
UVM-FM: Reusable Extension Layer for 

UVM to Simplify Functional Modeling 

Ahmed Kamal 

Mentor, a Siemens Business 

Cairo, Egypt  

ahmed_kamal@mentor.com 
 

 
Abstract- One of the main challenges in SoC verification is time-to-market pressure, for that reason all verification 

engineers are looking for new approaches to speed up building and developing their test environments. Universal 

Verification Methodology (UVM) is the de facto method as it combines many common approaches to standardize the test 

environment architecture. However, the increase in modern systems complexity introduced new obstacles such as 

modeling layered protocols. This paper introduces a reusable backward compatible extension layer for the UVM package 

(UVM-FM), and changes the UVM agent architecture to a network-like topology. UVM-FM solves the communication 

challenges in the layered protocol modeling process and speeds-up the UVM environment creation in a timely manner. In 

addition to that, the proposed extension for the UVM package gives more debugging capabilities, which is an important 

key element.   

 

I.   INTRODUCTION 

Universal Verification Methodology (UVM) [1] is a powerful standardized tool to implement a reusable 

verification environment, especially for single-layer protocols such a memories and simple communication buses, 

where a single uvm_agent and uvm_driver are enough to model an exerciser to the design under test (DUT). 

Layered protocols have become very important key elements in the SoC industry, where the protocol defines several 

layers that contribute together to perform the overall protocol functionality. Most of the industry modern protocols 

are designed with this stacked approach, such as PCIe, SATA, SAS, and UniPro. UVM does not standardize how to 

implement a verification environment for layered protocols, and does not recommend implementing the 

environment by either using a single agent or multiple agents where each agent represents a layer from the protocol 

stack. For that reason, several approaches were proposed by different verification engineers to address this issue and 

suggest a robust solution. Section II explores some of the suggested ideas and approaches before introducing our 

proposed solution (UVM-FM).  

 

UVM-FM is a reusable extension layer for UVM that simplifies functional modeling for layered protocols; it is 

backward compatible with the traditional UVM package. The new approach introduces changes to the uvm_agent 

architecture to be network-like topology; consequently, the communication between different components in the 

same layer or adjacent layers will be standardized and abstracted with simple subroutines. Section IV provides 

detailed description for the new agent topology as well as how the different layers will communicate together. 

Section V provides a detailed description for UVM-FM package, and lists the new components specification. The 

paper recommends that the UVM-FM solution to be part of the UVM standard; until that happens, the user could use 

the specifications mentioned in this paper to build a local reusable version of UVM-FM.  

 

This approach is used to implement a verification environment for one of the industrial layered protocols, which is 

Serial Attached SCSI (SAS) [2]. UVM-FM was used to model the link layer, port layer, and it manages the 

communication between them. Section VI provides details about this case study and highlights the benefits of using 

UVM-FM in terms of ease-to-model, ease-to-modify and ease-to-debug.   

     

II.   RELATED WORK 

Fitzpatric [3] and Doulos [4] introduced a technique to manage the layered protocol modeling by using translator 

sequences. In this approach, there is a separate sequencer for each non-leaf layer and there are free running 

translator sequences that manage the communication between each two adjacent layers. Inside the translator 

sequences, the layer functionality is modeled to translate the upper layer sequence item to the lower layer sequence 

item. This translation process is replicated until the leaf layer receives a sequence item to exercise the bus. Fig.1 

shows how the translator sequences mechanism works in a system that consists of three layer: A, B and C (leaf 

layer). 

 



This solution solves the problem when the translation from the upper layer to lower layer is straightforward and 

does not depend on feedback from the lower layer. In the modern SoCs, the layered architecture becomes very 

complex as it interacts with the lower and upper layers to perform the desired functionality. In addition to that, the 

layer implementation should take into consideration how to manage downstream and upstream (bi-directional) 

traffic (messages) at the same time with the lower layer because there might be dependencies between them. 

 
Figure 1. Modeling multi-layers protocols by using translator sequences approach 

 

H.Yu and C.Thomson [5] introduced a similar approach but instead of using translation sequence to convert the 

upper layer sequence item to the lower layer sequence item and vice versa, they do the conversion inside the 

sequence item itself and the scoreboard component. They introduced this idea to simplify Fitzpatric and Doulos 

approach, but their method still faces the same challenges mentioned about the translation sequence method.  

 

All the mentioned approaches try to avoid using R.Chauhan and R.Ganti [6] approach that uses a separate agent for 

each layer. The complexity of creating such a big environment and managing the communication between the 

different agents was the motivation of the other approaches to use a single agent to avoid these challenges. UVM-

FM accepts the multi-agents approach and introduces a standard communication mechanism between the different 

layers to ease building the environment. A multi-agent approach will be a key element to solve the synchronization 

between the different layers, which was a problem in single-agent approaches.    

 

III.   MODERN SOC LAYERED ARCHITECTURE CHALLENGES 

   In modern SoC layered architecture, each layer consists of different blocks working concurrently with independent 

states to perform different tasks. Fig.2 shows an example for a layered architecture that consists of two layers and 

each layer has three blocks. In this system, there might be two active communication channels between the two 

layers, for example, Block A and Block E communicate together, while Block D and Block C communicate also 

concurrently. These different concurrent communication channels between the different layers are very important to 

model modern full-duplex serial bus communication protocols.  

 

Figure 2. Example for IP stack for multi-layer protocol 



IV.   THE PROPOSED SOLUTION 

In order to overcome the communication challenges between the different layers, this paper introduces changes 

in the UVM agent architecture to be network-like topology. Agent C in Fig.1 is an example of a traditional UVM 

agent. The proposed solution introduces a new UVM component, the UVM communicator. This component acts like 

a router that manages the communication inside the layer and the communication with other layers. Fig.3 shows the 

proposed architecture changes on the uvm_agent. For non-leaf agents, there are four drivers attached to the 

communicator node, each driver manages a communication direction with the upper layer or the lower layer. The 

layer blocks and drivers attached to the communicator node are implemented by using extended versions of 

“uvm_component” and “uvm_driver”, and they are connected to the communicator node by using TLM ports. For 

leaf agents, it is easy to observe that “To Lower Layer (TLL)” and “From Lower Layer (FLL)” drivers are not 

needed. The TLL driver is replaced by a component that acts like the traditional UVM driver (converting TLM 

transactions to signal level), and the FLL driver is replaced by a component that acts like the traditional UVM 

monitor. The drivers attached to the communicator node are extended versions from uvm_drive.  

 

The new driver and component versions plug easily to the communicator node. The communicator node receives 

the TLM transaction from any attached node, then it re-routes the transaction to the destination node. Thus, a TLM 

transaction is implemented to hold the needed information for the routing algorithm such as source, destination 

addresses and the message contents. The user uses this TLM transaction to implement the messages that move to the 

upper and lower layers. Free running sequences are used to deliver the messages from a layer to another without 

changing the message contents.   

 

By applying the proposed solution on layered protocol model, each block inside the layer will be able to 

communicate with the peer or adjacent layer blocks. The communication will be done through a built-in subroutine 

call like: send_msg(msg_name, destination_node, contents). Similarly, each block will be able to receive messages 

from the peer or adjacent layer blocks. The received messages are stored inside the component’s TLM FIFO and 

could be easily parsed and handled. 

 

 
Figure 3. The proposed architecture for UVM Agent 

 

 

 



 

Fig.4 shows how to model the verification environment by using UVM-FM approach. The implemented layered 

protocol is similar to the protocol shown in Fig.2. In this example, Block A is responsible for managing how to drive 

the bus in the transmission path (traditional uvm_driver function) , while Block B is responsible for monitoring the 

bus in the reception path (traditional uvm_monitor function).  

 

Figure 4. Layered protocol example by using UVM-FM 

 

As shown in Fig.4 the application layer requests are modeled by using the virtual sequence. The top-level 

sequence could instruct the DUT by sending messages to layer_2 agent “From upper Layer (FUL)” driver. The 

message received is consumed inside layer_2, and it might trigger other layer nodes to send messages to layer_1 

agent through TLL driver. Similarly, the message received to layer_1 agent FUL driver might trigger node A to 

drive the bus.  

 

On the opposite direction, Block B monitors the bus and constructs messages, these messages could be sent to 

peer nodes like node A or C, or could be forwarded to layer_2 by using “To upper Layer (TUL)” driver. When 

layer_2 agent FLL driver receives a message, it forwards the message to one of the layer nodes like D, E or F, and 

then one of these nodes could send a notification message to the application layer by using TUL driver.  

 

It is observable that many components in the above approach could be reused such as the communicator node, 

TUL, FUL, TLL, and FLL. Those new elements could be bundled with original UVM package to create a new 

reusable package (UVM-FM). If such bundle exists, the user will focus only on implementing the system nodes such 

as A, B, C, D, E and F nodes in the above example.  Section V provides the specifications of the new package. 

 

The suggested solution could be used to model more complex layered structure, such as a tree structure where 

the stacked protocol includes peer layers. For example, layer_2 agent in Fig.4 could communicate with multiple 

instances of layer_1 agent. Another example for the complex layered structure when the stacked protocol has a 

management layer that communicates with all the stack layers. For example, a management layer that controls both 

layer_1 and layer_2 in Fig.4. Serial Attached SCSI (SAS) [2] is an example of a real industry protocol that has a stack 

with tree structure and includes a management layer as well. The network-like topology for UVM-FM agent gives 

us the luxury to connect the layer with multiple layers and simplifies modeling any layered structure.  

 

 



 

V.   UVM-FM PACKAGE 

The UVM for functional modeling package (UVM-FM) is a reusable extension layer for UVM. It simplifies the 

functional modeling by providing a ready-made communication system between the different nodes. The package 

contains the implementation for the UVM Communicator component (fm_communicator), routing algorithm, 

logging mechanism, standard system message (fm_message). The package also contains extended versions of the 

UVM Component (fm_component) and the UVM Driver (fm_driver). Fig.5 shows the UVM-FM Package contents. 

 

 
Figure 5. UVM-FM Package Contents 

 

A. Nodes and Messages  

A Node is an attached component to the layer communicator, the node could represent a certain internal function 

for the layer, or it could be used like a traditional driver or monitor in the typical UVM agent architecture. 

 

 A message is an information unit to another node that could hold notification about an event occurred, request to 

perform a certain task, or a confirmation that a previously requested task is done. The user could design the 

messaging system by using names holding the full information such as TRANSMIT_SHORT_FRAME or 

TRANSMIT_LONG_FRAME. Another approach could be used by dividing the information into two parts such as a 

message with name TRANSMIT_FRAME and arguments either, SHORT or LONG.    

 

The user needs to define the system messages and nodes based on analyzing the protocol specifications and 

extracting the communication messages between the different layers. FM_NODE is a user defined enumerated type 

that defines the system nodes, while FM_MSG_TYPE is a user defined enumerated type that defines the system 

messages.  

 

 

B. Standard TLM transaction (fm_message) 

The standard TLM transaction (fm_message) extends the UVM sequence item class. It defines generic fields for 

the message. UVM_FM package defines the fm_message class and the utility functions such as do copy and convert 

to string. Table (1) shows the fm_message contents.   

 

 



TABLE I 

FM_MESSAGE CONTENTS  

Field Name Data Type  Description  

from_node FM_NODE The source node 

to_node FM_NODE [$] Array of nodes represents the distention nodes 

m_type FM_MSG_TYPE The information that should propagate between the source and distention nodes 

payload Dynamic array of bits The message payload 

args bit [9:0] The message arguments 

payload_size int The payload size in bits 

 
  

 

The “payload” could contain the data received, the data required to be transmitted, or another user data structure 

(sequence item). During the transmission, the user needs to pack the user-defined sequence item and put it on the 

“payload” field. In the reception process, the “payload” data could be unpacked to the user-defined sequence item. 

The “args” field could be used as a whole to define 1024 arguments for the message, or each bit could individually 

represents an argument to define ten concurrent arguments per each message. The user controls how to parse the 

message contents such as “payload” and “args”, the parsing mechanism will be part of the node definition.  

 

 

C. The communicator node (fm_communicator) 

The UVM_FM Communicator (fm_communicator) is extended from uvm_components to act like a UVM router. 

Unlimited number of nodes could be connected to this communicator. When a new communicator node is created, 

the user should register the system nodes by calling a function register_node() which links the node name to a pair 

of the communicator TLM ports , this pair handles the communication between the node and the communicator.. 

The communicator receives a message from a node, reads the “to_node” message field, and re-directs the message to 

one or more receivers. Fig.6 shows the data flow when node A requests to send message M1 to node B, and node B 

requests to send message M2 to node A and C through the communicator. 

    

 
Figure 6. Messages routing in fm_communicator  

 

 

To facilitate creating new communicator nodes, “fm_macros.svh” macros file should be included in UVM-FM 

package that implements simple macros. This file contains macros for creating, registering, and connecting ports 

based on the communicator implementation.  Fig.7 shows the contents of a new user defined communicator node 



that controls the communication in a system containing three nodes A, B, and C in addition to FUL and TUL driver 

nodes. 

 

 
 

Figure 7. Creating new communicator node  

 

When the user creates an object from the user-defined communicator node inside an agent, the user should use 

another macro in the connection phase to connect the nodes to the communicator. Fig.8 shows how the 

communicator is connected to agent nodes.  

 

 

 
Figure 8. The connect phase for an agent built by using UVM-FM package  



Since the communicator node is a centralized component for all agent communications, it could log a debugging 

file that contains the different transfers. That feature eases debugging the model by exploring the different internal 

transfers and suspecting where the model misbehaved. Fig.9 shows an example for a communicator log file that 

contains the necessary information about the different propagated messages.  

 

  
 

Figure 9. Example for the log file generated from the communicator node 

 

D. The component node (fm_component) 

The UVM_FM component node (fm_component) is extended from uvm_component; this node could be attached 

to a communicator node. The user will control parsing the incoming messages by overriding the virtual function 

msg_decoder(), and could send messages to the communicator node  by calling function send_msg(). As shown in 

Fig.4, nodes A, B and C are connected to the communicator node by using two TLM analysis ports. By using 

`connect_comm_to_node macro a user could easily attach the component to the agent network. Fig.10 shows an 

example for a user-defined node B that is receiving messages M1 and M2, while sending message M3. 

 

The node could be used to act like a traditional uvm_driver in terms of converting TLM transactions to signal-

level, or to act like a traditional uvm_monitor to convert from signal-level to TLM transactions. For example, in 

Fig.4, node A acts like a driver and node B acts like monitor. 

 

The node could be used to model an internal function for this layer, instead of modeling the layer in a single 

component, the user can divide the layer into sub nodes and manage the communication between these nodes by 

using the communicator. Dividing the layer into sub nodes will ease the development, debugging and allows using 

the factory override UVM feature [1] to change the behavior of the model by overriding the type of a certain node. 



 
 

 

Figure 10. Example for a user defined node 

 

E. The communicator driver (fm_driver) 

The traditional uvm_driver is responsible to grab a sequence item from the attached sequencer and translate it to 

signals level. In UVM-FM, the TLM to signals level translation is delegated to another component node while the 

fm_driver is responsible to manage the communication between the different system layers. As shown in Fig.3, in 

non-leaf agent there are four types of driver from upper layer (FUL), to upper layer (TUL), from lower layer (FLL) 

and to lower layer (TLL) drivers. Both TUL and TLL are forwarding the received messages from the communicator 

node to upper and lower layers respectively, while both FUL and FLL are receiving messages from the upper layer 



and lower layer respectively. Both FUL and FLL decide which nodes in the agent would be interested in this 

message then sends the message to the communicator with a modified list of reception nodes. 

 

 Fig.11 shows data flows for two messages, node A sends a message M1 to the upper layer (TUL), while node B 

receives message M2 from the upper layer (FUL). Nodes A and B aren’t aware about the internal structure for the 

upper layer, thus they deal with TUL and FUL drivers which are connected to the upper layer FLL and TLL drivers 

respectively, the connections are done through free running sequences as mentioned in section IV. When node A 

decides to send message M1 to the upper layer, the communicator node forwards this message to the TUL driver, 

which is blocked until receiving a message from the communicator, the TUL finishes the opened sequence item on it 

and allows the free running sequence to propagate the information to the upper layer. When FUL driver receives a 

message from the upper layer, it searches on a user pre-defined lookup table to decide the recipient nodes for the 

received message; this lookup table represents the interface specifications between the two layers. The FULL driver 

overrides the message contents by modifying the “to_node” field with the results found in the lookup table , then it 

sends the message to the communicator. 

 

 

 

  
Figure 11. Connecting FUL and TUL drivers to the agent’s network 

 

 

 

 
 

 

Fig.12 shows two user defined drivers by using UVM-FM. In my_full_driver implementation, register_msg() 

function is used to build the lookup table for the FUL driver , while send_msg() is used to forward the message to 

the communicator. The implementation of fm_driver::send_msg() differs than fm_component::send_msg(), in the 

fm_driver method the “to_node” is overridden based on the FUL lookup table.  In my_tull_driver implementation, 

the task got_msg() is used to block the driver until a message received from the communicator. 

 

 



 
 

Figure 12. Example for user-defined TUL an FUL drivers 

 

 
 

 

VI.   CASE STUDY 

The proposed solution is used to model verification environment for the link layer of SAS protocol [2]. The link 

layer consists of ten different blocks. Fig.13 shows the link layer agent in SAS verification environment, which uses 

the UVM-FM approach.  

 

The UVM-FM package simplified the test environment creation in the following aspects: providing a standard 

architecture and communication system, simplifying adding and implementing new component to the system, 

simplifying how to debug the system by adding temporally test nodes to mimic the upper layer, and using the log 

file generated by the communicator node to debug the environment.  

 



 
 

Figure 13. Link Layer Agent by using the proposed modeling approach 

 

Modeling a complex layer like SAS link layer with a single driver would be complex task; each node in the system 

has an independent state and has the ability to send messages to a peer node or to the upper layer. Without UVM-

FM standard communication mechanism, synchronizing the different nodes together will be complex and time-

consuming task. In addition to that, it was easy to integrate this layer with the port layer (the upper layer), which has 

similar network topology and communication system.    

 

VII.   FUTURE WORK 

This kind of standardization is very useful for complex systems modeling. It is also a step forward for more 

automation in building testbenches, as it allows building the testbench automatically by giving textual description to 

the different communications between the system nodes. For the system described in Fig.2, and after well 

understanding for the protocol, we could extract a textual description for the communication messages between the 

several IP blocks. Fig.14 shows an example for the needed specifications. 

 

 

Figure 14. Example for the example IP extracted specifications 

 

 



From the extracted specifications, we can know that the system contains two layers L1 and L2; L1 is a leaf layer. 

In addition to that, we can know that L1 contains blocks A, B and C while L2 contains nodes D, E and F. We can 

also know the received and transmitted message for each node, we can expect that L1 FUL driver needs look-up 

table to re-direct message M4 to block A, and L2 FLL driver needs lookup table to re-direct message M1 to Block E. 

The extracted specifications contain all the needed information to construct the environment showed in Fig.4, this 

process does not need a human effort, a script could be written to convert this textual description to a UVM-FM 

based skeleton. By using this automation approach, the user will focus only on implementing the nodes while the 

other system components will be auto-generated.   

 

UVM-FM is extendable approach; it could be used for protocols with more than two layers. Theoretically, it could 

be used for protocols with a management layer that accesses all the protocol layers or with protocols with tree 

structure. These kind of complex topologies should be examined in the future work. Fig.15 shows an example for 

the management layer. 

 

   
Figure 15. Example for complex protocol with management layer 

 

VIII.   CONCLUSION 
UVM-FM is an approach to facilitate modeling layered protocols by using UVM; it solves the complexity of 

managing bi-directional communication channels between the different protocol agents. This paper introduces the 

related work for modeling layered protocols and shows how UVM-FM contributes to give a standard solution for 

modeling such protocols. The paper provides specifications for the UVM-FM package, which is a reusable extension 

layer UVM that contains new suggested components such as “fm_communicator”, “fm_component” and 

“fm_driver”. UVM-FM has been used on real-word industry protocols and eased implementing and debugging 

complex systems.  

 

REFERENCES 
[1]    IEEE 1800.2 Standard for Universal Verification Methodology, February 2017 
[2]    SAS Protocol Layer - 4 (SPL-4), Revision 09, July 2016 
[3] Tom Fitzpatric, “Layering in UVM”, Verification Horizons 

[4] Doulous, “Requests, Responses, Layered Protocols and Layered Agents”, Online resources at 

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/layering 
[5] H.Yu and C.Thomson, “A Simplified Approach Using UVM Sequence Items for Layering Protocol Verification,” DVCon USA, February 

2017 

[6]   Rahul Chauhan, Grupreet Kaire, Ravindra Ganti, Subhranil Deb, “Layering Protocol verification: A Pragmatic Approach Using UVM”, 
SNUG 2014 


