
UVM goes Universal -
Introducing UVM in SystemC

Stephan Schulz (FhG IIS/EAS), Thilo
Vörtler (FhG IIS/EAS), Martin

Barnasconi (NXP)

© Accellera Systems Initiative 1

Fraunhofer & NXP Logo goes here

Outline
• A bit of history…
• Why UVM in SystemC?
• Main concepts of UVM
• Advantages of UVM-SystemC
• Work-in-Progress: Register Abstraction Layer
• Register Model examples
• Standardization in Accellera
• Next steps
• Summary and outlook
• UVM-SystemC tutorial at DVCon Europe

2

UVM what is it?

3

• Universal Verification Methodology to create modular,
scalable, configurable and reusable testbenches based
on verification components with standardized interfaces

• Class library which provides a set of built-in features
dedicated to verification, e.g., phasing, component
overriding (factory), configuration, comparing,
scoreboarding, reporting, etc.

• Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV) which
consists of automated stimulus generation, independent
result checking and coverage collection

UVM what is it not…

4

• Infrastructure offering tests or scenario’s out-of-the-box:
all behaviour has to be implemented by user

• Coverage-based verification templates: application is
responsible for coverage and randomization definition;
UVM only offers the hooks and technology (classes)

• Verification management of requirements, test items or
scenario’s is outside the scope of UVM

• Test item execution and regression – automation via e.g.
the command line interface or “regression cockpit” is a
shell around UVM

A bit of history…
• In the pre-UVM era, various EDA vendors offered a verification

methodology in SystemC
– OVM-SC (Cadence), AVM-SC (Mentor), VMM-SC (Synopsys)

• Unfortunately, consolidation towards UVM focused on a
SystemVerilog standardization and implementation only

• Non-standard methods and libraries exist to bridge the UVM
and SystemC world
– Cadence’s UVM Multi Language library: offers a ‘minimalistic’ UVM-SC
– Mentor’s UVM-Connect: Mainly TLM communication and configuration

• In 2011, a European consortium started building a UVM
standard compliant version based on SystemC / C++
– Initiators: NXP, Infineon, Fraunhofer IIS/EAS, Magillem, Continental, and

UPMC

5

Why UVM in SystemC?
• Elevate verification beyond block-level towards system-level

– System verification and Software-driven verification are executed by
teams not familiar with SystemVerilog and its simulation environment

– Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

• Structured ESL verification environment
– The verification environment to develop Virtual Platforms and Virtual

Prototypes is currently ad-hoc and not well architected
– Beneficial if the first system-level verification environment is UVM

compliant and can be reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator
– As SystemC is C++, a rich set of C++ libraries can be integrated easily

6

Why UVM in SystemC?

• Reuse tests and test benches across
verification (simulation) and
validation (HW-prototyping)
platforms
– requires portable language like C++ to

run tests on HW prototypes,
measurement equipment, …

– Enables Hardware-in-the-Loop
simulation and Rapid Control Prototyping

7

Verification stack:
tools, language and methodology

8

SystemC(-AMS)
compliant simulator

SystemC(-AMS)
Language

UVM (-SC / -AMS)
Class library

Universal Verification
Methodology

Verification
management

Language and modeling technology elements:
Tool / simulator

Addition tool layer like “verification cockpit”
(e.g. vManager, vPlan)

UVM technology elements:
• Methodology = what
• Class library = how

UVM-SC scope

UVM-SC versus UVM-SV

9

• UVM-SystemC follows the UVM 1.1 standard where possible
and/or applicable
– Equivalent UVM base classes and member functions implemented in

SystemC/C++
– Use of existing SystemC functionality where applicable

• TLM interfaces and communication
• Reporting mechanism

– Only a limited set of UVM macros is implemented
• usage of some UVM macros is not encouraged and thus not introduced

• UVM-SystemC does not cover the ‘native’ verification features
of SystemVerilog, but considers them as (SCV) extensions
– Constrained randomization
– Coverage groups (not part of SCV yet)

Main concepts of UVM (1)
• Clear separation of test stimuli (sequences) and test bench

– Sequences are treated as ‘transient objects’ and thus independent
from the test bench construction and composition

– In this way, sequences can be developed and reused independently
• Introducing test bench abstraction levels

– Communication between test bench components based on
transaction level modeling (TLM)

– Register abstraction layer (RAL) using register model, adapters, and
predictors

• Reusable verification components based on standardized
interfaces and responsibilities
– Universal Verification Components (UVCs) offer sequencer, driver and

monitor functionality with clearly defined (TLM) interfaces

10

Main concepts of UVM (2)
• Non-intrusive test bench configuration and customization

– Hierarchy independent configuration and resource database to store
and retrieve properties everywhere in the environment

– Factory design pattern introduced to easily replace UVM components
or objects for specific tests

– User-defined callbacks to extend or customize UVC functionality
• Well defined execution and synchronization process

– Simulation based on phasing concept: build, connect, run, extract,
check and report. UVM offers additional refined run-time phases

– Objection and event mechanism to manage phase transitions
• Independent result checking

– Coverage collection, signal monitoring and independent result
checking in scoreboard are running autonomously

11

UVM Layered Architecture
• The top-level (e.g. sc_main) contains the

test(s), the DUT and its interfaces
• The DUT interfaces are stored in a

configuration database, so it can be used
by the UVCs to connect to the DUT

• The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the stimuli
and check the result

• The test to be executed is either defined
by the test class instantiation or by the
member function run_test

12

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent

MonDrv

Sqrconf conf

config

scoreboard

Subscr
2

ref
model

Subscr
1

Test configregister
sequence

virtual
sequencer

Reg model

Adapter

rw

Interf1

UVC2 (env)

Interf2

DUT

UVM layered architecture
Spec

Test cases

Scenario

Signal

Test casesTest

Fu
nc

tio
na

l c
ov

er
ag

e

Functional

Command Monitor

ScoreboardSequencer

Driver Monitor

Verification component

Verification environment (test bench)

Device
under test

Sequences

Advantages of UVM-SystemC
• UVM-SystemC library features

– UVM components based on SystemC modules
– TLM communication API based on SystemC
– Phases of elaboration and simulation aligned with

SystemC
– Packing / Unpacking using stream operators
– Template classes to assign RES/RSP types
– Standard C++ container classes for data storage

and retrieval
– Other C++ benefits (exception handling, constness,

multiple inheritance, etc.)

14

UVM components are SystemC modules
• The UVM component class (uvm_component) is derived from

the SystemC module class (sc_module)
– It inherits the execution semantics and all features from SystemC
– Parent-child relations automatically managed by uvm_component_name

(alias of sc_module_name); no need to pass ugly this-pointers
– Enables creation of spawned SystemC processes and introduce

concurrency (SC_FORK, SC_JOIN); beneficial to launch runtime phases
– No need for SV-like “virtual” interfaces; regular SystemC channels

(derived from sc_signal) between UVC and DUT can be applied

15

namespace uvm {

class uvm_component : public sc_core::sc_module,
public uvm_report_object

{ ... };

} // namespace uvm

class my_uvc : public uvm_env
{
public:
my_uvc(uvm_component_name name) : uvm_env(name)
{}
...

};

LRM definition Application

NOTE: UVM-SystemC API under review – subject to change

SystemC TLM communication (1)
• TLM-1 put/get/peek interface

– put/get/peek directly mapped on
SystemC methods

– UVM methods get_next_item and
try_next_item mapped on SystemC

– TLM-1 primarily used for
sequencer-driver communication

• TLM-1 analysis interface
– UVM analysis port, export and imp

using SystemC tlm_analysis_if
– Used for monitor-subscriber

(scoreboard) communication
– UVM method connect

mapped on SystemC bind

16

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_sqr_if_base
: public virtual sc_core::sc_interface
{
public:
virtual void get_next_item(REQ& req) = 0;
virtual bool try_next_item(REQ& req) = 0;
virtual void item_done(const RSP& item) = 0;
virtual void item_done() = 0;
virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& req) = 0;
virtual void peek(REQ& req) = 0;
...

}; // class uvm_sqr_if_base

} // namespace uvm

LRM definition

namespace uvm {

template <typename T>
class uvm_analysis_port : public tlm::tlm_analysis_port<T>
{
public:
uvm_analysis_port();
uvm_analysis_port(const std::string& name);

virtual const std::string get_type_name();
virtual void connect(tlm::tlm_analysis_if<T>& _if);
...

LRM definition

NOTE: UVM-SystemC API under review – subject to change

SystemC TLM communication (2)
• As the UVM TLM2 definitions are inconsistent with the

SystemC TLM-2.0 standard, these are not implemented in
UVM-SystemC

• Furthermore, UVM only defines TLM2-like transport
interfaces, and does not support the Direct Memory Interface
(DMI) nor debug interface

• Therefore, a user is recommended to directly use the SystemC
TLM-2.0 interface classes in UVM-SystemC

• Hopefully, the UVM SystemVerilog Standardization Working
Group in IEEE (P1800.2) is willing to resolve this inconsistency
and align with SystemC (IEEE Std 1666-2011)

17

Phases of elaboration and simulation

18

• UVM-SystemC phases made consistent with SystemC phases
• UVM-SystemC supports the 9 common phases and the

(optional) refined runtime phases
• Objection mechanism supported to manage phase transitions
• Multiple domains can be created to facilitate execution of

different concurrent runtime phase schedules

run

reset

configure main shutdown

connect extract check report final

UVM runtime phases

UVM common phases

build

end_of_elaboration

start_of_simulation

pre-reset post-reset

 = SystemC process(es)

= top-down execution

= bottom-up execution

Legend

Pre-run phases Runtime phases Post-run phases

(Un)packing using stream operators
• Thanks to C++, stream operators (<<, >>) can be overloaded to

enable elegant type-specific packing and unpacking
• Similar operator overloading technique also applied for

transaction comparison (using equality operator ==)

19

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p.pack_field_int(a, 64);
p.pack_field_int(b, 64);

}

virtual void do_unpack(uvm_packer& p)
{

a = p.unpack_field_int(64);
b = p.unpack_field_int(64);

}
...

};

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p << a << b;
}

virtual void do_unpack(uvm_packer& p)
{

p >> a >> b;
}
...

}; NOTE: UVM-SystemC API under review – subject to change

ApplicationApplication

Disadvantage: type-
specific methods

Elegant packing using
stream operators

C++ Template classes
• Template classes enable

elegant way to deal with
special types such as REQ/RSP

• UVM-SystemC supports
template classes using
macros
UVM_COMPONENT_UTILS or
UVM_COMPONENT_PARAM_UTILS
(no difference)

• More advanced template
techniques using explicit
specialization or partial
specialization are possible

20

template <typename REQ>
class vip_driver : public uvm_driver<REQ>
{
public:
vip_if* vif;

vip_driver(uvm_component_name name)
: uvm_driver<REQ>(name), vif(NULL) {}

UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>);

void build_phase(uvm_phase& phase)
{

uvm_driver<REQ>::build_phase(phase);

if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL(this->get_name(),

"Interface not defined! Simulation aborted!");
}

void run_phase(uvm_phase& phase)
{

REQ req;

while(true) // execute all sequences
{

this->seq_item_port->get_next_item(req);
drive_transfer(req);
rsp.set_id_info(req);
this->seq_item_port->item_done();

}

void drive_transfer(const REQ& p)
{

vif->sig_data.write(p.data);
...

}
}; NOTE: UVM-SystemC API under review – subject to change

Application

UTILS macro supports
template arguments

Template class

Template argument
defines request type

Standard C++ container classes
• Standard C++ containers can be used for efficient data storage

using push/pop mechanisms and retrieval using iterators and
operators

• Examples: dynamic arrays (std::vector), queues (std::queue),
stacks (std::stack), heaps (std::priority_queue), linked lists
(std::list), trees (std::set), associative arrays (std::map)

• Therefore UVM-SystemC will not define uvm_queue nor uvm_pool

21

namespace uvm {

class uvm_object : public uvm_void {
public:
...
// Group: Packing
int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);
int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);
...

} // namespace uvm

LRM definition

NOTE: UVM-SystemC API under review – subject to change

Other benefits
• Exception handling:

The standard C++ exception handler mechanism is beneficial
to catch serious runtime errors (which are not explicitly
managed or found using UVM_FATAL) and enables a graceful
exit of the simulation

• Constness:
Ability to specify explicitly that a variable, function argument,
method or class/object state cannot be altered

• Multiple inheritance:
Ability to derive a new class from two ‘origins’ or base classes.

• …and much more C++ features…

22

Re-use across languages & simulators

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

DUT - VHDL

AMS DIG SW
in

out DUT - Verilog

AMS DIG SW
in

out DUT - SystemC

AMS DIG SW
in

out DUT - Matlab

AMS DIG SW
in

out

Re-use across abstraction levels (1)
• Design of a complex system

within a SystemC environment
– One-time verification setup with

UVM-SystemC
– Behavioral model for concept

phase
– Detailed model for further

implementation require additional
tests

© Accellera Systems Initiative 24

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Re-use across abstraction levels (2)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on a HiL
platform
– Exchange of UVM driver

verification components suitable
for the board

– Additional tests specific to new
model details

© Accellera Systems Initiative 25

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Re-use across abstraction levels (3)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on lab-test
equipment
– Exchange of UVM driver

verification components necessary
– Re-use of all tests possible

© Accellera Systems Initiative 26

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

download

monitor
integrate

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Re-use across abstraction levels (4)

UVM-SystemC Generator
• Generator is based on easier uvm code generator for

SystemVerilog from Doulos
– www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_

generator/

• Generator uses template files as input, which are
similiar to the Doulos generator

• Generates complete running UVM-SystemC
environment

© Accellera Systems Initiative 28

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/

UVM-SystemC Generator
• Generated UVM objects and files:

– UVM_Agent
– UVM_Scoreboard
– UVM_Driver
– UVM_Monitor
– UVM_Sequencer
– UVM_Environment
– UVM_Config
– UVM_Subscriber
– UVM_Test
– Makefile to compile the generated UVM project
– Instantiation and DUT connection

© Accellera Systems Initiative 29

UVM-SystemC Generator

• Input file for generating
a complete agent
– Transaction items
– Interface ports

• General Config File

• DUT connection to
agent interfaces (DUT
port <-> agent port))

© Accellera Systems Initiative 30

#agent name
agent_name = clkndata

#transaction item
trans_item = data_tx

#transaction variables
trans_var = int data

#interface ports
if_port = sc_core::sc_signal<bool> clk
if_port = sc_core::sc_signal<bool> reset_n
if_port = sc_core::sc_signal<bool> scl
if_port = sc_core::sc_signal<bool> sda
if_port = sc_core::sc_signal<bool> rw_master

if_clock = clk
if_reset = reset_n

#agent mode
agent_is_active = UVM_ACTIVE

#DUT directory
dut_source_path = mydut
#Additional includes
inc_path = include
#DUT toplevel name
dut_top = mydut
#Pin connection file
dut_pfile = pinlist

!clkndata_if
clk clk
reset_n reset_n
rw_master1 rw_master
scl1 scl
sda1 sda

!agent2_if
...

Standardization in Accellera
• Growing industry interest for UVM

in SystemC
• Standardization in SystemC

Verification WG ongoing
– UVM-SystemC Language Reference

Manual (LRM) completed
– Improving the UVM-SystemC Proof-

of-Concept (PoC) implementation
– Creation of a UVM-SystemC

regression suite started
• Draft release of UVM-SystemC

planned for end 2015
– Both LRM and PoC made available

under the Apache 2.0 license
– Exact timing dependents on progress

(and issues we might find)

31

• Main focus this year:
– UVM-SystemC API documented in the Language Reference Manual
– Further mature and test the proof-of-concept implementation
– Extend the regression suite with unit tests and more complex

(application) examples

• Next year…
– Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
– Add constrained randomization capabilities (e.g. SCV, CRAVE)
– Introduction of assertions and functional coverage features
– Multi-language verification usage (UVM-SystemVerilog ↔ UVM-SystemC)

• …and beyond: IEEE standardization
– Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

Next steps

32

• Good progress with UVM-SystemC standardization in Accellera
– UVM-SystemC foundation elements are implemented
– Register Abstraction Layer currently under development
– Review of Language Reference Manual finished and Proof-of-concept

implementation ongoing
– First draft release of UVM-SystemC planned for end 2015

• Next steps
– Make UVM-SystemC fully compliant with UVM 1.2
– Introduce new features: e.g. randomization, functional coverage

• How you can contribute
– Join Accellera and participate in this standardization initiative
– Development of unit tests, examples and applications

Summary and outlook

33

Questions

© Accellera Systems Initiative 34

	UVM goes Universal - Introducing UVM in SystemC
	Outline
	UVM what is it?
	UVM what is it not…
	A bit of history…
	Why UVM in SystemC?
	Why UVM in SystemC?
	Verification stack: �tools, language and methodology
	UVM-SC versus UVM-SV
	Main concepts of UVM (1)
	Main concepts of UVM (2)
	UVM Layered Architecture
	UVM layered architecture
	Advantages of UVM-SystemC
	UVM components are SystemC modules
	SystemC TLM communication (1)
	SystemC TLM communication (2)
	Phases of elaboration and simulation
	(Un)packing using stream operators
	C++ Template classes
	Standard C++ container classes
	Other benefits
	Re-use across languages & simulators
	Re-use across abstraction levels (1)
	Re-use across abstraction levels (2)
	Re-use across abstraction levels (3)
	Re-use across abstraction levels (4)
	UVM-SystemC Generator
	UVM-SystemC Generator
	UVM-SystemC Generator
	Standardization in Accellera
	Next steps
	Summary and outlook
	Questions

