

I Runtime Performance & Scalability

* SNEAK PEEK: INSIDE NVIDIA’'S EMULATION LAB

H/W RTL Debug Capability
(Controllability, Observability, & Incremental Turn time)

aceellera o DVCON
© Accellera Systems Initiative 8 CONFEREN CE AND EXHIBITION

SYSTEMS INITIATIVE

Increasing UVM throughput with
FPGA-based Co-Emulation

HDL Simulator with SystemVerilog and UVM support
FPGA prototyping board with PCle host interface
SCE-MI infrastructure integration tool

B W

FPGA synthesis and place & route software

5. Design with UVM Testbench compliant to SCE-MI

aceellera o DVCON
© Accellera Systems Initiative O CONFERENCEANDEXHIBITION
SYSTEMS INITIATIVE

UVM Best Practices

/ Test

easier’
UVM

HVL < cassbased

—
—

Test
Module-based | harness

HDL <

Easier UVM diagram kindly provided by Doulos 2015

,\\ DESIGN AND VERIFICATION™
accellera . DVCON
—— © Accellera Systems Initiative 10 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE E URDP E

Typical UVM Simulation

Test
Env Subscriber Subscriber . L

Coverage Scoreboard BFM functionality is
¥ implemented in UVM
D Driver and Monitor

. ’ .
Monitor Driver task driver::do drive();
Monitor Task @ (posedge vif.CLK) ;

while (vif.RST)
\ @ (negedge vif.CLK) ;
A vif. DI <= 'hA5ASASAS;

3 vif.WR <= 1'b0;
Test SV Interface
Harness

endtask

Virtual Interface Virtual Interface

Clocks &

DUT

Resets

DESIGN AND VERQIFQJTQDN"
accellera — DVEOIN
© Accellera Systems Initiative 11 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Typical UVM Simulation

Test
Env .)
Subscriber Subscriber
Coverage Scoreboard
@
Sequencer
Monitor Driver
Monitor Task
Virtual Interface
\4
Test

Clocks &
Resets

SV Interface

DUT

© Accellera Systems Initiative 12

Bottleneck: signal level
acceleration only

Simulation

A\

Acceleration

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Guidelines Simulation Acceleration

* Consistent design & testbench source for simulation and
acceleration in FPGA
— Enables interoperability with simulation only and acceleration

* Transaction-level interfaces between testbench and design

— With compact transaction messages you avoid simulator/emulator
throughput bottleneck

* Separation of Timed/Untimed behavior
— Simulate untimed transactions in UVYM/HVL
— Accelerate timed (design, transactors, clock reset generators)
— Do not use clocks to synchronize with testbench
— Synchronize testbench and design with transactions and events

* And one more.... on the next page =

accellera . DVGOIN
© Accellera Systems Initiative 3 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

SCE-MI — Standard Co-Emulation
Modeling Interface

“SCE-API 2.2 speeds up electronic design verification by allowing a
model developed for simulation to run in an emulation environment
and vice versa"

DUT

Wlessage | Transactor 1
Port 1

" Port
e ssage
Port 3

 Why use SCE-MI?
— Mature standard

Tratigactor 2

ol

=

1
rady

o

SCE-MI Infrastructure

I lock/R eset;
Generation
and Conr ol

— Independent

such as SysternC

— Widely accepted

Software Side (host workstation) Hardware Side (emulator)

 Today we are using 4.7 function-based interface

— http://www.accellera.org/downloads/standards/sce-mi

aceellera o DVCON
© Accellera Systems Initiative 4 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

http://www.accellera.org/downloads/standards/sce-mi

HVL <

HDL <

accelerd)

SYSTEMS INITIATIVE

Using Transactional Interface

Test

Env

Monitor

Monitor Task

Virtual Interface

Driver

Virtual Interface

BFM Proxy SV Interface

C Proxy Layer <

DPI-C

Test
Harness

Clocks &
Resets

\ 4

BFM Module

DUT

© Accellera Systems Initiative

15

BFM Proxy

* Using SV Interface to comply with
UVM best practices

* Forwards transaction-level interface
to UVM

* Defines TB notification transactions
used by BFM Module

BFM Module

* Implements Bus Functional Model

* Provides transaction-level interface
used by Testbench & UVM

Test Harness and Testbench

 Communicate using untimed
transactions

* Clock generation remains in Test
Harness

* Testbench does not use clock
2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Using Transactional Interface

What we achieve

* Transaction level interface
between Testbench and Test
Harness

* Untimed communication

* Same testbench for simulation
and acceleration

(‘
Test
Env
HVL < Monitor Driver
Monitor Task
Virtual Interface
BFM Proxy SV Interface
\ ~\-.__ —————————
C Proxy Layer < DPI-C
et e —
€s BFM Module
Harness

HDL <

Clocks &

DUT

Resets

accelerd)

SYSTEMS INITIATIVE

© Accellera Systems Initiative

16

__ — Simulation

—~ Acceleration

Transaction-Level

Acceleration
2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Transactional Interface with SCE-M|

SCE-MI function based use model concept

write(addr,wdata)

HVL _—
G —

rdata=read(addr)

* Function call makes a transaction

* Transaction bears a message in
— Call arguments
— Return value

* Function defined in HDL is called in HVL context (export)
* Function defined in HVL is called in HDL context (import)

aceellera » BV TN
© Accellera Systems Initiative 7 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

SV DPI-C in SCE-MI Function-Based

HVL DPI-C wrapper HDL
SystemVerilog, UVM SystemVerilog

Call Functions from HDL

hdl_*() Wrap HDL *() (Define Functions

. for Testbench
hdl PutData () (__Import ¢ HFu:;Ictlons ﬁ Export (purpata ()
hdl GetData () . -l andie scope GetData ()

\ | G /
/
Define Notification 0 Wrap HVL hvl *() : 0
Functions for HDL Export > Functions > Import
ResetDone () Handle scope | ResetDone
l /
2015

Cal I Ch a.i n DESIGN AND VERIFICATION™
accellera DVEON

© Accellera Systems Initiative 18 CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Tutorial Example — UUT

UUT
. 0) [

RST ~ DOBLO) Design Under Test
’

CLK * Register file with SRAM-like interface
+_

EN * Asynchronous reset (RST)
’

WR * Synchronous write (WR=1)
+{SEL(1:0) e Asynchronous read (WR=0)
1 DI(31:0)
mydut

aceellera o DVCON
© Accellera Systems Initiative 9 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

Typical Connection of UVM to Design

module top th;

/| interface bus0 _if();

/ . .
logic clock = 0; R4 109}0 RST;
logic reset; A logic CLK;
.7 logic EN;
/ . .
busO0 if bus0 1if0(); 7 log}c WR;
B - AN logic [1:0] SEL;
\ -
mydut uut (™ logic [31:0] DI;
N\ . . .
.RST (mydut_if0.RST), A logic [31:0] DO;
CLK(mydut_ifo CLK) *.|endinterface : busO_if

.EN (mydut if0.EN),
-WR (mydut if0.WR),

.SEL (mydut_if0.SEL), Interface instance bus0O if0
.DI (mydut if0.DI), . .
.DO (mydut_i£0.DO) makes a hook for UVM Driver
) connection
2015

aceellera » DV TR
© Accellera Systems Initiative 20 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Typical Connection of UVM to Design

module top tb;
// (...) some other boilerplate code

// UVM Config
top config env config;

initial
begin
// Create and populate UVM Config
env_config = new("env config");
if ('env_config.randomize())
"uvm_error ("top_config", “randomize failed")

-
| env_config.busO_vif = top_th.bus0_if0; :

// more config settings below ...

accellera -
© Accellera Systems Initiative 21

SYSTEMS INITIATIVE

Hierarchical
name of

bus0 1f0
interface passed
to UVM
components via
configuration
object
env_config

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Typical UVM Driver Implementation

class bus0_driver extends uvm driver #(busO_rw_tr);

‘uvm_component utils (bus0_driver)
virtual busO_if vif;

extern function new(string name, uvm component

parent) ;
extern task run_phase (uvm phase phase);

extern function void report_phase (uvm phase phase);

extern task do_drive();

Virtual interface used
to drive and sense design
ports

endclass : bus0O_driver .
-
RS
’
’
’
’
’
’
’
’
R
>
task busO_driver::run_phase&wﬁh_phase phase) ;
forever ,z’
begin ,,’
seq_item_port.gﬁf_pext_item(req);
do _drive(); <‘~
seq_item port.itém.done();
end ~~~\
endtask : run phase SSao
>
Ty
NNN\
NNN
~
accellera -
© Accellera Systems Initiative 22

SYSTEMS INITIATIVE

task busO_driver::do_drive();
@ (posedge vif.CIK) ;
// Wait until reset is off
while (vif.RST)
@ (negedge vif.CLK) ;
// Set default wvalues
vif.DI <= 'hASAS5A5A5;
vif.WR <= 1'b0;
vif.SEL <= req.sel;
if (req.wr) begin
vif.DI <= req.data;
vif.WR <= 1'bl;
end
// Enable operation and execute
vif.EN <= 1'bl;
@ (posedge vif.CILK) ;
vif.EN <= 1'b0;
endtask

Changes for Acceleration Ready Test Env.

Replace bus0 1if interface with BFM module

2. Move do drive task to BFM module and export it
using SV DPI-C

3. Create DPI-C wrapper for do drive
Create BFM proxy interface and connect it with UVM
5. Change UVM Driver to use imported do drive

accellera . DVCON
© Accellera Systems Initiative 2 cotuECERDEETEY
SYSTEMS INITIATIVE

Creating BFM Module (Xtor)

interface bus0_if(); module bus0_if xtor(

logic RST; // BFM for bus0 interface

logic CLK; input logic RST,

logic EN; input logic CLK,

logic WR; output logic EN,

logic [1:0] SEL; output logic WR,

logic [31:0] DI; output logic [1:0] SEL,

logic [31:0] DO; output logic [31:0] DI,
endinterface : bus0O_if input logic [31:0] DO

)
7 // ... Implements task do drive
’,z’ endmodule

BFM module also called-”” [module top_th;

Transactor (xtor) -~ logic RST, CLK, EN, WR;
logic [1:0] SEL;
logic [31:0] DI, DO;

. busO0 if xtor mydut if0 bfm (.*);
Changed instance_ b mydut uot (.*);

under top_th /] ...
endmodule 2015

accellera Syl

© Accellera Systems Initiative 24 e LSRR T e

SYSTEMS INITIATIVE

* Export task via DPI-C

Moving do_drive to Xtor

* Input arguments make transaction

@ (posedge

vif.DI <=
vif.WR <=

end

// Enable

vif.EN <=

@ (posedge

vif.EN <=
endtask

task busO _driver::do drive();

vif.CLK) ;

// Wait until reset is off
while (vif.RST)

@ (negedge vif.CLK) ;
// Set default values

'"hAS5A5A5A5;
1'b0;

vif.SEL <= req.sel;

if (req.wr) begin
vif.DI <= req.data;
vif.WR <= 1'bl;

operation and execute
1'bl;

vif.CLK) ;

1'b0;

SYSTEMS INITIATIVE

© Accellera Systems Initiative

25

>»| export "DPI-C" task do_drive;
task do_drive (
input byte wr _dpi,
input byte sel dpi,
input int unsigned data dpi
) ;
@ (posedge CIK) ;
// Wait until reset is off
while (RST)
@ (posedge CIK) ;
// Set default values
di <= 'hAS5AS5A5A5;
wr <= 1'b0;
sel <= sel dpi[1:0];
if (wr_dpi[0]) begin
di <= data_dpi;
wr <= 1'bl;
end
// Enable operation and execute
en <= 1'bl;
@ (posedge CIK) ;
en <= 1'b0;
endtask

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Creating DPI-C wrapper

* The wrapper is C/C++ function

* The simplest wrapper has to:
— Set scope for called SV task
— Call the exported SV task

* Can do additional computation or transformation of input data

int hdl do drive (
char wr,
char sel,

Using SystemVerilog DPI utilities:
* svGetScope and svSetScope

uint32 t data)

4

’
// Set scope | {

/
scopeutils::set_hdl_scope((;
// Call exported do_drive W\

do drive(wr, sel, data); \ }

{ /| void set_hdl scope ()

svScope my scope = svGetScope(); //hvl scope
svSetScope (g scopes map.find hdl (my scope)) ;
A

return 0;

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

g scope s'_map — a container with

lookup methods to find corresponding HVL

and HDL scopes N 40) S

DVCON

26 CONFERENCE AND EXHIBITION

Scope handling helper class

class scopes {

map<svScope, svScope> m hvl hdl; g_SCOpeS_map —a container with
map<svScope, svScope> m hdl hvl; |00kup methods to find
public: .
void insert(svScope hvl, svScope hdl); Correspondmg HVL and HDL SCOPEs
svScope & find_hdl(svScope hvl); set scopes —function called on
svScope & find hvl (svScope hdl); T . . .
) P - P SystemVerilog HVL site via DPI-C
// global variable - container for scopes

extern scopes g scopes map;

void set scopes(const char * hdl path)
// Used to set HDL and HVL transactor parts (the scopes)
// This function must be called once for each transactor
// at the beginning of simulation
// This function must be called in HVL scope
{
svScope hvl scope = svGetScope() ;
svScope hdl scope = svGetScopeFromName (hdl path) ;
scopeutils::g scopes map.insert(hvl scope, hdl scope);

DESIGN AND VER2FQJT§ON"
accellera - DVCON
© Accellera Systems Initiative 27 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Creating BFM Proxy

interface bus0 if();

endinterface : busO_if

// Scope initialization

S .- Use SV interface

import "DPI-C" context function €==——==-=- .- Import function for handling scopes

void set scopes (input string hdl path);

// Driver task
import "DPI-C" context task hdl do drive(€<
input byte wr_dpi,
input byte sel dpi,
input int unsigned data _dpi);

// Monitor task
export "DPI-C" task do _mon;
task do_mon (
input byte wr_dpi,
input byte sel dpi,
input int unsigned data_dpi

)

__ Import functions from BFM module

2015

accellera -
© Accellera Systems Initiative 28

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Connecting BFM Proxy

module top tb; ‘@'HiEI'EIr[h'jI'
// (...) some other boilerplate code
// BFM xtor proxy instance |
bus0O if bus0 1if0 scemi proxy();\
- - - S Name
initial \ &4k top th :
bus0_if0 scemi proxy.set scopes("top\t,p bus0_if0"); : . = - bus0 if0 :
| | —*—— —————— 9. # |_||_||:
// UVM g(l)l'lflg Obje(;t.: \\\ : %@MS|GN#4E 0@
top config env configy; \\\ %@MSIGN##? 1@
initial N E‘} @INITIAL#50 2@
N
begin -,q}"i* @INITIAL#E3 3@
// Create and populate UVM Config El%tl:lp to
env_config = new("env config"); ﬁtﬂ: bus0 if0_scemi_proxy
if ('env_config.randomize()) Eﬁi‘ @INITIAL#42 0@
"uvm_error ("top_config", “Randomize failed") ‘}@INITIAL#EE 1@
e 8 8 N N B B § 0 ¥ B B 0 0 N N B B § 8 § &0 § § § § N § § § § N § § |
: env_config.bus0 vif = top_ tb.bus0 if0 sceml_proxy,}'

* BFM Proxy instantiated under Testbench module (top_tb)
* [ts handle is passed to UVM in a typical way

SYSTEMS INITIATIVE

© Accellera Systems Initiative

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Changing UVM Driver

task mybusO driver::do drive();

byte wr = 8'b0 | req.wr;
byte sel = 8'b0 | req.sel;
int unsigned data = req.data;

// Call imported DPI-C task from BFM proxy
vif.hdl do_drive (wr,sel,data);

endtask

* New implementation of UVM Driver task do drive
* No more UVM code changed

2015
accellera - DVCON
© Accellera Systems Initiative 30

CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Walking the Call Chain

task bus0O driver::do drive(); BFM Module, SystemVerilog

// Call imported DPI-C task task do drive (

vif.hdl do_drive(wr,sel,data); input_byte wr dpi, sel dpi,
endtask I input int unsigned data dpi) ;

interface bus0 if(); while (RST) @ (posedge CLK) ;

// Driver task di <= 'hASAS5ALA5;
"DPI-C" context wr <= 1'b0;
task hdl do drive (— sel <= sel _dpi[l:0];

e input byte cmd wr nrd, sel 1t .(wr:dpl[O]) 1I3e.g:|.n
input int unsigned data); di <= data dpi;
/]) wr <= 1'bl;
endinterface end
en <= 1'bl;
| DPI-C Wrapper, C/C++ @ (posedge CLK) ;
»int hdl do drive (char wr, en <= 1'b0;
char sel, uint32 t data)| | endtask
{ // Set scope "DPT-C" task do drive;
scopeutils::set hdl scope(); —
do_drive (wr, sel, data); 2015

accellera return 0; e 200

} CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE © Accellera Systems Initiative 31

Summary Of Adaptions

Test

Test
Env Subscriber Subscriber
Coverage Scoreboard
Monitor Driver
Monitor Task
Virtual Interface
Test SV Interface
Harness
Clocks &
Resets D U T

Env Subscriber Subscriber
Coverage Scoreboard
O @

Driver

Virtual Interface

BFM Proxy SV Interface

¢
Monitor

Virtual Interface

C Proxy Layer + -|- DPI-C
v

SYSTEMS INITIATIVE

Clocks &

Test
Harness

BFM Module

DUT

Resets

015

FICATION™

CONFERENCE AND EXHIBITION

Clock & Reset Generation

// Clock generator process
initial
begin
clock = 0;
#5;
forever begin
clock = 1'bl;
#5;
clock = 1'b0;
#5;
end
end

// reset generator process
initial

SYSTEMS INITIATIVE

begin
reset = 1;
repeat (5) (¢ (negedge clock);
reset = 0y
end
© Accellera Systems Initiative 33

SceMiClockPortExt

clk

rst n

CReset

Clock & Reset behavioral
processes is automatically
converted to FPGA resources
(SCE-MI infrastructure)

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

SCE-MI Transactors Coding Style

 SCE-MI does not impose any coding style
e Common denominator is: Synthesizable + DPI-C

 Compilers typically accept more than RTL:
— ISM — Implicit State Machines (used in this tutorial!)
— System tasks (e.g. Sdisplay, S$readmemh)
— Shared variables (multiple drivers)
— Hierarchical names
— Named events (-->reset done event)

aceellera o DVCON
© Accellera Systems Initiative 4 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

SCE-MI Constraints on the DPI-C

“SCE-MI uses a subset of DPI that is restricted in such a way as
to provide a nice balance between usability, ease of adoption

and implementation.”

e Data types used with DPI-C functions are limited
* 4-state logic can be converted to 2-state (1/0)

e Supported 2 levels of nesting when calling imported
functions from exported and vice versa

IIIIIIIIIIIIIIIIIIIIII

accellera - ER T R
© Accellera Systems Initiative 3% CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

SCE-MI Constraints on the DPI-C

Scalar basic types:

bit
byte

byte unsigned

shortint

shortint unsigned

INt

int unsigned

longint

longint unsigned

Constant string type:

string

Packed one or multi dimensional arrays of

type bit and logic

Packed struct types

SYSTEMS INITIATIVE

© Accellera Systems Initiative

36

Scalar basic types:
unsigned char
char
unisgned char
short int
unsigned short int
int
unsigned int
long long
unsigned long long

Constant string type:
const char *

Canonical arrays of
svBitVecVal and svLogicVecVal

Canonical arrays of
svBitVecVal and svLogicVecVal

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Acceleration Ready
what’s next?

Running Simulation Acceleration

aceellera) DVCON

SYSTEMS INITIATIVE

Running the UVM Simulation

Compile UUT

Test Harness II

& RTL DUT Compile XTORS &

Test Harness

Compile UVM Test
Environment

accellera -
© Accellera Systems Initiative 38

SYSTEMS INITIATIVE

Elaborate & Run
Testbench

DPI-C
sources.list
Compile DPI-C lib

libMyDpi.so

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Accelerating Test Harness

Test
Harness

BFM Module

Clocks &

Resets DUT

SCE-MI DPI Bridge & Synchronization
PCle Link

SCE-MI XTOR
SCE-MI
DUT
Resets
accellera o
© Accellera Systems Initiative 39

SYSTEMS INITIATIVE

Clocks &

Compiled
Share Libs
Running On
Host

FPGA
>~ Co-Emulator

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Creating the Acceleration Build

Test Harness II Compile Design SCE-MI 2 Compiler for UVM

& RTL DUT

_ P Debug Instrumentation
TCL Script / y Setup Memory Models

File Lists
Synthesis II
Guided partitions

Configure memory models Partitioning
Connect to daughter-board

Generates xml config &
Generate Config makefiles for SCE-MI Bridge
DPI-C proxy for HVL

Implement (P&R)

aceellera » DV TR
© Accellera Systems Initiative 40 CONFEREN CE AND EXHIBITION

SYSTEMS INITIATIVE

Running UVM Simulation Acceleration

_ . DPI-C
Generated Compile & Link

SCE-MlI to DPI sources.list
bridge (C++ code)

SCE-MI DPI Bridge

I Elaborate Testbench config.xml
UVM TB

ll FPGA bit-
iles

Program & Run HVL

accellera -
© Accellera Systems Initiative 41

SYSTEMS INITIATIVE

Summary

* The use of FPGAs can be extended to functional
verification through the use of a co-emulation
system.

 Demonstrated minor adaptions to the Easier UVM
coding style that would enable acceleration with a
co-emulator through the use of SCE-MI.

* Using standards, SystemVerilog & SCE-MI, provides a
common interoperable testbench for both simulation
and hardware-assisted verification.

86'08//8[‘3 .
© Accellera Systems Initiative 42
SYSTEMS INITIATIVE

Additional Reading & References

 Acceleration Solutions on Aldec’s website:
www.aldec.com/solutions/acceleration

e SCE-MI:
http://accellera.org/downloads/standards/sce-mi

e Easier UVM:
http://www.doulos.com/content/events/easierUVM.php

R4 R
accellera DVEON

© Accellera Systems Initiative 43 cHosEetoneEnbe
SYSTEMS INITIATIVE

http://www.aldec.com/solutions/acceleration
http://accellera.org/downloads/standards/sce-mi
http://www.doulos.com/content/events/easierUVM.php

e

SYSTEMS INITIATIVE

Questions

(2015

DESIGN AND VERIF CATION™

DVI:I:IN

CON ERENCE AND EXHI BTON

