
UVM goes Universal -
Introducing UVM in SystemC

Stephan Schulz (FhG IIS/EAS), Thilo
Vörtler (FhG IIS/EAS), Martin

Barnasconi (NXP)

© Accellera Systems Initiative 1

Fraunhofer & NXP Logo goes here

Outline
• A bit of history…
• Why UVM in SystemC?
• Main concepts of UVM
• Advantages of UVM-SystemC
• Work-in-Progress: Register Abstraction Layer
• Register Model examples
• Standardization in Accellera
• Next steps
• Summary and outlook
• UVM-SystemC tutorial at DVCon Europe

2

UVM what is it?

3

• Universal Verification Methodology to create modular,
scalable, configurable and reusable testbenches based
on verification components with standardized interfaces

• Class library which provides a set of built-in features
dedicated to verification, e.g., phasing, component
overriding (factory), configuration, comparing,
scoreboarding, reporting, etc.

• Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV) which
consists of automated stimulus generation, independent
result checking and coverage collection

UVM what is it not…

4

• Infrastructure offering tests or scenario’s out-of-the-box:
all behaviour has to be implemented by user

• Coverage-based verification templates: application is
responsible for coverage and randomization definition;
UVM only offers the hooks and technology (classes)

• Verification management of requirements, test items or
scenario’s is outside the scope of UVM

• Test item execution and regression – automation via e.g.
the command line interface or “regression cockpit” is a
shell around UVM

A bit of history…
• In the pre-UVM era, various EDA vendors offered a verification

methodology in SystemC
– OVM-SC (Cadence), AVM-SC (Mentor), VMM-SC (Synopsys)

• Unfortunately, consolidation towards UVM focused on a
SystemVerilog standardization and implementation only

• Non-standard methods and libraries exist to bridge the UVM
and SystemC world
– Cadence’s UVM Multi Language library: offers a ‘minimalistic’ UVM-SC
– Mentor’s UVM-Connect: Mainly TLM communication and configuration

• In 2011, a European consortium started building a UVM
standard compliant version based on SystemC / C++
– Initiators: NXP, Infineon, Fraunhofer IIS/EAS, Magillem, Continental, and

UPMC

5

Why UVM in SystemC?
• Elevate verification beyond block-level towards system-level

– System verification and Software-driven verification are executed by
teams not familiar with SystemVerilog and its simulation environment

– Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

• Structured ESL verification environment
– The verification environment to develop Virtual Platforms and Virtual

Prototypes is currently ad-hoc and not well architected
– Beneficial if the first system-level verification environment is UVM

compliant and can be reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator
– As SystemC is C++, a rich set of C++ libraries can be integrated easily

6

Why UVM in SystemC?

• Reuse tests and test benches across
verification (simulation) and
validation (HW-prototyping)
platforms
– requires portable language like C++ to

run tests on HW prototypes,
measurement equipment, …

– Enables Hardware-in-the-Loop
simulation and Rapid Control Prototyping

7

Verification stack:
tools, language and methodology

8

SystemC(-AMS)
compliant simulator

SystemC(-AMS)
Language

UVM (-SC / -AMS)
Class library

Universal Verification
Methodology

Verification
management

Language and modeling technology elements:
Tool / simulator

Addition tool layer like “verification cockpit”
(e.g. vManager, vPlan)

UVM technology elements:
• Methodology = what
• Class library = how

UVM-SC scope

UVM-SC versus UVM-SV

9

• UVM-SystemC follows the UVM 1.1 standard where possible
and/or applicable
– Equivalent UVM base classes and member functions implemented in

SystemC/C++
– Use of existing SystemC functionality where applicable

• TLM interfaces and communication
• Reporting mechanism

– Only a limited set of UVM macros is implemented
• usage of some UVM macros is not encouraged and thus not introduced

• UVM-SystemC does not cover the ‘native’ verification features
of SystemVerilog, but considers them as (SCV) extensions
– Constrained randomization
– Coverage groups (not part of SCV yet)

Main concepts of UVM (1)
• Clear separation of test stimuli (sequences) and test bench

– Sequences are treated as ‘transient objects’ and thus independent
from the test bench construction and composition

– In this way, sequences can be developed and reused independently
• Introducing test bench abstraction levels

– Communication between test bench components based on
transaction level modeling (TLM)

– Register abstraction layer (RAL) using register model, adapters, and
predictors

• Reusable verification components based on standardized
interfaces and responsibilities
– Universal Verification Components (UVCs) offer sequencer, driver and

monitor functionality with clearly defined (TLM) interfaces

10

Main concepts of UVM (2)
• Non-intrusive test bench configuration and customization

– Hierarchy independent configuration and resource database to store
and retrieve properties everywhere in the environment

– Factory design pattern introduced to easily replace UVM components
or objects for specific tests

– User-defined callbacks to extend or customize UVC functionality
• Well defined execution and synchronization process

– Simulation based on phasing concept: build, connect, run, extract,
check and report. UVM offers additional refined run-time phases

– Objection and event mechanism to manage phase transitions
• Independent result checking

– Coverage collection, signal monitoring and independent result
checking in scoreboard are running autonomously

11

UVM Layered Architecture
• The top-level (e.g. sc_main) contains the

test(s), the DUT and its interfaces
• The DUT interfaces are stored in a

configuration database, so it can be used
by the UVCs to connect to the DUT

• The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the stimuli
and check the result

• The test to be executed is either defined
by the test class instantiation or by the
member function run_test

12

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent

MonDrv

Sqrconf conf

config

scoreboard

Subscr
2

ref
model

Subscr
1

Test configregister
sequence

virtual
sequencer

Reg model

Adapter

rw

Interf1

UVC2 (env)

Interf2

DUT

UVM layered architecture
Spec

Test cases

Scenario

Signal

Test casesTest

Fu
nc

tio
na

l c
ov

er
ag

e

Functional

Command Monitor

ScoreboardSequencer

Driver Monitor

Verification component

Verification environment (test bench)

Device
under test

Sequences

Advantages of UVM-SystemC
• UVM-SystemC library features

– UVM components based on SystemC modules
– TLM communication API based on SystemC
– Phases of elaboration and simulation aligned with

SystemC
– Packing / Unpacking using stream operators
– Template classes to assign RES/RSP types
– Standard C++ container classes for data storage

and retrieval
– Other C++ benefits (exception handling, constness,

multiple inheritance, etc.)

14

UVM components are SystemC modules
• The UVM component class (uvm_component) is derived from

the SystemC module class (sc_module)
– It inherits the execution semantics and all features from SystemC
– Parent-child relations automatically managed by uvm_component_name

(alias of sc_module_name); no need to pass ugly this-pointers
– Enables creation of spawned SystemC processes and introduce

concurrency (SC_FORK, SC_JOIN); beneficial to launch runtime phases
– No need for SV-like “virtual” interfaces; regular SystemC channels

(derived from sc_signal) between UVC and DUT can be applied

15

namespace uvm {

class uvm_component : public sc_core::sc_module,
public uvm_report_object

{ ... };

} // namespace uvm

class my_uvc : public uvm_env
{
public:
my_uvc(uvm_component_name name) : uvm_env(name)
{}
...

};

LRM definition Application

NOTE: UVM-SystemC API under review – subject to change

SystemC TLM communication (1)
• TLM-1 put/get/peek interface

– put/get/peek directly mapped on
SystemC methods

– UVM methods get_next_item and
try_next_item mapped on SystemC

– TLM-1 primarily used for
sequencer-driver communication

• TLM-1 analysis interface
– UVM analysis port, export and imp

using SystemC tlm_analysis_if
– Used for monitor-subscriber

(scoreboard) communication
– UVM method connect

mapped on SystemC bind

16

namespace uvm {

template <typename REQ, typename RSP = REQ>
class uvm_sqr_if_base
: public virtual sc_core::sc_interface
{
public:
virtual void get_next_item(REQ& req) = 0;
virtual bool try_next_item(REQ& req) = 0;
virtual void item_done(const RSP& item) = 0;
virtual void item_done() = 0;
virtual void put(const RSP& rsp) = 0;
virtual void get(REQ& req) = 0;
virtual void peek(REQ& req) = 0;
...

}; // class uvm_sqr_if_base

} // namespace uvm

LRM definition

namespace uvm {

template <typename T>
class uvm_analysis_port : public tlm::tlm_analysis_port<T>
{
public:
uvm_analysis_port();
uvm_analysis_port(const std::string& name);

virtual const std::string get_type_name();
virtual void connect(tlm::tlm_analysis_if<T>& _if);
...

LRM definition

NOTE: UVM-SystemC API under review – subject to change

SystemC TLM communication (2)
• As the UVM TLM2 definitions are inconsistent with the

SystemC TLM-2.0 standard, these are not implemented in
UVM-SystemC

• Furthermore, UVM only defines TLM2-like transport
interfaces, and does not support the Direct Memory Interface
(DMI) nor debug interface

• Therefore, a user is recommended to directly use the SystemC
TLM-2.0 interface classes in UVM-SystemC

• Hopefully, the UVM SystemVerilog Standardization Working
Group in IEEE (P1800.2) is willing to resolve this inconsistency
and align with SystemC (IEEE Std 1666-2011)

17

Phases of elaboration and simulation

18

• UVM-SystemC phases made consistent with SystemC phases
• UVM-SystemC supports the 9 common phases and the

(optional) refined runtime phases
• Objection mechanism supported to manage phase transitions
• Multiple domains can be created to facilitate execution of

different concurrent runtime phase schedules

run

reset

configure main shutdown

connect extract check report final

UVM runtime phases 



UVM common phases

build

end_of_elaboration

start_of_simulation

pre-reset post-reset

 = SystemC process(es)

        




= top-down execution

= bottom-up execution

Legend

Pre-run phases Runtime phases Post-run phases



(Un)packing using stream operators
• Thanks to C++, stream operators (<<, >>) can be overloaded to

enable elegant type-specific packing and unpacking
• Similar operator overloading technique also applied for

transaction comparison (using equality operator ==)

19

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p.pack_field_int(a, 64);
p.pack_field_int(b, 64);

}

virtual void do_unpack(uvm_packer& p)
{

a = p.unpack_field_int(64);
b = p.unpack_field_int(64);

}
...

};

class packet : public uvm_sequence_item
{
public:
int a, b;

UVM_OBJECT_UTILS(packet);

packet(uvm_object_name name = "packet")
: uvm_sequence_item(name), a(0), b(0) {}

virtual void do_pack(uvm_packer& p) const
{

p << a << b;
}

virtual void do_unpack(uvm_packer& p)
{

p >> a >> b;
}
...

}; NOTE: UVM-SystemC API under review – subject to change

ApplicationApplication

Disadvantage: type-
specific methods

Elegant packing using
stream operators

C++ Template classes
• Template classes enable

elegant way to deal with
special types such as REQ/RSP

• UVM-SystemC supports
template classes using
macros
UVM_COMPONENT_UTILS or
UVM_COMPONENT_PARAM_UTILS
(no difference)

• More advanced template
techniques using explicit
specialization or partial
specialization are possible

20

template <typename REQ>
class vip_driver : public uvm_driver<REQ>
{
public:
vip_if* vif;

vip_driver(uvm_component_name name)
: uvm_driver<REQ>(name), vif(NULL) {}

UVM_COMPONENT_PARAM_UTILS(vip_driver<REQ>);

void build_phase(uvm_phase& phase)
{

uvm_driver<REQ>::build_phase(phase);

if (!uvm_config_db<vip_if*>::get(this, "*", "vif", vif))
UVM_FATAL(this->get_name(),

"Interface not defined! Simulation aborted!");
}

void run_phase(uvm_phase& phase)
{

REQ req;

while(true) // execute all sequences
{

this->seq_item_port->get_next_item(req);
drive_transfer(req);
rsp.set_id_info(req);
this->seq_item_port->item_done();

}

void drive_transfer(const REQ& p)
{

vif->sig_data.write(p.data);
...

}
}; NOTE: UVM-SystemC API under review – subject to change

Application

UTILS macro supports
template arguments

Template class

Template argument
defines request type

Standard C++ container classes
• Standard C++ containers can be used for efficient data storage

using push/pop mechanisms and retrieval using iterators and
operators

• Examples: dynamic arrays (std::vector), queues (std::queue),
stacks (std::stack), heaps (std::priority_queue), linked lists
(std::list), trees (std::set), associative arrays (std::map)

• Therefore UVM-SystemC will not define uvm_queue nor uvm_pool

21

namespace uvm {

class uvm_object : public uvm_void {
public:
...
// Group: Packing
int pack(std::vector<bool>& bitstream, uvm_packer* packer = NULL);
int pack_bytes(std::vector<unsigned char>& bytestream, uvm_packer* packer = NULL);
int pack_ints(std::vector<unsigned int>& intstream, uvm_packer* packer = NULL);
...

} // namespace uvm

LRM definition

NOTE: UVM-SystemC API under review – subject to change

Other benefits
• Exception handling:

The standard C++ exception handler mechanism is beneficial
to catch serious runtime errors (which are not explicitly
managed or found using UVM_FATAL) and enables a graceful
exit of the simulation

• Constness:
Ability to specify explicitly that a variable, function argument,
method or class/object state cannot be altered

• Multiple inheritance:
Ability to derive a new class from two ‘origins’ or base classes.

• …and much more C++ features…

22

Re-use across languages & simulators

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

DUT - VHDL

AMS DIG SW
in

out DUT - Verilog

AMS DIG SW
in

out DUT - SystemC

AMS DIG SW
in

out DUT - Matlab

AMS DIG SW
in

out

Re-use across abstraction levels (1)
• Design of a complex system

within a SystemC environment
– One-time verification setup with

UVM-SystemC
– Behavioral model for concept

phase
– Detailed model for further

implementation require additional
tests

© Accellera Systems Initiative 24

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Re-use across abstraction levels (2)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on a HiL
platform
– Exchange of UVM driver

verification components suitable
for the board

– Additional tests specific to new
model details

© Accellera Systems Initiative 25

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Re-use across abstraction levels (3)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on lab-test
equipment
– Exchange of UVM driver

verification components necessary
– Re-use of all tests possible

© Accellera Systems Initiative 26

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

download

monitor
integrate

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Re-use across abstraction levels (4)

UVM-SystemC Generator
• Generator is based on easier uvm code generator for

SystemVerilog from Doulos
– www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_

generator/

• Generator uses template files as input, which are
similiar to the Doulos generator

• Generates complete running UVM-SystemC
environment

© Accellera Systems Initiative 28

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/

UVM-SystemC Generator
• Generated UVM objects and files:

– UVM_Agent
– UVM_Scoreboard
– UVM_Driver
– UVM_Monitor
– UVM_Sequencer
– UVM_Environment
– UVM_Config
– UVM_Subscriber
– UVM_Test
– Makefile to compile the generated UVM project
– Instantiation and DUT connection

© Accellera Systems Initiative 29

UVM-SystemC Generator

• Input file for generating
a complete agent
– Transaction items
– Interface ports

• General Config File

• DUT connection to
agent interfaces (DUT
port <-> agent port))

© Accellera Systems Initiative 30

#agent name
agent_name = clkndata

#transaction item
trans_item = data_tx

#transaction variables
trans_var = int data

#interface ports
if_port = sc_core::sc_signal<bool> clk
if_port = sc_core::sc_signal<bool> reset_n
if_port = sc_core::sc_signal<bool> scl
if_port = sc_core::sc_signal<bool> sda
if_port = sc_core::sc_signal<bool> rw_master

if_clock = clk
if_reset = reset_n

#agent mode
agent_is_active = UVM_ACTIVE

#DUT directory
dut_source_path = mydut
#Additional includes
inc_path = include
#DUT toplevel name
dut_top = mydut
#Pin connection file
dut_pfile = pinlist

!clkndata_if
clk clk
reset_n reset_n
rw_master1 rw_master
scl1 scl
sda1 sda

!agent2_if
...

Standardization in Accellera
• Growing industry interest for UVM

in SystemC
• Standardization in SystemC

Verification WG ongoing
– UVM-SystemC Language Reference

Manual (LRM) completed
– Improving the UVM-SystemC Proof-

of-Concept (PoC) implementation
– Creation of a UVM-SystemC

regression suite started
• Draft release of UVM-SystemC

planned for end 2015
– Both LRM and PoC made available

under the Apache 2.0 license
– Exact timing dependents on progress

(and issues we might find)

31

• Main focus this year:
– UVM-SystemC API documented in the Language Reference Manual
– Further mature and test the proof-of-concept implementation
– Extend the regression suite with unit tests and more complex

(application) examples

• Next year…
– Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
– Add constrained randomization capabilities (e.g. SCV, CRAVE)
– Introduction of assertions and functional coverage features
– Multi-language verification usage (UVM-SystemVerilog ↔ UVM-SystemC)

• …and beyond: IEEE standardization
– Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

Next steps

32

• Good progress with UVM-SystemC standardization in Accellera
– UVM-SystemC foundation elements are implemented
– Register Abstraction Layer currently under development
– Review of Language Reference Manual finished and Proof-of-concept

implementation ongoing
– First draft release of UVM-SystemC planned for end 2015

• Next steps
– Make UVM-SystemC fully compliant with UVM 1.2
– Introduce new features: e.g. randomization, functional coverage

• How you can contribute
– Join Accellera and participate in this standardization initiative
– Development of unit tests, examples and applications

Summary and outlook

33

Questions

© Accellera Systems Initiative 34

	UVM goes Universal - Introducing UVM in SystemC
	Outline
	UVM what is it?
	UVM what is it not…
	A bit of history…
	Why UVM in SystemC?
	Why UVM in SystemC?
	Verification stack: �tools, language and methodology
	UVM-SC versus UVM-SV
	Main concepts of UVM (1)
	Main concepts of UVM (2)
	UVM Layered Architecture
	UVM layered architecture
	Advantages of UVM-SystemC
	UVM components are SystemC modules
	SystemC TLM communication (1)
	SystemC TLM communication (2)
	Phases of elaboration and simulation
	(Un)packing using stream operators
	C++ Template classes
	Standard C++ container classes
	Other benefits
	Re-use across languages & simulators
	Re-use across abstraction levels (1)
	Re-use across abstraction levels (2)
	Re-use across abstraction levels (3)
	Re-use across abstraction levels (4)
	UVM-SystemC Generator
	UVM-SystemC Generator
	UVM-SystemC Generator
	Standardization in Accellera
	Next steps
	Summary and outlook
	Questions

