UVM goes Universal -
Introducing UVM in SystemC

Stephan Schulz (FhG 1IS/EAS), Thilo
Vortler (FhG IIS/EAS), Martin

~--------Barnascont {NXP)--------- ;
Fraunhofer & NXP Logo goes here 2015
accellery ' DVGCON

SYSTEMS INITIATIVE

Outline

e A bit of history...

e Why UVM in SystemC?

e Main concepts of UVM

e Advantages of UVM-SystemC

e Work-in-Progress: Register Abstraction Layer
e Register Model examples

e Standardization in Accellera

* Next steps

e Summary and outlook

e UVM-SystemC tutorial at DVCon Europe

aceellera , DVCON

SYSTEMS INITIATIVE

UVM what is it?

e Universal Verification Methodology to create modular,
scalable, configurable and reusable testbenches based
on verification components with standardized interfaces

e Class library which provides a set of built-in features
dedicated to verification, e.g., phasing, component
overriding (factory), configuration, comparing,
scoreboarding, reporting, etc.

 Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV) which
consists of automated stimulus generation, independent
result checking and coverage collection

ll IIIIIIIIIIIIIIIIIIIIIII
NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

UVM what is it not...

e Infrastructure offering tests or scenario’s out-of-the-box:
all behaviour has to be implemented by user

e Coverage-based verification templates: application is
responsible for coverage and randomization definition;
UVM only offers the hooks and technology (classes)

e Verification management of requirements, test items or
scenario’s is outside the scope of UVM

e Testitem execution and regression — automation via e.g.
the command line interface or “regression cockpit” is a
shell around UVM

NNNNNNNNNNNNNNNNNNNNNNN

rrand

el e | N

4 NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

A bit of history...

* Inthe pre-UVM era, various EDA vendors offered a verification
methodology in SystemC
— OVM-SC (Cadence), AVM-SC (Mentor), VMM-SC (Synopsys)
 Unfortunately, consolidation towards UVM focused on a
SystemVerilog standardization and implementation only

 Non-standard methods and libraries exist to bridge the UVM
and SystemC world
— Cadence’s UVM Multi Language library: offers a ‘minimalistic’ UVM-SC
— Mentor’s UVM-Connect: Mainly TLM communication and configuration

 |n 2011, a European consortium started building a UVM
standard compliant version based on SystemC / C++

— Initiators: NXP, Infineon, Fraunhofer IIS/EAS, Magillem, Continental, and
UPMC

lllllllllllllllllllllll

reeeremasni

dceelera DVCON
5 NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Why UVM in SystemC?

Elevate verification beyond block-level towards system-level

— System verification and Software-driven verification are executed by
teams not familiar with SystemVerilog and its simulation environment

— Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

Structured ESL verification environment

— The verification environment to develop Virtual Platforms and Virtual
Prototypes is currently ad-hoc and not well architected

— Beneficial if the first system-level verification environment is UVYM
compliant and can be reused later by the IC verification team

Extendable, fully open source, and future proof

— Based on Accellera’s Open Source SystemC simulator

— As SystemC is C++, a rich set of C++ libraries can be integrated easily .

DESIGN AND VERIF Q J"?ON'M
accellera) DV

CONFERENCE AND EXHIBITION
SYSTEMS INITIATIVE

Why UVM in System(C?

 Reuse tests and test benches across
verification (simulation) and
validation (HW-prototyping)
platforms

— requires portable language like C++ to
run tests on HW prototypes,
measurement equipment, ...

— Enables Hardware-in-the-Loop
simulation and Rapid Control Prototyping

accellera DVCON

SYSTEMS INITIATIVE

Verification stack:

tools, language and methodology

Addition tool layer like “verification cockpit”
(e.g. vManager, vPlan)

Universal Verification B UVM-SC scope
Methodology UVM technology elements:
> ¢ Methodology = what
UVM (-SC / -AMS) e Class library = how
Class library
I
|
SR . Language and modeling technology elements:
SystemC(-AMS) Tool / simulator
compliant simulator D

accellera . DVCON

SYSTEMS INITIATIVE

UVM-SC versus UVM-SV

e UVM-SystemC follows the UVM 1.1 standard where possible
and/or applicable

— Equivalent UVM base classes and member functions implemented in
SystemC/C++

— Use of existing SystemC functionality where applicable
e TLM interfaces and communication
e Reporting mechanism

— Only a limited set of UVM macros is implemented
e usage of some UVM macros is not encouraged and thus not introduced
e UVM-SystemC does not cover the ‘native’ verification features
of SystemVerilog, but considers them as (SCV) extensions
— Constrained randomization
— Coverage groups (not part of SCV yet)

accellera . DVCON

SYSTEMS INITIATIVE

Main concepts of UVM (1)

e C(Clear separation of test stimuli (sequences) and test bench

— Sequences are treated as ‘transient objects’ and thus independent
from the test bench construction and composition

— In this way, sequences can be developed and reused independently

* Introducing test bench abstraction levels

— Communication between test bench components based on
transaction level modeling (TLM)

— Register abstraction layer (RAL) using register model, adapters, and
predictors

* Reusable verification components based on standardized
interfaces and responsibilities

— Universal Verification Components (UVCs) offer sequencer, driver and
monitor functionality with clearly defined (TLM) interfaces

2015
.......................

accellera DVCON
10 NNNNNNNNNNNNNNNNNNNNNNN

SYSTEMS INITIATIVE

Main concepts of UVM (2)

 Non-intrusive test bench configuration and customization

— Hierarchy independent configuration and resource database to store
and retrieve properties everywhere in the environment

— Factory design pattern introduced to easily replace UVM components
or objects for specific tests

— User-defined callbacks to extend or customize UVC functionality
 Well defined execution and synchronization process

— Simulation based on phasing concept: build, connect, run, extract,
check and report. UVM offers additional refined run-time phases

— Objection and event mechanism to manage phase transitions

* Independent result checking

— Coverage collection, signal monitoring and independent result
checking in scoreboard are running autonomously

atcellrs . BV

SYSTEMS INITIATIVE

UVM Layered Architecture

The top-level (e.g. sc_main) contains the
test(s), the DUT and its interfaces

The DUT interfaces are stored in a
configuration database, so it can be used
by the UVCs to connect to the DUT

The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the stimuli
and check the result

The test to be executed is either defined
by the test class instantiation or by the
member function run_test

r

top (sc_main)

register
Test - g
sequence

Testbench (env)

Yvirtual
sequencer

scoreboard

v Subscrj| ref
Reg model model

Subscr

v

Adapter }

[uvC1l (env))

[uvC2 (env) |

DUT !

2015

DESIGN AND VERIFICATION™

SYSTEMS INITIATIVE

12

DVGCON

CONFERENCE AND EXHIBITION

VM layered architecture

f———— -

estcoses |

()

Sequences léo

: <
Il. Verification component , > § .
Functional | | Sequencer Scoreboard = |
‘ c
I' o 1

—————— T S —— =T + |~

|: ! g 1
. . I .]
Command Ij Driver Monitor : Monitor T "
. —. el

. Device
Signal I
g 1 >f under test

QOLS

accellera
—

SYSTEMS INITIATIVE

Advantages of UVM-SystemC

e UVM-SystemC library features
— UVM components based on SystemC modules
— TLM communication APl based on SystemC

— Phases of elaboration and simulation aligned with
SystemC

— Packing / Unpacking using stream operators
— Template classes to assign RES/RSP types

— Standard C++ container classes for data storage
and retrieval

— Other C++ benefits (exception handling, constness,
multiple inheritance, etc.)

aceellera » DVCON

SYSTEMS INITIATIVE

UVM components are SystemC modules

e The UVM component class (uvm_component) is derived from
the SystemC module class (sc_module)
— It inherits the execution semantics and all features from SystemC

— Parent-child relations automatically managed by uvm_component_name
(alias of sc_module _name); no need to pass ugly this-pointers

— Enables creation of spawned SystemC processes and introduce
concurrency (SC_FORK, SC_JOIN); beneficial to launch runtime phases

— No need for SV-like “virtual” interfaces; regular SystemC channels
(derived from sc_signal) between UVC and DUT can be applied

namespace uvm { LRM definition class my uvc : public uvm_env Application
{
class uvm_component : public sc_core::sc_module, public:
public uvm_report_object my_uvc(uvm_component_name name) : uvm_env(name)
{... 5 {}
} // namespace uvm }s NOTE: UVM-SystemC API under review — subject to change

accellera o B3

15 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

SystemC TLM communication (1)

e TLM-1 put/get/peek interface

— put/get/peek directly mapped on
SystemC methods

— UVM methods get_next_item and
try_next_item mapped on SystemC

— TLM-1 primarily used for
sequencer-driver communication

e TLM-1 analysis interface

namespace uvm { LRM definition

template <typename REQ, typename RSP = REQ>
class uvm_sqr_if_base
: public virtual sc_core::sc_interface
{
public:
virtual void get_next_item(REQ& req) = ©;
virtual bool try_next_item(REQ& req) = ©;
virtual void item_done(const RSP& 1item) = 0;
virtual void item_done() = 0;
virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& req) = 0;
virtual void peek(REQ& req) = 0;

}Y; // class uvm_sqr_1if_base

} // namespace uvm

— UVM analysis port, export and imp
using SystemC tlm_analysis_if

— Used for monitor-subscriber
(scoreboard) communication

— UVM method connect
mapped on SystemC bind

namespace uvm { LRM definition

template <typename T>
class uvm_analysis_port : public tlm::tlm_analysis_port<T>

public:
uvm_analysis_port();
uvm_analysis_port(const std::string& name);

virtual const std::string get_type_name();
virtual void connect(tlm::tlm_analysis_if<T>& _if);

NOTE: UVM-SystemC API under review — subject to change

accellera
16

SYSTEMS INITIATIVE

2015

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

SystemC TLM communication (2)

e Asthe UVM TLM2 definitions are inconsistent with the
SystemC TLM-2.0 standard, these are not implemented in
UVM-SystemC

e Furthermore, UVM only defines TLM2-like transport
interfaces, and does not support the Direct Memory Interface
(DMI) nor debug interface

e Therefore, a user is recommended to directly use the SystemC
TLM-2.0 interface classes in UVM-SystemC

 Hopefully, the UVM SystemVerilog Standardization Working
Group in IEEE (P1800.2) is willing to resolve this inconsistency
and align with SystemC (IEEE Std 1666-2011)

atcellrs : BV

SYSTEMS INITIATIVE

Phases of elaboration and simulation

UVM common phases

k———Pre-run phases

Runtime phases

Post-runphases —— |

buildw connectA] A A

run

@A extract A} | check A}| reportAl final ¥

end_of elaboration

UVM runtime phases A

=

Legend

start_of_simulation

pre-reset

post-reset

reset

configure

@ = SystemC process(es)

v =top-down execution

main shutdown

A = bottom-up execution

e UVM-SystemC phases made consistent with SystemC phases

e UVM-SystemC supports the 9 common phases and the
(optional) refined runtime phases

 Objection mechanism supported to manage phase transitions

 Multiple domains can be created to facilitate execution of
different concurrent runtime phase schedules

SYSTEMS INITIATIVE

2015

DESIGN AND VERIFICATION™

DVGCON

CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

(Un)packing using stream operators

Thanks to C++, stream operators (<<, >>) can be overloaded to
enable elegant type-specific packing and unpacking

Similar operator overloading technique also applied for
transaction comparison (using equality operator ==

: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const

class packet : public uvm_sequence_item Application
{public:

int a, b;

UVM_OBJECT UTILS(packet);

packet(uvm_object_name name = "packet")

{
p.pack_field_int(a, 64);

p.pack_field_int(b, 64); speciﬁc methods

Disadvantage: type-

}
virtual void do_unpack(uvm_packer& p)
{
a = p.unpack_field_int(64);
b = p.unpack_field_int(64);
}
}s

class packet : public uvm_sequence_item Application
{public:

int a, b;

UVM_OBJECT UTILS(packet);

packet(uvm_object_name name = "packet")

: uvm_sequence_item(name), a(9), b(0) {}

virtual void do_pack(uvm_packer& p) const

{

p << a << by —

Elegant packing using

} stream operators
virtual void do_unpack(uvm_packer& p)
{
p >> a > b;
}
¥ NOTE: UVM-SystemC API under review — subject to change

19

2015

DESIGN AND VERIFICATION™

DVGCOIN

CONFERENCE AND EXHIBITION

C++ Template classes

/i Template class r

template <typename REQ> Application
class vip_driver : public uvm_driver<REQ>
 Template classes enable Cpublic:
. vip_if* vif;
elega nt Way tO deal W|th UTILS macro supports

vip_driver(uvm_component_name name)

template arguments

Special types Such aS REQ/RSP : uvm_driver<REQ>(name), vif(NULL) {}
UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>);
¢ UVM_SyStemC Supports void build_phase(uvm_phase& phase)
template classes using © wn_driver<REQs: :build_phase(phase);

macros if (luvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL (this->get_name(),

UVM_COMPONENT_UTI LS Or) "Interface not defined! Simulation aborted!");
UVM_COMPONENT_PARAM_UTI LS void run_phase(uvm_phase& phase)

(nO dlfferenCE) { REQ req; Template argument

defines request type

* More advanced template (e e et et o e
techniques using explicit e
SpeCiaIization Or partial) this->seq_item_port->item_done();
Specialization are pOSSibIe void drive_transfer(const REQ& p)

{

vif->sig data.write(p.data);

500)
} o
3008//8[’3 20 s NOTE: UVM-SystemC API under review — subject to change \I
ON

SYSTEMS INITIATIVE

Standard C++ container classes

e Standard C++ containers can be used for efficient data storage

using push/pop mechanisms and retrieval using iterators and
operators

e Examples: dynamic arrays (std::vector), queues (std::queue),
stacks (std::stack), heaps (std::priority_queue), linked lists
(std::list), trees (std::set), associative arrays (std::map)

e Therefore UVM-SystemC will not define uvm_queue nor uvm_pool

namespace uvm { LRM definition

class uvm_object : public uvm_void {
public:

// Group: Packing

int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);

int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);

} // namespace uvm NOTE: UVM-SystemC API under review — subject to change

205"
aceellera » DVCON

SYSTEMS INITIATIVE

Other benefits

* Exception handling:
The standard C++ exception handler mechanism is beneficial
to catch serious runtime errors (which are not explicitly
managed or found using UVM_FATAL) and enables a graceful
exit of the simulation

 Constness:
Ability to specify explicitly that a variable, function argument,
method or class/object state cannot be altered

 Multiple inheritance:
Ability to derive a new class from two ‘origins’ or base classes.

...anhd much more C++ features...

aceellera , DVCON

SYSTEMS INITIATIVE

Re-use across languages & simulators

< p— \

default - :
1 config
Test sequence '—l

s

e g
Téstbench (env) ! config |

\

scoreboard
virtual Subscrl| ref |lSubscr
sequencer 1 model 2
~
/

"VCl (env) (s\pVCZ (env) |
I
\

Sar iconf Sar |i confi

Em

\ s
7’]
k K 2 R - ‘,

J 7 7 y;
bl S L \\$ e
OUt‘ DUT - VHDL \ OUt‘DUT - Verilog \ Out‘ DUT - SystemC | out| DUT - Matlab
in in in in
AMS DIG SW AMS DIG SW AMS DIG SW AMS DIG SW i

accellera DVCON

SYSTEMS INITIATIVE

Re-use across abstraction levels (1)

" g J e Design of a complex system
—— - within a SystemC environment
Simulation - SystemC
) — One-time verification setup with
Test Ssqiia ce \configy
— ——— UVM-SystemC
Testbench (env) :confie}
3‘ eual || __scoreboard — Behavioral model for concept
sequence 5”';5“ m:f . 5“25”
______ = phase
agent — Detailed model for further
svotemc M 1] Svetemc implementation require additional
=) tests
¢ DUT
b SystemC - Behavioral
_ J
DESIGN AND VEFgFQJ.‘?ONM
accellera - DVCOIN
© Accellera Systems Initiative 24 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

.
| =i

Re-use across abstraction levels (2)

e Continued use of previous
: verification setup by running the
verification environment as a
real-time model on a HiL

(Real Time Hardware

~ —_ . . ---- N
== default |config
Test sequence - "'—J

(" ’
Testbench (env) [config}
\

~Virtual scoreboard I 3 tfo rm
seqt:ence 5“115" Sut2>scr p
o) | — Exchange of UVM driver

verification components suitable
for the board

— Additional tests specific to new

Monitor
Emulation

Driver
Emulation

. J
DUT model details
. FPGA - Emulation
DESIGN AND VEFgFQ;!-?ON”
accellera - DVCOIN
© Accellera Systems Initiative 2 recECEsEiam

SYSTEMS INITIATIVE

Re use across abstraction levels (3)

F._!__

e Continued use of previous
: verification setup by running the
verification environment as a
real-time model on lab-test
3 equipment
== — — Exchange of UVM driver

verification components necessary

(Real Time Hardware

r’ R —]

seqguence

i T"é:stbench (env) iconfig|

agent

Monitor
Lab equip

Driver
Lab equip

— Re-use of all tests possible

i DUT
ASIC — 15t Silicon

accellera . DVCON
© Accellera Systems Initiative 26 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

download

Re-use across abstraction levels (4)

& i

monitor

A 4

y 3

I

 Simulation - SystemC

&

r’ R —]
Test sequence confie|

é P2 r——=- Y
Testbench (env) :config}
\
Irtua Scoreboard
sequence Subscr ref RlSubscr
1 model | 2 |

agent

Monitor
SystemC

Driver
SystemC

i DUT
SystemC - Behavioral

SYSTEMS INITIATIVE

A 4

_ integrate

rReal Time Hardware

r’ R —]
Test sequence confie|

([_,7 r=—--
Testbench (env) config]
\
Ttua scoreboard
sequence | | subser ref JfSubscr
o 1 model 2

agent

Monitor
Emulation

Driver
Emulation

i DUT
FPGA - Emulation

rReal Time Hardware

y -

A
=1 default
Test sequence

Lconfigl

7

’ r====
Testbench (env) config]
\
TRAVE] scoreboard
sequence Subscr ref Subscr
1 model 2

agent

Monitor
Lab equip
vif

Driver
Lab equip

vif

DUT
ASIC — 15t Silicon

2015

DESIGN AND VERIFICATION™

VGCON

CONFERENCE AND EXHIBITION

UVM-SystemC Generator

 Generator is based on easier uvm code generator for
SystemVerilog from Doulos

— www.doulos.com/knowhow/sysverilog/uvm/easier uvm
generator/

 Generator uses template files as input, which are
similiar to the Doulos generator

 Generates complete running UVM-SystemC
environment

accellera - DVEON
© Accellera Systems Initiative 2 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/

UVM-SystemC Generator

 Generated UVM objects and files:
— UVM_Agent
— UVM_Scoreboard
— UVM_Driver
— UVM_Monitor
— UVM_Sequencer
— UVM_Environment
— UVM_Config
— UVM_Subscriber
— UVM _Test
— Makefile to compile the generated UVM project
— Instantiation and DUT connection

accellera - DVCON
© Accellera Systems Initiative 29 CONFERENCEANDEXHIBITION

SYSTEMS INITIATIVE

UVM-SystemC Generator

* Input file for generating ¢ General Config File
a complete agent A

#Additional includes
inc_path = include

. . #DUT toplevel name
— Transaction items aut_top = myat
#Pin connection file
dut_pfile = pinlist

— Interface ports

e DUT connection to
i agent interfaces (DUT

#transaction item
trans_item = data_tx

port <-> agent port))

trans_var = int data
#interface ports
if _port = sc_core::sc_signal<bool> clk Iclkndata_if
if _port = sc_core::sc_signal<bool> reset_n clk clk
if port = sc_core::sc_signal<bool> scl reset_n reset_n
if port = sc_core::sc_signal<bool> sda rw_masterl rw_master
if port = sc_core::sc_signal<bool> rw_master scll scl
sdal sda
if clock = clk
if _reset = reset_n lagent2_if
#agent mode

agent_is_active = UVM_ACTIVE

2015

DESIGN AND VERIFICATION™

accellera DVCODN

© Accellera Systems Initiative 30 L T U T
SYSTEMS INITIATIVE

Standardization in Accellera

e Growing industry interest for UVM
in SystemC

e Standardization in SystemC
Verification WG ongoing

— UVM-SystemC Language Reference
Manual (LRM) completed

— Improving the UVM-SystemC Proof-
of-Concept (PoC) implementation

— Creation of a UVM-SystemC
regression suite started
e Draft release of UVM-SystemC
planned for end 2015

— Both LRM and PoC made available
under the Apache 2.0 license

— Exact timing dependents on progress
(and issues we might find)

accellera
31

SYSTEMS INITIATIVE

UVM-SystemC
(UVM-SO)

Language Reference Manual

LODRAFT

6.4 uvm_factory

run. Object and componsnt types aws

as abatractbasa class

641 Clazs definition

The class wve_factory isplamaats 1 factory pattera. A singetan Bictory mstanca & crusted for 2 given simalation
segistered with the factary ming proxies to the actaal cbjects 2ad componsats
baing created. The clasies wvm_okject_registry=T= ad uvm_compenent_regisry=T= ars med 1o proxy chjects
of type wvm_sbjrct ad wvm_cemponent ripectvaly. Thuis mgisay chasss both mie 4

s e uvm_object_wrapper

P g typs
vold dn register” [e shisct wrappart e anda.
Yp- wtancm
VM o geay Sicfirenos Marud FT Page 52
DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Next steps

e Main focus this year:
— UVM-SystemC APl documented in the Language Reference Manual
— Further mature and test the proof-of-concept implementation
— Extend the regression suite with unit tests and more complex
(application) examples
* Next year...
— Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
— Add constrained randomization capabilities (e.g. SCV, CRAVE)
— Introduction of assertions and functional coverage features
— Multi-language verification usage (UVM-SystemVerilog <> UVM-SystemC)

e ..and beyond: |IEEE standardization
— Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

aceellera . DVCON

SYSTEMS INITIATIVE

Summary and outlook

e Good progress with UVM-SystemC standardization in Accellera
— UVM-SystemC foundation elements are implemented
— Register Abstraction Layer currently under development

— Review of Language Reference Manual finished and Proof-of-concept
implementation ongoing

— First draft release of UVM-SystemC planned for end 2015

* Next steps
— Make UVM-SystemC fully compliant with UVM 1.2
— Introduce new features: e.g. randomization, functional coverage

e How you can contribute
— Join Accellera and participate in this standardization initiative
— Development of unit tests, examples and applications

aceellera . DVCON

SYSTEMS INITIATIVE

Questions

/f_ TN DESIGN AND VE%QJ‘?ON“
(agellera DV

SYSTEMS INITIATIVE

	UVM goes Universal - Introducing UVM in SystemC
	Outline
	UVM what is it?
	UVM what is it not…
	A bit of history…
	Why UVM in SystemC?
	Why UVM in SystemC?
	Verification stack: �tools, language and methodology
	UVM-SC versus UVM-SV
	Main concepts of UVM (1)
	Main concepts of UVM (2)
	UVM Layered Architecture
	UVM layered architecture
	Advantages of UVM-SystemC
	UVM components are SystemC modules
	SystemC TLM communication (1)
	SystemC TLM communication (2)
	Phases of elaboration and simulation
	(Un)packing using stream operators
	C++ Template classes
	Standard C++ container classes
	Other benefits
	Re-use across languages & simulators
	Re-use across abstraction levels (1)
	Re-use across abstraction levels (2)
	Re-use across abstraction levels (3)
	Re-use across abstraction levels (4)
	UVM-SystemC Generator
	UVM-SystemC Generator
	UVM-SystemC Generator
	Standardization in Accellera
	Next steps
	Summary and outlook
	Questions

