
UVM hardware assisted acceleration
with FPGA co-emulation

Alex Grove, Aldec Inc.

1© Accellera Systems Initiative

Tutorial Objectives

• Discuss use of FPGAs for functional verification, and
explain how to harness FPGAs into a mainstream
verification methodology such as UVM

• Introduce a SCE-MI based approach using the Easier
UVM coding style as a reference for industry best
practice

• Outline a methodology for a portable and
interoperable UVM simulation environment that is
acceleration ready

© Accellera Systems Initiative 2

The Why? The Need For Speed..

© Accellera Systems Initiative 3

• Moore’s law still keeps on going ..
– Now set to the doubling of transistors every two years

• Emulation that’s as old as EDA is in growth!
– Significant growth in the last three years

• Verification continues to get harder and harder
– Wilson Research Group Functional Verification Study

– Now includes S/W (HdS – Hardware Dependent Software)

• The death of CPU scaling ~2010
– Multi-cores are not utilized in RTL simulation

• The rise of constrained random approaches
– Required for coverage of today’s complex designs

The Death Of CPU Scaling

© Accellera Systems Initiative

Chuck Moore, "DATA PROCESSING IN EXASCALE CLASS

COMPUTER SYSTEMS", The Salishan Conference on High

Speed Computing, 2011

4

The Why? The Need For Speed..

© Accellera Systems Initiative 5

• Moore’s law still keeps on going ..
– Now set to the doubling of transistors every two years

• Emulation that’s as old as EDA is in growth!
– Significant growth in the last three years

• Verification continues to get harder and harder
– Wilson Research Group Functional Verification Study

– Now includes S/W (HdS – Hardware Dependent Software)

• The death of CPU scaling ~2010
– Multi-cores are not utilized in RTL simulation

• The rise of constrained random approaches
– Required for coverage of today’s complex designs

FPGAs as a Verification Platform

• FPGAs are reprogrammable .. have replaced test chips

• Low cost as “generic” platforms
– Large devices used by leading network companies

– 0.25 to 0.5 cents per gate vs. 2-5 cents of big box emulators*

• Leading edge technology node e.g. UltraScale @ 20nm
– Very large capacity with stacked silicon interconnect (SSI)

• 2000T = ~ 14 M ASIC Gates @ 60% utilization

• VU440 = ~ 29 M ASIC Gates @ 60% utilization

• FPGA Vendors provide tools with the silicon
– Tools are available before silicon for lead partners

– Have incremental build capabilities

• Only FPGAs provide the MHz performance needed for S/W

* Hogan compares Palladium, Veloce, EVE ZeBu, Aldec, Bluespec, Dini

© Accellera Systems Initiative 6

The FPGA Co-Emulator/Accelerator
• Hardware (HES : Hardware Emulation System)

– FPGA based system designed for verification
– PCIe communication to host for SCE-MI
– Built-in emulation resources (RAM, LVDS/GTX, debug traces)

• Compilers (DVM : Design Verification Manager)
– Mix of custom compilers & FPGA vendor tools

• Includes partitioner & automatic multiplexing of signals

– Automate the mapping of the design to the FPGA system

• Run-time environment
– Full control and observability

• RTL like debug capabilities (dynamic & static probes)

– Integration with HDL simulators (similar use model)

• VIP
– Transactors (SCE-MI) for standard interfaces AXI, AHB, SPI, PCI, USB ..
– Speed Adaptors for hardware interfaces (USB, Ethernet, PCIe)

© Accellera Systems Initiative 7

10,000 Feet View Hardware Assisted

© Accellera Systems Initiative 8

R
u
n
ti
m

e
 P

e
rf

o
rm

a
n
c
e
 &

 S
c
a
la

b
ili

ty

H/W RTL Debug Capability

(Controllability, Observability, & Incremental Turn time)

* SNEAK PEEK: INSIDE NVIDIA’S EMULATION LAB

Increasing UVM throughput with
FPGA-based Co-Emulation

1. HDL Simulator with SystemVerilog and UVM support

2. FPGA prototyping board with PCIe host interface

3. SCE-MI infrastructure integration tool

4. FPGA synthesis and place & route software

5. Design with UVM Testbench compliant to SCE-MI

© Accellera Systems Initiative 9

UVM Best Practices

© Accellera Systems Initiative 10

Easier UVM diagram kindly provided by Doulos

HVL

HDL

Test
Harness

Test

Env

Typical UVM Simulation

© Accellera Systems Initiative 11

task driver::do_drive();

@(posedge vif.CLK);

while (vif.RST)

@(negedge vif.CLK);

vif.DI <= 'hA5A5A5A5;

vif.WR <= 1'b0;

//(...)

endtask

BFM functionality is
implemented in UVM
Driver and MonitorAgent

Monitor

Virtual Interface

Monitor Task

Driver

Virtual Interface

Driver Task

DUT

SV Interface

Clocks &

Resets

Sequencer

Subscriber
Coverage

Subscriber
Scoreboard

Test
Harness

Test

Env

Typical UVM Simulation

© Accellera Systems Initiative 12

Agent

Monitor

Virtual Interface

Monitor Task

Driver

Virtual Interface

Driver Task

DUT

SV Interface

Clocks &

Resets

Sequencer

Subscriber
Coverage

Subscriber
Scoreboard

Bottleneck: signal level
acceleration only

Acceleration

Simulation

Guidelines Simulation Acceleration

• Consistent design & testbench source for simulation and
acceleration in FPGA
– Enables interoperability with simulation only and acceleration

• Transaction-level interfaces between testbench and design
– With compact transaction messages you avoid simulator/emulator

throughput bottleneck

• Separation of Timed/Untimed behavior
– Simulate untimed transactions in UVM/HVL

– Accelerate timed (design, transactors, clock reset generators)

– Do not use clocks to synchronize with testbench

– Synchronize testbench and design with transactions and events

• And one more…. on the next page 

© Accellera Systems Initiative 13

SCE-MI – Standard Co-Emulation
Modeling Interface

• Why use SCE-MI?

– Mature standard

– Independent

– Widely accepted

• Today we are using 4.7 function-based interface

– http://www.accellera.org/downloads/standards/sce-mi

© Accellera Systems Initiative 14

“SCE-API 2.2 speeds up electronic design verification by allowing a

model developed for simulation to run in an emulation environment

and vice versa"

http://www.accellera.org/downloads/standards/sce-mi

Using Transactional Interface

© Accellera Systems Initiative 15

BFM Proxy
• Using SV Interface to comply with

UVM best practices

• Forwards transaction-level interface
to UVM

• Defines TB notification transactions
used by BFM Module

BFM Module
• Implements Bus Functional Model

• Provides transaction-level interface
used by Testbench & UVM

Test Harness and Testbench
• Communicate using untimed

transactions

• Clock generation remains in Test
Harness

• Testbench does not use clock

Test
Harness

Test

Env
Agent

Monitor

Virtual Interface

Monitor Task

Driver

Virtual Interface

Driver Task

DUT

BFM Module

Clocks &

Resets

C Proxy Layer DPI-C

BFM Proxy SV Interface

HVL

HDL

Using Transactional Interface

© Accellera Systems Initiative 16

Test
Harness

Test

Env
Agent

Monitor

Virtual Interface

Monitor Task

Driver

Virtual Interface

Driver Task

DUT

BFM Module

Clocks &

Resets

What we achieve
• Transaction level interface

between Testbench and Test
Harness

• Untimed communication

• Same testbench for simulation
and acceleration

Acceleration

Simulation

HVL

HDL
DUT

BFM Module

Clocks &

Resets

BFM Proxy

C Proxy Layer DPI-C

BFM Proxy SV Interface

Transaction-Level
Acceleration

Transactional Interface with SCE-MI

• Function call makes a transaction
• Transaction bears a message in

– Call arguments
– Return value

• Function defined in HDL is called in HVL context (export)
• Function defined in HVL is called in HDL context (import)

© Accellera Systems Initiative 17

SCE-MI function based use model concept

HVL HDL
write(addr,wdata)

rdata=read(addr)

SV DPI-C in SCE-MI Function-Based

© Accellera Systems Initiative 18

HDL
SystemVerilog

HVL
SystemVerilog, UVM

DPI-C wrapper
C, C++

Define Functions
for Testbench
PutData()

GetData()

Wrap HDL
Functions

Handle scope

Call Functions from HDL

hdl_PutData()

hdl_GetData()

ExportImport

Define Notification
Functions for HDL
ResetDone()

Wrap HVL
Functions

Handle scope

Call HVL Functions

hvl_ResetDone()

Export Import

() hvl_()

hdl_*() *()

Call Chain

Tutorial Example – UUT

Design Under Test

• Register file with SRAM-like interface

• Asynchronous reset (RST)

• Synchronous write (WR=1)

• Asynchronous read (WR=0)

© Accellera Systems Initiative 19

RST DO(31:0)

CLK

EN

WR

SEL(1:0)

DI(31:0)

UUT

mydut

Typical Connection of UVM to Design

© Accellera Systems Initiative 20

module top_th;

logic clock = 0;

logic reset;

bus0_if bus0_if0();

mydut uut (

.RST(mydut_if0.RST),

.CLK(mydut_if0.CLK),

.EN(mydut_if0.EN),

.WR(mydut_if0.WR),

.SEL(mydut_if0.SEL),

.DI(mydut_if0.DI),

.DO(mydut_if0.DO)

);

//...

interface bus0_if();

logic RST;

logic CLK;

logic EN;

logic WR;

logic [1:0] SEL;

logic [31:0] DI;

logic [31:0] DO;

endinterface : bus0_if

Interface instance bus0_if0
makes a hook for UVM Driver
connection

Typical Connection of UVM to Design

© Accellera Systems Initiative 21

module top_tb;

// (...) some other boilerplate code

// UVM Config

top_config env_config;

initial

begin

// Create and populate UVM Config

env_config = new("env_config");

if (!env_config.randomize())

`uvm_error("top_config", “randomize failed")

env_config.bus0_vif = top_th.bus0_if0;

// more config settings below ...

Hierarchical
name of
bus0_if0

interface passed
to UVM
components via
configuration
object
env_config

Typical UVM Driver Implementation

© Accellera Systems Initiative 22

task bus0_driver::run_phase(uvm_phase phase);

forever

begin

seq_item_port.get_next_item(req);

do_drive();

seq_item_port.item_done();

end

endtask : run_phase

class bus0_driver extends uvm_driver #(bus0_rw_tr);

`uvm_component_utils(bus0_driver)

virtual bus0_if vif;

extern function new(string name, uvm_component

parent);

extern task run_phase(uvm_phase phase);

extern function void report_phase(uvm_phase phase);

extern task do_drive();

endclass : bus0_driver
task bus0_driver::do_drive();

@(posedge vif.CLK);

// Wait until reset is off

while (vif.RST)

@(negedge vif.CLK);

// Set default values

vif.DI <= 'hA5A5A5A5;

vif.WR <= 1'b0;

vif.SEL <= req.sel;

if (req.wr) begin

vif.DI <= req.data;

vif.WR <= 1'b1;

end

// Enable operation and execute

vif.EN <= 1'b1;

@(posedge vif.CLK);

vif.EN <= 1'b0;

endtask

Virtual interface used
to drive and sense design
ports

Changes for Acceleration Ready Test Env.

1. Replace bus0_if interface with BFM module

2. Move do_drive task to BFM module and export it
using SV DPI-C

3. Create DPI-C wrapper for do_drive

4. Create BFM proxy interface and connect it with UVM

5. Change UVM Driver to use imported do_drive

© Accellera Systems Initiative 23

Creating BFM Module (Xtor)

© Accellera Systems Initiative 24

module bus0_if_xtor(

// BFM for bus0 interface

input logic RST,

input logic CLK,

output logic EN,

output logic WR,

output logic [1:0] SEL,

output logic [31:0] DI,

input logic [31:0] DO

);

// ... Implements task do_drive

endmodule

interface bus0_if();

logic RST;

logic CLK;

logic EN;

logic WR;

logic [1:0] SEL;

logic [31:0] DI;

logic [31:0] DO;

endinterface : bus0_if

1

module top_th;

logic RST, CLK, EN, WR;

logic [1:0] SEL;

logic [31:0] DI, DO;

bus0_if_xtor mydut_if0_bfm (.*);

mydut uut (.*);

// ...

endmodule

BFM module also called
Transactor (xtor)

Changed instance

under top_th

Moving do_drive to Xtor

© Accellera Systems Initiative 25

2

task bus0_driver::do_drive();

@(posedge vif.CLK);

// Wait until reset is off

while (vif.RST)

@(negedge vif.CLK);

// Set default values

vif.DI <= 'hA5A5A5A5;

vif.WR <= 1'b0;

vif.SEL <= req.sel;

if (req.wr) begin

vif.DI <= req.data;

vif.WR <= 1'b1;

end

// Enable operation and execute

vif.EN <= 1'b1;

@(posedge vif.CLK);

vif.EN <= 1'b0;

endtask

export "DPI-C" task do_drive;

task do_drive(

input byte wr_dpi,

input byte sel_dpi,

input int unsigned data_dpi

);

@(posedge CLK);

// Wait until reset is off

while (RST)

@(posedge CLK);

// Set default values

di <= 'hA5A5A5A5;

wr <= 1'b0;

sel <= sel_dpi[1:0];

if (wr_dpi[0]) begin

di <= data_dpi;

wr <= 1'b1;

end

// Enable operation and execute

en <= 1'b1;

@(posedge CLK);

en <= 1'b0;

endtask

• Export task via DPI-C

• Input arguments make transaction

Creating DPI-C wrapper

© Accellera Systems Initiative 26

3

int hdl_do_drive (

char wr,

char sel,

uint32_t data)

{

// Set scope

scopeutils::set_hdl_scope();

// Call exported do_drive

do_drive(wr, sel, data);

return 0;

}

• The wrapper is C/C++ function

• The simplest wrapper has to:
– Set scope for called SV task

– Call the exported SV task

• Can do additional computation or transformation of input data

void set_hdl_scope ()

{

svScope my_scope = svGetScope(); //hvl scope

svSetScope(g_scopes_map.find_hdl(my_scope));

}

Using SystemVerilog DPI utilities:

• svGetScope and svSetScope

g_scopes_map – a container with
lookup methods to find corresponding HVL
and HDL scopes

Scope handling helper class

© Accellera Systems Initiative 27

class scopes {

map<svScope, svScope> m_hvl_hdl;

map<svScope, svScope> m_hdl_hvl;

public:

void insert(svScope hvl, svScope hdl);

svScope & find_hdl(svScope hvl);

svScope & find_hvl(svScope hdl);

};

// global variable – container for scopes

extern scopes g_scopes_map;

void set_scopes(const char * hdl_path)

// Used to set HDL and HVL transactor parts (the scopes)

// This function must be called once for each transactor

// at the beginning of simulation

// This function must be called in HVL scope

{

svScope hvl_scope = svGetScope();

svScope hdl_scope = svGetScopeFromName(hdl_path);

scopeutils::g_scopes_map.insert(hvl_scope, hdl_scope);

}

g_scopes_map – a container with
lookup methods to find
corresponding HVL and HDL scopes

set_scopes – function called on
SystemVerilog HVL site via DPI-C

3

Creating BFM Proxy

© Accellera Systems Initiative 28

4

interface bus0_if();

// Scope initialization

import "DPI-C" context function

void set_scopes(input string hdl_path);

// Driver task

import "DPI-C" context task hdl_do_drive(

input byte wr_dpi,

input byte sel_dpi,

input int unsigned data_dpi);

// Monitor task

export "DPI-C" task do_mon;

task do_mon(

input byte wr_dpi,

input byte sel_dpi,

input int unsigned data_dpi

);

endinterface : bus0_if

Use SV interface

Import function for handling scopes

Import functions from BFM module

Connecting BFM Proxy

© Accellera Systems Initiative 29

module top_tb;

// (...) some other boilerplate code

// BFM xtor proxy instance

bus0_if bus0_if0_scemi_proxy();

initial

bus0_if0_scemi_proxy.set_scopes("top_th.bus0_if0");

// UVM Config object

top_config env_config;

initial

begin

// Create and populate UVM Config

env_config = new("env_config");

if (!env_config.randomize())

`uvm_error("top_config", “Randomize failed")

env_config.bus0_vif = top_tb.bus0_if0_scemi_proxy;

4

• BFM Proxy instantiated under Testbench module (top_tb)

• Its handle is passed to UVM in a typical way

Changing UVM Driver

© Accellera Systems Initiative 30

5

task mybus0_driver::do_drive();

byte wr = 8'b0 | req.wr;

byte sel = 8'b0 | req.sel;

int unsigned data = req.data;

// Call imported DPI-C task from BFM proxy

vif.hdl_do_drive(wr,sel,data);

endtask

• New implementation of UVM Driver task do_drive

• No more UVM code changed

task do_drive(

input byte wr_dpi, sel_dpi,

input int unsigned data_dpi);

@(posedge CLK);

while (RST) @(posedge CLK);

di <= 'hA5A5A5A5;

wr <= 1'b0;

sel <= sel_dpi[1:0];

if (wr_dpi[0]) begin

di <= data_dpi;

wr <= 1'b1;

end

en <= 1'b1;

@(posedge CLK);

en <= 1'b0;

endtask

export "DPI-C" task do_drive;

BFM Module, SystemVerilog

Walking the Call Chain

© Accellera Systems Initiative 31

task bus0_driver::do_drive();

// Call imported DPI-C task

vif.hdl_do_drive(wr,sel,data);

endtask

UVM Driver, SystemVerilog

int hdl_do_drive (char wr,

char sel, uint32_t data)

{ // Set scope

scopeutils::set_hdl_scope();

do_drive(wr, sel, data);

return 0;

}

DPI-C Wrapper, C/C++

BFM Proxy Interface, SystemVerilog

interface bus0_if();

// Driver task

import "DPI-C" context

task hdl_do_drive(

input byte cmd_wr_nrd, sel

input int unsigned data);

//(...)

endinterface

Summary Of Adaptions

Clock & Reset Generation

© Accellera Systems Initiative 33

// Clock generator process

initial

begin

clock = 0;

#5;

forever begin

clock = 1'b1;

#5;

clock = 1'b0;

#5;

end

end

// reset generator process

initial

begin

reset = 1;

repeat(5) @(negedge clock);

reset = 0;

end

CClock

CReset

clk

rst_n

SceMiClockPortExt

Clock & Reset behavioral
processes is automatically
converted to FPGA resources
(SCE-MI infrastructure)

SCE-MI Transactors Coding Style

• SCE-MI does not impose any coding style

• Common denominator is: Synthesizable + DPI-C

• Compilers typically accept more than RTL:

– ISM – Implicit State Machines (used in this tutorial!)

– System tasks (e.g. $display, $readmemh)

– Shared variables (multiple drivers)

– Hierarchical names

– Named events (-->reset_done_event)

© Accellera Systems Initiative 34

SCE-MI Constraints on the DPI-C

• Data types used with DPI-C functions are limited

• 4-state logic can be converted to 2-state (1/0)

• Supported 2 levels of nesting when calling imported
functions from exported and vice versa

© Accellera Systems Initiative 35

“SCE-MI uses a subset of DPI that is restricted in such a way as

to provide a nice balance between usability, ease of adoption

and implementation.”

SCE-MI Constraints on the DPI-C
DPI formal argument types Corresponding types mapped to C

Scalar basic types:

bit

byte

byte unsigned

shortint

shortint unsigned

int

int unsigned

longint

longint unsigned

Scalar basic types:

unsigned char

char

unisgned char

short int

unsigned short int

int

unsigned int

long long

unsigned long long

Constant string type:

string

Constant string type:

const char *

Packed one or multi dimensional arrays of

type bit and logic

Canonical arrays of

svBitVecVal and svLogicVecVal

Packed struct types Canonical arrays of

svBitVecVal and svLogicVecVal

© Accellera Systems Initiative 36

Acceleration Ready
what’s next?

Running Simulation Acceleration

© Accellera Systems Initiative 37

Running the UVM Simulation

© Accellera Systems Initiative 38

Compile UUT

Compile XTORS &
Test Harness

Compile UVM Test
Environment

Compile DPI-C lib

Elaborate & Run
Testbench

libMyDpi.so

Test Harness
& RTL DUT

UVM TB

DPI-C
sources.list

Accelerating Test Harness

© Accellera Systems Initiative

SCE-MI DPI Bridge & Synchronization Compiled

Share Libs

Running On

Host

FPGA

Co-Emulator

PCIe Link

PCIe

SCE-MI
Clocks &
Resets

SCE-MI XTOR

DUT

39

Test
Harness

DUT

BFM Module

Clocks &

Resets

SynthesisSynthesis

Creating the Acceleration Build

Compile DesignTest Harness
& RTL DUT

Pre Synthesis

Partitioning

Generate Config

Implement (P&R)

Debug Instrumentation

Setup Memory Models

Generates xml config &

makefiles for SCE-MI Bridge

DPI-C proxy for HVL

Guided partitions

Configure memory models

Connect to daughter-board

SCE-MI 2 Compiler for UVM

TCL Script /

File Lists

Synthesis

© Accellera Systems Initiative 40

Running UVM Simulation Acceleration

© Accellera Systems Initiative 41

Compile & Link

Elaborate Testbench
UVM TB

DPI-C
sources.list

config.xml

SCE-MI DPI Bridge

Generated
SCE-MI to DPI

bridge (C++ code)

Program & Run HVL FPGA bit-
files

Summary

• The use of FPGAs can be extended to functional
verification through the use of a co-emulation
system.

• Demonstrated minor adaptions to the Easier UVM
coding style that would enable acceleration with a
co-emulator through the use of SCE-MI.

• Using standards, SystemVerilog & SCE-MI, provides a
common interoperable testbench for both simulation
and hardware-assisted verification.

© Accellera Systems Initiative 42

Additional Reading & References

• Acceleration Solutions on Aldec’s website:
www.aldec.com/solutions/acceleration

• SCE-MI:
http://accellera.org/downloads/standards/sce-mi

• Easier UVM:
http://www.doulos.com/content/events/easierUVM.php

© Accellera Systems Initiative 43

http://www.aldec.com/solutions/acceleration
http://accellera.org/downloads/standards/sce-mi
http://www.doulos.com/content/events/easierUVM.php

Questions

© Accellera Systems Initiative 44

