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Abstract- HLS (High-Level Synthesis) tools allow us to raise the level of abstraction of our hardware design models from 

RTL (Register Transfer Level) written in Verilog to a much higher, untimed level written in C++.  These tools produce 

Verilog RTL models that are fed to conventional RTL-to-gates synthesis tools, the output of which flow into the physical 

design process.  The advantages of working at this higher level of abstraction are well-documented [1].  These include 

engineering productivity (e.g. fewer design coding errors), faster time to market, and the ability to quickly modify or 

leverage a design. 

How are we to directly verify the source HLS model?  Unfortunately, our present, unit-level simulation-based functional 

verification methodology library of choice, the Universal Verification Methodology (UVM) [2], assumes that the model of 

the DUT (Design Under Test) is written in the same language as the library, namely SystemVerilog/Verilog.  This paper 

summarizes the scenarios we considered for dealing with this situation, and presents an expedient solution based on the 

UVM Connect [3] open-source library. 

 

I. INTRODUCTION 

Our team is part of Custom Silicon Development in Microsoft, which has a history of developing custom SoCs, 

chipsets, and sensors for Xbox, HoloLens, and other devices.  When we first started doing HLS design, our verification 

team focused exclusively on the verification of the synthesized RTL using UVM test benches and tests.  This presented 

some challenges, including 

• Achieving sufficient test coverage on the C++ source code. 

• Debugging the machine generated RTL. 

• Reproducing a given failure in the designer’s C++ test bench environment. 

• Reconciling a failure observed in RTL simulation with the true design source written in C++. 

On our next iteration of HLS design, we decided to pursue a means by which we could directly and comprehensively 

verify the HLS design source, rather than just the generated RTL.  We considered several options that fell into these 

broad categories: 

• Single-language solutions 

• Emerging commercial EDA solutions 

• Mixed-language, co-simulation approaches 

This paper summarizes these options in light of considerations about risk, efficacy, nascency, completeness, EDA 

industry support, and expediency.  We then describe our solution which retains the designer’s C++ test bench for 

initial design and testing, then relies primarily on UVM-SystemVerilog coupled with UVM Connect for full 

verification.  This combination enables us to leverage the primary strengths that have been developed in both the C++ 

and UVM environments, while minimizing duplication of effort.  In the designer’s C++ test bench, we can leverage a 

wide range of existing libraries for testing, visualization, debug, and analysis, as well as C++ unit tests to verify and 

document a block and its sub-blocks while they are being designed.  The UVM environment allows us to leverage 

existing UVM verification IP and expertise, as well as UVM’s constrained randomization and coverage measurement 

capabilities.  We also give some details about the implementation of the solution that demonstrate best practices for 

writing interfaces in the abstracted DUT to enable drop-in RTL replacement, and show how our approach results in a 

high degree of leverage of test bench and test codes for an RTL-DUT configuration.  We then briefly discuss how we 

solved some unexpected challenges with simulation run-time performance. We close with some observations about 

the role of “golden reference” models and present some goals for future work. 

 

II. OBSERVATIONS AND CONCERNS 

The UVM approach to unit-level testing of RTL designs, depicted in Figure 1, below, relies as much as possible on 

fairly high levels of abstraction.  The individual components of the test bench are implemented using standard object-



 

 

 

oriented library (UVM) built on an object-oriented language (SystemVerilog).  Stimulus and response data are kept at 

the TLM (Transaction-Level Modeling) level as much as possible.  It is only at the point where drivers and monitors 

interface with the DUT via virtual interfaces that we are dragged down to the signal-oriented register-transfer level of 

abstraction.  We could instead model the DUT at a TLM level of abstraction using SystemVerilog.  Indeed, that was 

a part of the original promise of the “System” part of that language’s moniker.  However, this promise never 

materialized.  There are no leading HLS tools we know of that accept design models written in SystemVerilog at a 

behavioral, TLM level of abstraction.  Curiously, C++, or SystemC on top of C++, have emerged as the only languages 

available to us for modeling HLS designs.  There would be no reason to write this paper if this were not the case.  It 

is the mixture of languages, UVM/SystemVerilog and SystemC/C++, and our desire to remain at a TLM level of 

abstraction1, that is the core of our problem. 

We appear to be at an awkward spot in the evolution of verification methodology and tools for HLS-based design.  

As we move up in the level of abstraction with which we model our designs, we do not want to be forced to leave 

behind various verification elements that we have today for RTL designs: 

• For RTL design, we can use logical equivalence checker (LEC) tools to formally prove the equivalence of 

the synthesized gate-level netlist to the RTL source.  C++-to-RTL LEC is a difficult problem to solve in 

general for HLS designs.  We know that some in the EDA industry are working on it.  When will these 

commercial LEC tools be available?  How well will they work? 

• When will tools such as property checkers, model checkers, linters, etc., be available for HLS designs?  If 

they are available today, how well do they work? 

• Accellera is working on a SystemC implementation of the UVM [4].  When will this work be complete?  

Will it become a ratified standard?  Will the EDA industry broadly support this standard? 

• For RTL design, not only do we have the UVM, but we have a robust set of tools for working with UVM-

based test benches and simulations, e.g. debuggers, waveform viewers, coverage management 

infrastructures, and the like.  Will these tools become widely available for HLS-based designs?  When? 

We will continue to follow the progress of emerging standards such as the SystemC implementation of the UVM, 

and the Portable Stimulus Standard [5], and the EDA industry’s level of embrace and support of these standards.  For 

now, we will rely on our expedient UVM-for-HLS approach to exploit the tools and expertise we have in-hand today. 

 

III. CONSTRAINTS AND CONSIDERATIONS  

There were several practical constraints that helped inform our choice of solution. 

• As we were ramping down our efforts on the first chip that employed HLS, we had a very narrow window 

(just a few weeks) in which to investigate improvements for the next chip.  We therefore did not have the 

luxury of thoroughly investigating each and every alternative.  We needed something expedient and 

incremental, with a high degree of immediate availability and relatively low risk of unforeseen surprises.  

We could not afford to be dependent on commercial solutions that are tied to any one set of EDA vendors 

or tools, or that are not based on fully-supported, shipping, EDA products. 

• To manage risk, we needed a solution that was truly incremental with respect to existing UVM agents that 

we wanted to reuse.  To be able to leverage those agents, we required that we have zero changes to existing 

(non-HLS) test benches and tests that were clients of those agents. 

• To further manage risk, we structured our verification planning so that is was not utterly dependent on a 

UVM-for-HLS approach; that is, we planned such that, in a worst-case scenario, we could fall back to our 

traditional RTL-DUT unit testing approach.  So, in terms of our project planning, our initial foray into a 

UVM-for-HLS approach was “extra credit.” 

The considerations we used to pick our solution were: 

• Efficacy and completeness.  We wanted a solution that was at least as capable as our current RTL-DUT 

unit testing approach, compromising only on those aspects of testing that are obviously impractical or 

impossible to test at the HLS level of abstraction.  For example, we knew that we would not be able to 

verify clock gating, clock gate overrides, and external resets with an HLS DUT, as these are not modeled 

in the HLS source code. 

• Risk and nascency.  To minimize risk, we tried to avoid solutions that are relatively new and unproven. 

                                                           

 
1 All the leading commercial simulators support mixing Verilog and SystemC modules, but they do so only at the 

signal level of abstraction. 



 

 

 

• EDA industry support and conformance to existing standards.  So as not to unduly constrain future 

projects, we wanted the elements of our solution to be as EDA-vendor-neutral as possible, and to be based 

on current ratified standards rather than draft or emerging standards.  We also wanted to be able to avail 

ourselves of the full portfolio of UVM-SystemVerilog tools from the EDA industry beyond simulators, 

e.g. debuggers, waveform viewers, and coverage data management systems. 

• Timeliness and expediency.  We wanted a solution that would not require a lot of development, expense, 

or investigation.  We wanted something that was as close to “in-stock” as possible2. 

• Flexibility and Compatibility. We needed a solution that can work with both SystemC and pure C++ HLS 

designs.  This allows us to use the best language and abstraction level for a given HLS design. 

 

IV. SOLUTION OPTIONS 

We considered the following options for verifying HLS DUTs: 

1. Single-language solutions 

 

a. Eschew SystemVerilog, and use the version of the UVM written in SystemC. 

 

This option may prove viable in the future, provided that the EDA industry and its customers 

embrace it fully.  This emerging standard [4] is not yet complete, and it remains to be seen if the 

EDA industry and its customers will rally around it, providing the breadth and depth of solutions 

that we have today for UVM-SystemVerilog.  At this point in time, this option fails with respect 

to efficacy, risk, EDA industry support, and expediency. 

 

b. Eschew UVM, and rely on unit-level environments written by the designer in C++ or Python. 

 

We have found that effective “bring-up” verification can be realized in a test bench written in 

C++ by the designer using an Integrated Development Environment (IDE) readily available 

within our company on the PC.  However, this approach lacks in the areas of efficacy and 

completeness for final sign-off verification, as tests still need to be run against the RTL.  The tests 

developed in these environments tend to be directed in nature, and the approach lacks rich 

constrained randomization and functional coverage measurement facilities. 

 

2. Emerging commercial EDA solutions 

 

a. Rely on our HLS synthesis tool vendor to supply a solution. 

 

Besides the problem of being vendor-specific, the solution from our synthesis vendor that we 

were aware of assumes that the designer’s C++ test suite is complete and robust.  Assuring this 

requires constrained-random stimulus generation and coverage measurement capabilities that are 

at least on a par with the UVM.  See 1.b., above. 

 

b. Use a commercial “portable stimulus” solution. 

 

The idea here would be to develop of suite of verification tests using one of the languages defined 

by the draft standard [5], then rely on commercial tools [6] to automatically generate the 

environment that operates directly on our C++/SystemC DUT.  This option may be viable in the 

near future, but the standard has not yet been ratified nor widely adopted by the EDA industry.  

Embracing one of the few solutions that are available today would risk us getting tied to a 

particular vendor.  It is also not very expedient, as we would need to climb a learning curve to 

become proficient in the new language and related tools. 

 

3. Mixed-language, co-simulation approaches 

 

                                                           

 
2 If it’s in stock, we got it.  



 

 

 

All these approaches share the advantages of efficacy and completeness, as they allow us to leverage our 

existing UVM-SystemVerilog expertise and IP. 

 

a. Use a vendor-specific co-simulation technology such as Synopsys’ TLI (Transaction-Level 

Interface). 

 

As mentioned previously, we wanted to avoid vendor-specific solutions. 

 

b. Write our own co-simulation interface library based on the IEEE-1800 DPI standard [7]. 

 

This approach would be neither timely nor expedient, as it would likely entail significant in-house 

development. 

 

c. Use an open-source, vendor-neutral co-simulation library such as UVM-ML [8] or UVM 

Connect. 

 

Given our constraints and criteria, this was the most attractive approach.  Both open-source 

libraries have been around for about five years and are therefore (hopefully) fairly low-risk due 

to their maturity.  They are both built upon the standard DPI and should work well with the leading 

commercial SystemVerilog simulators.  They are also timely and expedient, as they are readily 

available and well-documented. 

 

We relied heavily on the excellent overview and insights into these two libraries provided by 

Long and Aynsley [9] to decide on UVM Connect.  It seemed simpler to use than UVM-ML and 

did not require us to change our style of coding for our C++ components. 

 

V. IMPLEMENTATION 

A. Overview 

We contrived a simple, small, two-stage, streaming image filter design, called “small_filt,” to facilitate our 

exploration of UVM-for-HLS approaches.  The small_filt design is written in untimed C++ and includes common 

elements and I/O of larger designs, but simple internal functions.  The first stage applies a programmable offset to the 

incoming 8-bit pixel data; the second stage multiplies a programmable scale factor to each pixel and its predecessor, 

and outputs the average of the two scaled pixels.  A simple synchronous bus (not contrived), called “PTB” (for “Pixel 

Transfer Bus”), transfers one pixel per clock when the “valid” signal is asserted, and is used for small_filt’s main input 

and output.  The transaction class (derived from uvm_sequence_item) corresponding to data transfers on this bus was 

named “ptb_seq_item.” 

The RTL-DUT version of the small_filt test bench is depicted in Figure 1.  Our UVM agents3, one for the PTB 

(“ptb_agent”) and one for the APB4 (“apb_agent”), came from an in-house library used by multiple projects.  As such, 

we were restricted to changing their implementation only in ways that were backward compatible.  Existing client 

environments employing these agents needed to continue to work unchanged.  The checker component, 

“small_filt_func_scbd,” colloquially called the “scoreboard,” incorporates a DPI import of an abstract “golden 

reference” model written in C++, as is our custom.  The scoreboard subscribes to the analysis ports of the PTB agent 

objects and consults the reference model to determine if the DUT correctly filtered the incoming pixels. 

 

                                                           

 
3 To reduce clutter in the diagram, two other “sideband” agents, one for the reset signal, and one for the clock-gate 

override signal, are not shown. 
4 AMBA Advanced Peripheral Bus 



 

 

 

 
Figure 1. RTL-DUT Test Bench 

Our goal was to leverage as much of the test bench, test, and sequence codes as possible between the RTL-DUT 

environment and the HLS-DUT environment, depicted in Figure 2.  Our approach was to leverage the scoreboard as-

is, convert from TLM1 sequence items to TLM-2.0 generic payload transactions, develop subclasses for the various 

UVM environments, agents, and monitors involved, and use type overrides to select the class types needed for the 

HLS-DUT case.  We then interfaced the derived agents to the DUT using TLM-2.0 sockets facilitated by the UVM 

Connect library and some wrapper code. 

In the description that follows, we assume that the reader is well versed in SystemC and the UVM, and has also 

studied the UVM Connect tutorials and documentation.  Tutorial information about SystemC, UVM, and UVM 

Connect is beyond the scope of this paper. 

 



 

 

 

 
Figure 2. HLS-DUT Test Bench 

B. TLM Conversion 

UVM Connect allows for direct use of TLM1 transactions by providing overrides for the virtual do_pack() and 

do_unpack() methods of the uvm_sequence_item class on the SystemVerilog side, and template specializations of the 

uvmc_converter class on the C++ side.  However, we thought it would be wiser in the long run to model the 

transactions crossing the language barrier using TLM-2.0 and the standard “generic payload”.  Either choice requires 

writing custom conversion code, but converting to the generic payload enables the possibility of someday plugging 

HLS DUTs into virtual prototype systems based on SystemC TLM-2.0.  It also enables the possibility of better 

simulation run-time performance via UVM Connect’s performance-optimized converter class, uvmc_xl_converter, 

which exploits TLM-2.0’s pass-by-reference semantics (See “Performance Challenges,” below.) 

One the SystemVerilog side, we augmented our ptb_seq_item transaction class with two new methods: 

 

 

 

and 

 

 

 

The to_tlm_gp() method packs the relevant data members of the transaction object into the byte array referenced by 

the TLM generic payload object “txn.”  It is used by the driver (ptb_tlm_drv in Figure 2) to convert the ptb_seq_item 

pulled from the sequencer to a TLM generic payload object that is sent into “tlm_out,” a uvm_tlm_b_initiator_socket, 

via its b_transport() method: 

  

virtual function void to_tlm_gp(ref uvm_tlm_gp txn); 

virtual function void set_from_tlm_gp(const ref uvm_tlm_gp in); 



 

 

 

 

The set_from_tlm_gp() method is the functional complement of to_tlm_gp(): it sets the relevant data members of 

the present ptb_seq_item object according to the attributes of the uvm_tlm_gp object “in.”  It is used by the 

b_transport() method of the monitor (tlm2ptb_mon in Figure 2) to create a new ptb_seq_item object to send out its 

analysis port “mon_items_ap”: 

 

 

There are also conversion methods on the C++ side needed to convert to and from objects of the C++ class 

corresponding to ptb_seq_item.  These are discussed below under “DUT Wrapper.” 

 

C. Subclasses and Type Overrides 

To maintain compatibility with existing RTL-DUT client test benches and enable the leverage of existing test bench 

and test codes, we employed a system of subclasses and type overrides.  We turned each common agent, driver, and 

monitor class into a base class from which are derived subclasses specific to the needs of the RTL-DUT and HLS-

DUT configurations.  Figure 3 depicts the resultant class hierarchy for the PTB-related components, and how we 

repurposed legacy class names.  We turned the legacy ptb_agent into a base class from which ptb2tlm_agent is derived.  

We repurposed ptb_mon and ptb_drv to be subclasses of ptb_mon_base and ptb_drv_base, respectively, that are used 

only in the RTL-DUT case.  We created new classes tlm2ptb_mon and ptb2tlm_drv that are only used in the HLS-

DUT case.  Any attributes specific to the RTL-DUT case, e.g. virtual interface handles, were moved into the RTL-

DUT subclasses, and any attributes specific to the HLS-DUT case, i.e. the driver’s uvm_tlm_b_initiator_socket and 

the monitor’s uvm_tlm_b_target_socket, were placed in the HLS-DUT subclasses. 

  

task ptb2tlm_drv::run_phase(uvm_phase phase); 
  // TLM2 Generic Payload Transaction 
  uvm_tlm_gp tlm_gp_req_item = new("tlm_gp_req_item"); 
 
  uvm_tlm_time delay = new("delay", 1e-12); 
 
  forever begin 
    seq_item_port.get_next_item(req_item); 
    req_item.to_tlm_gp(tlm_gp_req_item); 
    tlm_out.b_transport(tlm_gp_req_item, delay); 
 
    rsp_item.copy(req_item); 
    rsp_item.set_id_info(req_item); 
    seq_item_port.item_done(rsp_item); 
  end //end forever 
 
endtask: run_phase 

 

// Blocking task called via the "tlm_in" socket 
task tlm2ptb_mon::b_transport(uvm_tlm_gp txn_in, uvm_tlm_time delay); 
  ptb_txn = ptb_seq_item `PTB_AGENT_PARAMS_PASS::type_id::create("ptb_txn",this); 
 
  ptb_txn.set_from_tlm_gp(txn_in); 
  mon_items_ap.write(ptb_txn); 
 
endtask: b_transport 



 

 

 

 

 
Figure 3. PTB Component Class Hierarchy 

 

We also changed ptb_agent so that it contains monitor and driver base class objects instead of RTL-DUT-specific 

objects, and used the following code to ensure that legacy RTL-DUT test benches will properly override the base class 

types: 

 

Notice the adroit use of the “replace” formal parameter of set_type_override() in the above code.  Overriding the 

default value of 1 with 0 ensures that we respect any type override effected at a higher level in the UVM component 

function void ptb_agent::build_phase(uvm_phase phase); 
  super.build_phase(phase); 
 
  void'(uvm_config_db #(int)::get(this, "", "is_master", is_master)); 
 
  if (is_master == UVM_ACTIVE) begin 
    sequencer = uvm_sequencer #(ptb_seq_item `PTB_AGENT_PARAMS_PASS)::type_id::create("sequencer", this); 
 
    // By default, create a "ptb_drv" for "driver", but only if an override_type 
    // has not been previously set 
    ptb_drv_base `PTB_AGENT_PARAMS_PASS::type_id::set_type_override( 
      .override_type(ptb_drv `PTB_AGENT_PARAMS_PASS::get_type()), 
      .replace(0) 
    ); 
    driver = ptb_drv_base `PTB_AGENT_PARAMS_PASS::type_id::create("driver", this); 
  end 
 
  mon_items_ap = new("mon_items_ap", this); 
 
  // By default, create a "ptb_mon" for "monitor", but only if an override_type 
  // has not been previously set 
  ptb_mon_base `PTB_AGENT_PARAMS_PASS::type_id::set_type_override( 
    .override_type(ptb_mon `PTB_AGENT_PARAMS_PASS::get_type()), 
    .replace(0) 
  ); 
  monitor = ptb_mon_base `PTB_AGENT_PARAMS_PASS::type_id::create("monitor", this); 
 
endfunction: build_phase 



 

 

 

hierarchy5.  In a legacy RTL-DUT test bench, none will exist, so we end up using the appropriate RTL-DUT classes 

for the monitor and driver. 

Moving up in the uvm_component hierarchy, we refactored our uvm_env-derived class into a base class with 

subclasses, as shown in Figure 4, and employed type overrides to select the appropriate agent subclasses, which, in 

turn, employ type overrides to select the appropriate driver and monitor subclasses.  The cascade of type overrides 

starts in small_filt_base_test::build_phase(), where we call the appropriate small_filt_base_env type override 

according to an argument passed in on the simulator command line: 

 

 

While it is the environment base class’ build_phase() method that constructs the environment object, we rely on the 

polymorphically chosen build_phase() method of the subclass to effect the requisite type overrides before 

super.build_phase() is called.  For example: 

 

 

 

 
Figure 4. Test Environment Class Hierarchy 

                                                           

 
5 Recall that the build_phase() tasks of uvm_components are called in top-down fashion. 

void'($value$plusargs("CONF=%s", conf)); 
if (uvm_is_match("*_rtl_dut", conf)) begin 
  small_filt_tb_cfg::is_rtl_dut = 1; 
  `uvm_info(REPORT_TAG, "RTL DUT", UVM_NONE) 
end 
else begin 
  small_filt_tb_cfg::is_rtl_dut = 0; 
  `uvm_info(REPORT_TAG, "HLS DUT", UVM_NONE) 
end 
 
if (small_filt_tb_cfg::is_rtl_dut)  
  small_filt_base_env::type_id::set_type_override(small_filt_rtl_env::get_type()); 
else 
  small_filt_base_env::type_id::set_type_override(small_filt_hls_env::get_type()); 
`uvm_info(REPORT_TAG, "Creating Environment", UVM_MEDIUM) 
 
env = small_filt_base_env::type_id::create("env", this); 

virtual function void small_filt_hls_env::build_phase(uvm_phase phase); 
  ptb_agent `PIXIN_INF_PASS::type_id::set_type_override(ptb2tlm_agent`PIXIN_INF_PASS::get_type()); 
  ptb_agent `PIXOUT_INF_PASS::type_id::set_type_override(ptb2tlm_agent`PIXOUT_INF_PASS::get_type()); 
  apb_env `APB_IF_PARAMS::type_id::set_type_override(apb_hls_env`APB_IF_PARAMS::get_type()); 
  super.build_phase(phase); 
endfunction: build_phase 



 

 

 

D. DUT Wrapper 

To interact with the method of the C++ object that is the main processing entry point for the HLS DUT, we need a 

wrapper that implements the required initiator and target sockets, and implements the b_transport() (“blocking 

transport”) methods that will be registered with the target sockets.  Referring to Figure 2, for each agent connected to 

the DUT wrapper, we need a simple_target_socket, b_transport() method, and simple_initiator_socket: 

 

 

Each simple_target_socket receives an incoming transaction and processes it using the b_transport() method 

registered by the socket.  For PTB transactions, our b_transport() method is: 

 

class small_filt_dut_wrapper : public sc_module { 
 
public: 
  simple_initiator_socket<small_filt_dut_wrapper> data_in_mon; // defaults to tlm_gp 
  simple_initiator_socket<small_filt_dut_wrapper> data_out_mon; 
  simple_target_socket<small_filt_dut_wrapper> data_in; // defaults to tlm_gp 
  simple_initiator_socket<small_filt_dut_wrapper> csr_in_mon; 
  simple_target_socket<small_filt_dut_wrapper> csr_in; 
 
  small_filt_dut_wrapper(sc_module_name nm) : 
    data_in_mon("data_in_mon"), 
    data_out_mon("data_out_mon"), 
    data_in("data_in"), 
    csr_in_mon("csr_in_mon"), 
    csr_in("csr_in") 
  { 
    data_in.register_b_transport(this, &small_filt_dut_wrapper::b_transport); 
    csr_in.register_b_transport(this, &small_filt_dut_wrapper::csr_b_transport); 

    · 
    · 
    · 
  } 

  · 
  · 
  · 
private: 
  small_filt_ns::small_filt dut; 
  small_filt_ns::small_filt_csrs csrs; 
  ac_channel<small_filt_ns::ptb_t> ch_ptb_in; 
  ac_channel<small_filt_ns::ptb_t> ch_ptb_out; 

  · 
  · 
  · 
}; 



 

 

 

 

On the first line above, we initialize “data_in” using a constructor that was added to the ptb_txn class that converts 

from a TLM generic payload object.  Next, we send tlm_generic_payload object “gp” unaltered out the “data_in_mon” 

simple_initialtor_socket for the sake of the tlm2ptb_mon on the left side of Figure 2.  We then write “data_in” into an 

ac_channel [10] “ch_ptb_in” and call the DUT’s StepAC() method, which filters the data in “ch_ptb_in” and places 

the results in the ac_channel “ch_ptb_out.”  Finally, we send each item in “ch_ptb_out” into “data_out_mon” for the 

sake of the tlm2ptb_mon on the right side of Figure 2.  The send_to_monitor() method converts an input ptb_txn into 

a tlm_generic_payload object, and sends it out the designated simple_initiator_socket via a call to the socket’s 

b_transport() method. 

Note that all of this happens in zero simulation time; there is no need to modify the incoming sc_time parameter “t” 

and there is no need to yield by calling sc_core::wait().  For our streaming data-driven DUT, this overhead is simply 

not needed.  As pixels come in to the DUT wrapper, they are immediately placed into the input queue of the scoreboard 

via a monitor.  The filtered output is computed in zero time and immediately placed on the scoreboard’s output queue, 

again via a monitor.  So, from the scoreboard’s point of view, all inputs and actual outputs appear in the correct order, 

with the actual outputs suitable for comparison with expected outputs as computed from the DPI-imported golden 

reference model. 

The other blocking transport method of small_filt_dut_wrapper, csr_b_transport(), services APB transactions that 

effect changes in the control/status register object “csrs” passed into StepAC(). 

 

E. UVM Connect “Wiring” 

The last piece of our implementation that we describe is how we “wired” the UVM drivers and monitors to the 

small_filt_dut_wrapper’s sockets using UVM Connect.  The SystemVerilog side of the connection is implemented in 

the ptb2tlm_agent as follows, using the uvmc_tlm::connect() method: 

 

 

virtual void b_transport(tlm_generic_payload& gp, sc_time& t) { 
  small_filt_ns::ptb_txn data_in(gp); 
 
  // Tee the incoming transaction into data_in_mon 
  data_in_mon->b_transport(gp, t); 
 
  // Send incoming data into the pipeline 
  ch_ptb_in.write(data_in); 
 
  // Process any data in ch_ptb_in 
  dut.StepAC(ch_ptb_in, csrs, ch_ptb_out); 
 
  // Send output to data_out_mon 
  while (ch_ptb_out.available(1)) { 
    send_to_monitor(ch_ptb_out.read(), data_out_mon, t); 
  } 
 
  // Complete the TLM transaction 
  gp.set_response_status(TLM_OK_RESPONSE); 
} 

function void ptb2tlm_agent::connect_phase(uvm_phase phase); 
  super.connect_phase(phase); 
 
  if (is_master == UVM_ACTIVE) begin 
    uvmc_tlm #(uvm_tlm_gp, 
               uvm_tlm_phase_e, 
               uvmc_xl_tlm_gp_converter)::connect(driver.get_tlm_out(), driver.get_full_name()); 
  end 
 
  uvmc_tlm #(uvm_tlm_gp, 
             uvm_tlm_phase_e, 
             uvmc_xl_tlm_gp_converter)::connect(monitor.get_tlm_in(), monitor.get_full_name()); 
 
endfunction: connect_phase 



 

 

 

The first formal parameter of uvmc_tlm::connect() is the handle to the socket object.  Notice that we must use a 

virtual accessor method, e.g. ptb2tlm_drv::get_tlm_out(), to supply the actual parameter, because “driver” is declared 

to be a handle for the base-class type ptb_drv_base, and only the derived class ptb2tlm_drv actually contains the socket 

object “tlm_out”.  The virtual accessor methods are defined so that the base-class implementation issues a fatal error, 

and the HLS-DUT derived class implementation returns the socket handle: 

 

 

The second formal parameter of uvmc_tlm::connect() is the string that is used by UVM Connect as the key on the 

C++-side to look up the socket.  We use uvm_component::get_full_name() to supply the actual parameter to ensure 

that look-up keys are unique and discernable. 

 

The C++-side of the wiring story occurs in the sc_main() function (not shown in Figure 2): 

 

  

function uvmc_tlm #(uvm_tlm_gp, 
                    uvm_tlm_phase_e, 
                    uvmc_xl_tlm_gp_converter)::port_type ptb_drv_base::get_tlm_out(); 
  // This function definition should never be called. 
  // Only sub-class definitions of this function should be called. 
  `uvm_fatal(REPORT_TAG, "Base virtual function should never be called.") 
  return null; 
endfunction: get_tlm_out 
 
function uvmc_tlm #(uvm_tlm_gp, 
  uvm_tlm_phase_e, 
  uvmc_xl_tlm_gp_converter)::port_type ptb2tlm_drv::get_tlm_out(); 
  return tlm_out; 
endfunction: get_tlm_out 

int sc_main(int argc, char* argv[]) { 
  small_filt_dut_wrapper& dut_wrapper(*(new small_filt_dut_wrapper("dut_wrapper"))); 
 
  uvmc::uvmc_connect<uvmc_xl_converter<tlm_generic_payload> >( 
    dut_wrapper.data_in, 
    "uvm_test_top.env.pixin_agent.driver" 
); 
  uvmc::uvmc_connect<uvmc_xl_converter<tlm_generic_payload> >( 
    dut_wrapper.data_in_mon, 
    "uvm_test_top.env.pixin_agent.monitor" 
  ); 
  uvmc::uvmc_connect<uvmc_xl_converter<tlm_generic_payload> >( 
    dut_wrapper.data_out_mon, 
    "uvm_test_top.env.pixout_agent.monitor" 
  ); 
 
  uvmc::uvmc_connect<uvmc_xl_converter<tlm_generic_payload> >( 
    dut_wrapper.csr_in, 
    "uvm_test_top.env.apb_master_env.agent[0].driver" 
  ); 
  uvmc::uvmc_connect<uvmc_xl_converter<tlm_generic_payload> >( 
    dut_wrapper.csr_in_mon, 
    "uvm_test_top.env.apb_master_env.agent[0].monitor" 
  ); 
 
  sc_start(); 
  return 0; 
} 



 

 

 

 

VI. PERFORMANCE CHALLENGES 

Recently, we applied what we learned from our contrived “small_filt” example to real design case destined for a 

chip currently under development.  This “big_filt” design involved more, non-trivial stages of processing, and an 

additional type of agent beyond the pixel and APB agents.  After we got the flexible test bench put together, we noticed 

that the HLS-DUT configuration ran about 8 times slower than RTL-DUT configuration!  We did not expect that an 

untimed, data-driven C++ model in which all the interesting processing happens in zero simulation time would be 

slower than an event-driven RTL model that takes many cycles to complete its processing. 

 

We found that there were three main reasons for this: 

 

1. Naïve use of the UVMC_INFO macro. 

 

UVM Connect provides handy facilities for sending messages from C++ to UVM’s report server.  We had 

some invocations of the UVMC_INFO macro in our DUT wrapper code, and we used sc_object::name() 

as the actual parameter for the “context” formal parameter.  This caused a lot of time to be spent in the 

uvm_is_match() function by UVM Connect code that was searching the SystemVerilog-side hierarchy in 

vain for our SystemC object.  By instead supplying the null string as the actual parameter, we found that 

the underlying code foregoes the search, and our performance improved such that the HLS-DUT 

configuration was about 2 times slower. 

 

2. Use of the default UVM Connect converter classes. 

 

Originally, we did not supply any explicit template parameters in our uvmc_tlm::connect() and 

uvmc::uvmc_connect() calls, which caused the underlying code to the use default converter policy classes.  

These converters rely on implementations of the virtual do_pack() and do_unpack() methods of 

uvm_object that employ brute-force unconditional data copying to effect transfers across the 

SystemVerilog-C++ language barrier.  A much more efficient approach, employed by UVM Connect’s 

“XL” converter classes, is to exploit the TLM-2.0 protocol’s pass-by-reference approach for the data 

payload, and the rules around the modifiability of transaction attributes [11] to avoid unnecessary transfers.  

Once we fixed our “wiring” calls to make use of the uvmc_xl_tlm_gp_converter on the SystemVerilog 

side and uvmc_xl_converter on the C++ side (as shown in the above code snippets), we enjoyed a 

significant speed-up: the HLS-DUT case was now about 3 times faster than the RTL-DUT case. 

 

3. Use of debuggable, non-optimized C++ code. 

 

Once we changed our g++ compiler option from “-g -O0,” which results in debuggable, non-optimized 

code, to “-O3,” we enjoyed an additional speed-up factor.  Our HLS-DUT case is now about 4 times faster 

than the RTL-DUT case. 

 

 

VII. GOLDEN REFERENCE MODELS 

In this section, we consider a common scenario in which HLS is used to design custom hardware that accelerates 

an existing software algorithm.  This scenario often requires the following source codes to be developed to map an 

algorithm into gates: 

1. A software reference model, usually written in a high-level language (e.g. C++, C#, Python, etc.). 

2. A fixed-point hardware model that models hardware approximations (e.g. fixed-point computations, memories, 

configuration registers, etc.).  It is used to validate the results of the hardware approximations. 

3. An RTL model, written in a hardware description language (e.g. Verilog or VHDL) that implements the fixed-

point hardware model at the register-transfer level. 

It is possible that, under certain constraints, the software reference model may be directly used by the scoreboard as 

the validation model for the RTL, allowing the development of the fixed-point hardware model to be skipped.  

However, we have seen that this is often only the case for relatively simple designs where the validity of an output 

can be constrained within some tolerance of the software reference model.  Some other examples that commonly drive 

the need for a fixed-point model include the following: 

• The need to validate sequential hardware approximations. 



 

 

 

• Compatibility with calls to imported DPI functions and the associated hardware configuration settings. 

• Insufficient outputs for verification, for example transaction-level outputs and intermediate outputs. 

 

Figure 5, below, shows the flow for a conventional verification process for a hardware accelerator RTL design. 

 

 
Figure 5. Conventional Three-Source Hardware Accelerator Verification 

 

In this three-source verification flow, the software reference model is generally the true “golden” model, as it is 

written in a higher-level language and has generally undergone significant application testing.  But when it comes to 

RTL verification in the three-source flow, the assumption is that the fixed-point model is proven to be a “golden” 

reference model in the context of RTL testing.  In many designs, this creates an unseen verification hole in that the 

UVM-based testing for the RTL will generally push the design into configuration input spaces beyond the bounds of 

the testing versus the software reference model. When this happens, mismatches with the RTL need to be reconciled 

and potentially re-validated against the reference model, or both the RTL and the fixed-point model may be 

producing undesirable results that are not detected. 

 

Using our UVM-for-HLS approach, the verification flow can effectively be reduced to two design sources—the 

reference model remains the same and HLS source becomes the fixed-point model, as depicted in the upper half of 

Figure 6.  UVM-for-HLS enables us to bring the advanced constrained-random stimulus capability of UVM to target 

testing of the software reference and HLS fixed-point models.  This lifts the sophisticated randomized testing to 

directly test the hardware approximations, which can often be the most important equivalency to verify. 

 

Referring to the lower half of Figure 6, after the HLS design is sufficiently verified versus the software reference 

model, the UVM-for-HLS test suite can be directly re-used for testing the RTL that is synthesized from the HLS 

source code.  The present state of art in HLS technology does not guarantee the logical equivalence of the generated 

RTL for all designs and design styles (as is the case with RTL-to-gate synthesis), so RTL testing and coverage 



 

 

 

closure are still generally required.  But now, in the context of the two-source verification flow with UVM-for-HLS, 

the fixed point (HLS) model has been sufficiently verified and can be used as a reference against the generated RTL.  

As the HLS tools strive to produce equivalent RTL, this reduces RTL testing into an exercise of closing coverage 

and testing RTL-specific features, like resets, clock gating, etc., via the “RTL-Specific Tests” depicted in the lower 

half of Figure 6.  As a bonus, the RTL coverage closure is likely to require running only a subset of tests from the 

full “UVM Test Suite,” greatly reducing the time spent simulating with an RTL DUT, and focusing the bulk of 

testing cycles on the fast C++/SystemC models. 

 

 
Figure 6: Two-Source Hardware Accelerator Verification via UVM-for-HLS 

  



 

 

 

 

VIII. FUTURE OPPORTUNITIES 

As we look to future, there are some opportunities to improve and enhance our UVM-for-HLS methodology: 

• Continue to improve the simulation run-time performance of the HLS-DUT configuration.  Explore 

opportunities to improve the UVM Connect library to more aggressively employ pass-by-reference 

semantics, and eliminate data copying as much as possible.  Work with the keeper of UVM Connect to 

incorporate our improvements. 

• Develop base classes and standard templates so that our in-house UVM test bench code generator system 

can accommodate our UVM-for-HLS approach. 

• Look for ways to reduce the effort required to adapt the published software programming model for 

control/status registers and memories to the more abstract model that is often encapsulated in our HLS 

code.  For some designs, we found ourselves writing adapter code multiple times, i.e. in the imported DPI 

wrapper functions employed by the scoreboard, and in the HLS-DUT wrapper.  Is there a way to automate 

or eliminate the production of this code? 

• Explore ways, e.g. portable stimulus tools, to seamlessly leverage test cases across environments and 

languages.  Any test should only need to be written once and in one language.  For example, we would like 

to be able to easily leverage the HLS designer’s bring-up test suite written in C++ so that it can run on our 

UVM-for-HLS test bench. 

 

IX. SUMMARY 

Rather than wait for the EDA industry to deliver complete, robust solutions for the functional verification of HLS 

designs, we pursued an expedient approach that uses UVM Connect to leverage existing industry standards and their 

attendant commercially available solutions, as well as our own in-house expertise with the UVM.  By employing class 

inheritance and type overrides, we confined the incremental effort needed to directly verify the HLS design to the 

development of HLS-DUT-specific subclasses and TLM conversion methods, and a SystemC wrapper sc_module.  

This allowed us to get an early start on the development of unit-level HLS-DUT test bench environments and tests.  

When it came time to close coverage on the synthesized RTL and verify RTL-specific features, we enjoyed a high 

degree of leverage: our base classes, the vast majority of the test cases, and the scoreboard in its entirety, were directly 

reused without change.   
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