
Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB1

UVM & Emulation
Architecting SystemVerilog UVM Testbenches for

Simulation-Emulation Portability to

Boost Block-to-System Verification Productivity

Hans van der Schoot, Ph.D.
Emulation Technologist

Mentor Emulation Division
hans_vanderschoot@mentor.com

Ellie Burns-Brookens
Simulation Product Manager

Design Verification Technology
ellie_burns@mentor.com

© Accellera Systems Initiative 1

© 2014 Mentor Graphics Corporation

© Accellera Systems Initiative

Agenda

• Introduction

• Fundamentals of Hardware-Assisted

Testbench Acceleration

• Unified Testbench Architecture &

Methodology for UVM Acceleration

• Unified Paradigm for Transaction-Based

Coverage, Assertions & Debug

• Results & Wrap Up

• Q & A

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB2

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

INTRODUCTION

3

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Goal is to Reduce Time Spent in Verification

UVM & Emulation, DVCon Europe 2014, HvdS & EB4

Wilson Research Group and Mentor Graphics, 2012 Functional Verification Study, Used with permission

Test Planning

15%

Testbench

Development
22%

Creating &

Running Tests
23%

Debug

36% Other

4%

Mean time verification engineers
spend in different tasks

UVM
VIP
Models

Coverage
Emulation

Waveforms
Assertions
Transactions

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB3

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Verification Productivity

� Electronics systems companies
need dramatic improvements in
verification productivity

� Adoption of UVM for increased
verification productivity
— Faster to develop reusable
testbenches and automated tests

� UVM-based verification reuse
from block to sub-system to
system level

UVM & Emulation, DVCon Europe 2014, HvdS & EB5

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM Harnesses SystemVerilog and TLM into a
Reuse Methodology

� Vertical Reuse
— From block to system in a
single project

� Horizontal Reuse
— Reuse of modules, libraries
across projects

� Platform Reuse
— Reuse of testbenches,
assertions and coverage
across tools

— Must be able to reuse on
emulation platform

A

B
Testbench

A

B

Project A

A

B

Verification IP,
Methodology

Project B

A

B

A

B
Testbench

RTL Simulation
TLM Modeling

Emulation

6 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB4

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Typical Performance and Development/Verification
Cycle

Verification Timeline

V
e

ri
fi

c
a

ti
o

n
 P

e
rf

o
rm

a
n

c
e

7 UVM & Emulation, DVCon Europe 2014, HvdS & EB

block/unit
level verification

sub-system/top
level verification

system level
verification

system level
validation

Simulation

Emulation

FPGA Prototype

Si

100’s
Hz

MHz

10
MHz

GHz

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Users Demand the Best of Both Worlds

Questa

UCDB

Tools

More Speed! More Functionality

Faster Bring-up

Testbench Reuse

Simulation Emulation

UVM & Emulation, DVCon Europe 2014, HvdS & EB8

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB5

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Transaction-Based Acceleration Makes
Emulation Easier to Use and Adopt

9

Simulation

Emulation

Transaction
Based

Acceleration

Prototyping

 100 Hz

 1 Khz

 10 Khz

 100 Khz

 1 Mhz

 10 Mhz

 100 Mhz

 1000 Mhz

Use, Adoption, Flexibility, DebugEasy Hard

UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Testbench Pivotal to Acceleration

Software Simulation

Typical Co-Simulation
Acceleration

Transaction-Based
Co-Emulation
Acceleration

Design

D

T

Testbench

Testbench

D

2X to 10X

50X to 1000X +

UVM & Emulation, DVCon Europe 2014, HvdS & EB10

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB6

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Key to Co-Emulation Performance
Transaction-Based Communication

D
esig

n
D
esig

n

Testb
en

ch
Testb

en
ch

PCIePCIe

GBeGBe

DDRDDR

AMBAAMBA

D
esig

n
D
esig

n

PCIePCIe

GBeGBe

DDRDDR

AMBAAMBA

Transactor BFMs & Design

Untimed
Transactions
(SV or C/SC)

Testb
en

ch
Testb

en
ch

Untimed TestbenchPin / Signal level
connections

Infrequent Information-Rich Data Exchange between
Emulator and Simulator is Key to Performance

UVM & Emulation, DVCon Europe 2014, HvdS & EB11

Simulator Emulator
EmulatorSimulator

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Co-Emulation 101

12 UVM & Emulation, DVCon Europe 2014, HvdS & EB

� All components mapped into emulator must be written in a
language subset synthesizable by a logic synthesis tool

� Simulation testbench must be untimed with all operations
event-driven

� Interaction between simulator and emulator must be at
transaction level to prevent simulation environment from
being a bottleneck
— I.e. not co-simulation
— Transactions passed each way must be made up of simple
integral types though – e.g. cannot be classes

� Clear split must exist between testbench running in simulator
and logic running in emulator
— Separate “top level” hierarchies to allow them to be
processed separately

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB7

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM & Emulation, DVCon Europe 2014, HvdS & EB13

One Testbench for Simulation and Acceleration

Interoperability with Software Simulator
Same testbench for pure simulation as co-emulation

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM Acceleration – Reuse UVM testbench
A verification architecture for simulation through acceleration

� Realize vertical reuse through platform
portability
— Leverage UVM testbench into emulation
— Leverage assertions & coverage into emulation
— Getting the right testbench architecture is key

� Reduce overall development effort
— Simulation/emulation interoperability
— Modeling flexibility for synthesizable BFMs
— Optimal emulation and simulation performance

� Benefits
— More verification cycles earlier in design cycle
— Orders of magnitude performance gain
— Verification schedule predictability
— Throughput for any sized design
— Rapid turn-around of changes

BFMs & Design

D
U
T

D
U
T

AXI

X-actor

AXI

X-actor

AGP 1/2

X-actor

AGP 1/2

X-actor

USB 1/2

X-actor

USB 1/2

X-actor

1/2

X-actor

1/2

X-actor

Untimed
UVM

Transactions

High-speed
Interface

U
V
M
 T
e
s
tb
e
n
c
h

Orders of Magnitude Faster - Easily Transition from Simulation

14 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB8

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Mentor UVM Framework – Unified Architecture
Enabling the benefits of both UVM and emulation with less effort

Legend

Environment level reuse

Component level reuse

Not reusable

UVM & Emulation, DVCon Europe 2014, HvdS & EB

hdl_top
(module)

ahb_if()

ahb_driver_bfm()

DUT()

test_top extends test_base extends uvm_test

config (uvm_object)
predictorscoreboard

wb_agentahb_agent

env (uvm_env)

top_level_sequence
(uvm_sequence)

ahb_agent_config

wb_agent_config

DUT_config

DUT_Register_Model

ahb_slave_seq dut_config_seq wb_master_seq dut_stats_seq

SQR D

MCov

SQRD

M Cov
virtual ahb_if virtual wb_if

tb_top
(module)

initial begin
uvm_config_db
run_test()

end

ahb_monitor_bfm()

Env Coverage

15

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Block to System Level Unified Coverage Flow

UVM & Emulation, DVCon Europe 2014, HvdS & EB16

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB9

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

CO-EMULATION
FUNDAMENTALS

17

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Modern Testbench & Emulation

18 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Emulator

Monitor

DUT

Monitor

Responder

Support

Models

Support

Models

Drivers
Drivers

Driver

Regression

Control

Random

Sequences

Constrained

Random

Scoreboards

Coverage

Collector

Response

Checker

Slave

Reactivity

“Generation”

“Checking”

Assertions

Reference model

Algorithmic

Transactions

BFMs

Transactions

“Execution”

Software-as

-stimulus

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB10

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Co-Emulation: Key Concepts

� Single testbench for simulation and acceleration
— DUT and BFM “execution” runs in simulator or emulator
— Testbench “generation”, “checking” and “coverage” runs in simulator
— Maintains simulation-based verification features and methodologies

� Testbench partitioned into two separated domains – 2 tops
— Timed/synthesizable DUT + BFMs, and clk/rst generation (HDL side)
— Untimed testbench generation and analysis code (HVL/TB side)

� Transaction-based communication between two domains
— Infrequent information-rich transactions between domains let emulator
run at full speed with fewer interruptions
– As opposed to cycle-based signal-level exchanges

— Transactions are task/function calls
– Reactive communication via cross-domain function/task calls
– Buffered communication via SCE-MI 2 pipes for streaming applications

— Domains bound together using SV virtual interfaces or SV-DPI

UVM & Emulation, DVCon Europe 2014, HvdS & EB19

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Partitioning of Testbench

Main considerations
— Testbench architecture
— HVL-side modeling
— HDL-side modeling
— HVL-HDL communication
— Performance

20

RTL DUT

Test control
Stimulus generation

Reference model
Checkers
Coverage

…

Clock / Reset

Initialization

BFMs

Drivers

BFMs

Monitors

Responders

Simulator Emulator

HVL / TB HDL

RTL DUT

BFMs

Monitors

Responders

Test control
Stimulus generation

Reference model
Checkers
Coverage

…

Clock / Reset

Initialization

BFMs

Drivers

20 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB11

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Dual Domain Testbench Architecture

21

HVL/TB Side HDL Side

1. Untimed
2. Behavioral
3. Class-based
4. Dynamic
5. Communication with HDL side

only through transactors
6. Programming optimization

techniques dictate performance
7. Changes don’t cause emulation

recompile
8. Standards like UVM apply
9. Verification engineer’s comfort zone

1. Timed
2. Synthesizable
3. Module/interface based
4. Static
5. Communication with HVL side

only through transactors
6. Synthesis skill and transactor

design dictate performance
7. Changes may require emulation

recompile
8. XRTL and synthesis standards apply
9. ASIC designer’s comfort zone

UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Untimed Testbench

� No # delays

� No clocks – e.g. @(posedge clk)

� No waits for fixed time intervals – e.g. wait(1 ns)

� All thread synchronization is via abstract events, not by time advance
— Semaphore posts
— Transactions arriving on data channels
— Blocking reads on streaming pipes
— Returns of blocking calls to the HDL side

� Testbench is still “time aware” and can access variables like $time

� Testbench can indirectly control time advancement
— Initiating “remote” HDL task or function calls, i.e. HDL advances time
while HVL thread blocks

— Waiting for responses/notifications from HDL side
— Time advance is monitored by a transactor (an HDL clock counter)

22 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB12

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

� It’s actual hardware

� Must get synthesized into gates
— Static, i.e. functionality cannot be added or changed at runtime

� SystemVerilog classes are not synthesizable

� Most advanced SystemVerilog testbench constructs
are not synthesizable
— Classes, processes, program blocks
— Clocking blocks, fork-join
— Dynamically-sized arrays (dynamic, associative, or queues)

� Processes actually run concurrently in the hardware

� Memories have limited number of ports

� Runs many times faster (MHz vs kHz speeds)

Inside the Emulator

23 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Effective HDL Modeling

� Development of synthesizable HDL BFMs facilitated thru
familiar modeling with behavioral language constructs
— “RTL++” (i.e. XRTL)

– Implicit FSMs, initial code blocks, named events/waits, behavioral
clock & reset, force/release, system tasks, memory arrays,
(virtual) interfaces, assertions, coverage

— SCE-MI 2 based reactive function calls and streaming pipes

� Fully standards-based modeling with IEEE P1800
SystemVerilog and Accelera SCEMI 2.x
— BFMs, checkers and monitors run unmodified in any standard
compliant EDA tool

� Synthesizable HDL models must run at full emulator clock
rate for high performance

24 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB13

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Transaction-Based Communication

25 UVM & Emulation, DVCon Europe 2014, HvdS & EB

� Transaction level communication between HVL and HDL
side is by function/task calls that represent transactions
— Like traditional BFM-style

� BFM functions/tasks provided by SV interface or module
on HDL side and invoked from HVL side
— No direct access to HDL-side signals/pins from HVL side

– Only within HDL side
— No direct access to HVL-side data variables from HDL side
— No shared variables across the HVL-HDL boundary
— Argument types must be synthesizable data types

� Note: SV interface for BFM encapsulation enables familiar
access from SV HVL side using virtual interface
— Do not merge BFM with SV pin interface for reuse purposes

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Transactors – Co-Emulation Building Blocks
HDL BFM + HVL Proxy + HVL-HDL Channel

26

Testbench API

Higher-level TB
(SV/UVM, or C/C++/SC)

Transactor proxy
is-a uvm_driver or
uvm_monitor

EmulatorTransactor

HDL
BFM
mod/if

HVL
proxy
class

Inbound communication
T/F
call

T/F
call

RTL
DUT

BFM written in “RTL++”

DUT written in RTL

Transactions

Signal or port
connections

Host

Outbound communication

UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB14

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Reactive Communication – SV-VIF

27 UVM & Emulation, DVCon Europe 2014, HvdS & EB

EmulatorSimulator

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Reactive Communication – SV-DPI

28 UVM & Emulation, DVCon Europe 2014, HvdS & EB

module uart_tool();

…

import "DPI-C" context function

void v2c_uart_interrupt (

input int unsigned rx_data,

input int unsigned rx_data_chk,

input int unsigned int_code

);

…

initial begin

@(posedge uart_clock);

forever begin

if(int0_uart == 1 && int0_uart != last_int0_uart)

v2c_uart_interrupt(rx_data,rx_data_chk, INT_IRQ);

@(posedge uart_clock);

end

end

endmodule

void uart_tool::v2c_uart_interrupt(uint32 rx_data, uint32 rx_data_chk, uint32 int_code)

{

bool got_event = false;

…

else if(int_code == IRQ_RX) {

event_set(m_event_bits[EV_RX]);

got_event = true;

}

…

}

t = 0

EmulatorSimulator

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB15

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Streaming Communication – SCEMI Pipes

29 UVM & Emulation, DVCon Europe 2014, HvdS & EB

EmulatorSimulator

Nozzle

Bytes
Elements
Transactions
Messages End-of-message marker

Funnel

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Co-Emulation Performance

30

� Total run-time = t[HDL] + t[HVL] + t[HVL-HDL]

� H/W or S/W bound?

— Co-emulation can start and stop the design clocks (clk)
– Design clocks are derived from free running emulator clock (Uclock)
– Design clocks stop during testbench and communication activity

� Want H/W bound – “healthy” throughput
— Design clocks active high % of time, i.e. low testbench and
communication overhead

t[HDL] /t[total] >> (t[HvL] + t[HVL-HDL])/t[total]

UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB16

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Optimizing Performance

31 UVM & Emulation, DVCon Europe 2014, HvdS & EB

� Reduce communication overhead by optimizing transaction utilization
— Increasing transaction sizes – larger transactions stay inside DUT longer
— Using SCE-MI pipe-based data shaping
— Raising abstraction to meta-transactions
— Maximizing concurrency between simulator and emulator
— Minimizing fine-grain scoreboarding and memory access frequencies

� Reduce testbench overhead by optimizing simulation performance
— Heeding file I/O, constraint solving, messaging & macro usage (UVM)
— Compiling with optimization switches

� Enhance H/W execution by optimizing emulation frequency
— Improving critical paths
— Optimizing emulator clock utilization

– Aligning design clocks (CFR), using inactive edge optimization

— Maximizing parallelism in BFMs

� Detailed analysis through profiling, linting, etc.

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM & CO-EMULATION

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB17

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM Layered Testbench

DUT

RTL
Layer

Transactor Layer
(Abstraction Bridge)

Testbench
Layer

Scoreboard

Stimulus

CoverageTest
Controller

SlaveDriver

Monitor

Responder

Monitor

Untimed transactionsTimed Domain

33 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Much of UVM Domain
is Naturally Untimed

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM Orthogonal to Co-Emulation

34 UVM & Emulation, DVCon Europe 2014, HvdS & EB

� Abstraction and reuse principles of UVM should and do apply
independent of execution platform
— UVM already advocates absence of timing control and hierarchical
accesses (XMRs) for upper “testbench layer” components
– No clock and (especially) unit delays, XMRs

— UVM already advocates delegation of timing control to lower
“transactor layer” components
– UVM agents, drivers, monitors, responders, masters, slaves

� UVM layering facilitates adherence to co-emulation requirements
— UVM usage can continue largely per established modeling best practices

– Some notable advanced considerations discussed later
— Some of the recommendations merely become mandated

– “You shall [not]” instead of “You should [not]”

� Execution platform dependence should be a private transactor matter
— Front-end untimed transaction-level transactor API need not change
— Splitting UVM drivers and monitors into proxy + channel + BFM is a
localized affair and hence a manageable and sensible added practice

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB18

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Emulator

DUTDriver

Monitor

Responder

Monitor

Transactor
Layer

Testbench
Layer

Scoreboard

Stimulus

Coverage

SlaveRespondeDriver

MonitorMonitor

“Remote” task & function calls

Test
Controller

SV Interface
(BFM)

SV Interface
(BFM)

Proxy Class

SV Interface
(pins)

RTL
Layer

35

Unified UVM Simulation/Emulation Testbench

35 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

“Emulatable” UVM Transactors

� HDL BFM is an SV interface
— Avoid non-synthesizable modeling constructs

� UVM driver/monitor is the class proxy for the BFM

� UVM proxy can access internal tasks and functions (only)
of the BFM via virtual interface – inbound
— To drive and sample DUT signals
— To trigger HDL FSM initiation
— To set HDL configuration parameters

� HDL BFM can access functions (only) of the UVM proxy
via “backpointer” class object handle – outbound
— To provide control and data notifications

� Standard UVM block-to-top reuse continues to apply
— UVM agent and environment encapsulations are preserved

36 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB19

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

“Emulatable” UVM Agents

37

DUT

Top

Conventional
Simulation View

Pin IFs

DUT

HVL Top

HDL Top

New “portable”
Co-Emulation View

Pin IFs

Monitor
BFM

Driver
BFM

Tasks/Functions/Pipes

Agent
BFM

UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Vertical Reuse in Dual Top UVM Framework

GPIO
Agent
BFM

monitor
BFM if
monitor
BFM if

driver
BFM if

APB
Agent
BFM

monitor
BFM if
monitor
BFM if

driver
BFM if

SPI
Agent
BFM

monitor
BFM if
monitor
BFM if

driver
BFM if

DUT

38 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB20

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM – HDL Interface Modeling

� Communication between untimed UVM and synthesizable HDL
partitions must be transaction-based
— Not cycle-based

� Flexible transaction transport interfaces
— Reactive:
“Remote” function calls between proxy and BFM as discussed for
instantaneous configuration, FSM initiation, control, and status

— Streaming (non-reactive):
SCE-MI 2 transaction pipes for highly optimized transfers of large
amounts of one-way transaction data

� Fully standards-based HVL-HDL interface modeling
— IEEE SystemVerilog along with Accellera SCE-MI 2 function model
and associated performance benefits

39 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Untimed transactions between TB and/or

optional proxy models and transactors

UVM – HDL Transaction Transport Use Models

“Accelerated”

SV Channels

SV Testbench side HDL side

Proxy

Model
Testbench

Model

DUT
BFM

BFM

Host Workstation Emulator (or Simulator)

SV Pipes

SV Virtual

Interfaces

Timed signal-level activity

between DUT and BFMs

Choice of 3 transaction

transport use models

Proxy

Model

SV Connect
Proxy

Model
BFM

40

Proxy

Model

SV Virtual

Interfaces

UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB21

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

class ahb_seq_item

extends uvm_sequence_item;

...

rand bit we;

rand bit [31:0] addr;

rand bit [31:0] data;

rand int delay;

rand bit error;

constraint ahb_seq_item_delay_c {

delay < 100;

}

...

endclass

Example UVM Driver

� Flexible modeling options:
— Separate read/write calls
— Separate address/data transfers (possibly forked in parallel)

41 UVM & Emulation, DVCon Europe 2014, HvdS & EB

class ahb_driver

extends uvm_driver #(ahb_seq_item);

virtual ahb_driver_bfm bfm;

...

virtual task run_phase(uvm_phase phase);

bfm.wait_for_reset();

forever begin

seq_item_port.get_next_item(req);

bfm.drive(req.we,

req.addr, req.data, ...);

seq_item_port.item_done();

end

endtask

...

endclass

interface ahb_driver_bfm(ahb_if pins);

...

task wait_for_reset();

@(posedge pins.rst_n);

endtask

task drive(bit we,

bit [31:0] addr, data, ...);

@(posedge pins.clk);

// Drive request on pin i/f

...

endtask

endinterface

Virtual interface pointer from

testbench side to HDL-side BFM

Time consuming task called

directly from the testbench side to

the HDL side

The UVM driver wiggles the DUT

pins indirectly, no longer directly

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Keeping with Transaction Objects

� Classes and other non-synthesizable types should not be used as
HDL BFM function/task argument types
— Ok for simulation, not for emulation

� HVL side can explicitly convert between transaction objects and
suitable packed-type representations for BFM function/task arguments
— E.g. packed structs

import ahb_types_pkg::*;

task ahb_driver::run_phase(uvm_phase phase);

bfm.wait_for_reset();

forever begin

ahb_seq_item_s req_s;

seq_item_port.get_next_item(req);

req.to_packed_struct(req_s);

bfm.drive(req_s);

seq_item_port.item_done();

end

endtask

interface ahb_driver_bfm(ahb_if pins);

import ahb_types_pkg::*;

...

task drive(ahb_seq_item_s req);

@(posedge pins.clk);

// Drive request on pin i/f

...

endtask

endinterface

Shared HVL-HDL package

Conversion to packed struct

before calling BFM task

42 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB22

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

HVL-HDL Transaction Conversion

� UVM offers virtual pack/unpack methods, though no standard way for
implementing packing/unpacking transactions

� Recommend user-defined object conversion methods targeted for
optimal HVL-HDL communication modeling and performance

import ahb_types_pkg::*;

class ahb_seq_item extends uvm_sequence_item;

function void to_struct(ahb_seq_item_s s);

{s.we, s.addr, s.data, s.delay, s.error} =

{this.we, this.addr, this.data, this.delay, this.error};

endfunction

function void from_struct(ahb_seq_item_s s);

...

endfunction

endclass

43 UVM & Emulation, DVCon Europe 2014, HvdS & EB

package ahb_types_pkg;

...

typedef struct packed {

bit we;

bit [31:0] addr;

bit [31:0] data;

bit [7:0] delay;

bit error;

} ahb_seq_item_s;

...

endpackage

parameter int AHB_SEQ_ITEM_NUM_BITS = $bits(apb_seq_item_s);

parameter int AHB_SEQ_ITEM_NUM_BYTES = (APB_SEQ_ITEM_NUM_BITS+7)/8;

typedef bit [APB_SEQ_ITEM_NUM_BITS-1:0] ahb_seq_item_vector_t;

Optimization:

byte vs. int

Shared HVL-HDL package

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Example UVM Monitor

� Same idea, but ...

� But more natural to have the monitor BFM “push” instead of the
proxy “pull” transactions out
— Let BFM be initiator calling proxy function through back-pointer

� Can yield much better performance for UVM analysis traffic
— Outbound void functions are one-way non-blocking calls that do not
require emulator clock stoppage

import ahb_types_pkg::*;

task ahb_monitor::run_phase(uvm_phase phase);

bfm.wait_for_reset();

forever begin

ahb_seq_item_s req_s;

bfm.sample(req_s);

req.from_struct(req_s);

ap.write(req);

end

endtask

interface ahb_monitor_bfm(ahb_if pins);

import ahb_types_pkg::*;

...

task sample(output ahb_seq_item_s req);

@(negedge pins.clk);

// Sample request on pin i/f

...

endtask

endinterface

44 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB23

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Preferred UVM Monitor

45 UVM & Emulation, DVCon Europe 2014, HvdS & EB

import ahb_types_pkg::*;

class ahb_monitor extends uvm_monitor;

virtual ahb_monitor_bfm bfm;

...

function void connect_phase(uvm_phase phase);

...

bfm.proxy = this;

endtask

task run_phase(uvm_phase phase);

bfm.run();

endtask

function void write(ahb_seq_item_s req_s);

req.from_struct(req_s);

ap.write(req);

endfunction

...

endclass

interface ahb_monitor_bfm (ahb_if pins);

import ahb_types_pkg::*;

...

import ahb_pkg::ahb_monitor;

ahb_monitor proxy

function void run();

-> start;

endfunction

initial begin

@(start);

@(negedge pins.clk);

monitor_daemon();

end

task monitor_daeom();

forever begin

// Sample next request on pin i/f

...

proxy.write(req_s);

end

endtask

endinterface

Time consuming FSM

initiated from the testbench

side via 0-time function call

Function call via back pointer from BFM

back to driver proxy instance in testbench

Package import of back-pointer class type

Assigning the back-pointer in

the build or connect phase

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

BFM – Proxy Binding: uvm_config_db::set

� HDL-side can “register” a BFM interface handle in the UVM
configuration database
— Right where the BFM is instantiated, i.e. in HDL top or below in agent BFM if used

� Use a unique string as registration “key” to be used to access the
virtual BFM interface later from the UVM testbench domain
— E.g. the hierarchical BFM instance path

module hdl_top();

...

ahb_monitor_bfm ahb_mon (ahb_if);

initial begin

import uvm_pkg::uvm_config_db;

uvm_config_db #(virtual ahb_monitor_bfm)::

set(null, “uvm_test_top”,

$psprintf(“%m.ahb_mon”),

ahb_mon);

end

endmodule

module hdl_top();

...

ahb_monitor_bfm ahb_mon (ahb_if);

initial begin

import uvm_pkg::uvm_config_db;

uvm_config_db #(virtual ahb_monitor_bfm)::

set(null, “VIRTUAL_INTERFACES”,

“ahb_mon_bfm_0”,

ahb_mon);

end

endmodule

46 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Registration key as combination of

inst_name and field_name strings

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB24

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

BFM – Proxy Binding: uvm_config_db::get

� UVM domain can retrieve the virtual BFM interface from the UVM
configuration database with the given registration key

� Typically done via the corresponding agent’s configuration object at
testbench top with a global bird’s eye view of the entire environment
— Get virtual interface from uvm_config_db and assign to a config object member
— Register the config object in the UVM config database per usual
— Retrieve the config object in the agent, and extract the virtual interface

47 UVM & Emulation, DVCon Europe 2014, HvdS & EB

import uvm_pkg::*;

class ahb_configuration extends

parameterized_agent_configuration_base#(.TRANS_T(ahb_seq_item));

...

virtual interface ahb_monitor_bfm ahb_mon_bfm;

virtual function void configure_interface(..., string bfm_interface_name);

if (!uvm_config_db #(virtual ahb_monitor_bfm)::get(

null, “VIRTUAL_INTERFACES”, bfm_interface_name, ahb_mon_bfm))

`uvm_error(...)

);

Retrieving the virtual interface handle from

uvm_config_db into the configuration object

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Streaming vs Reactive Transactions

� Reactive transactions (what we’ve seen so far):
— Sending or receiving data “instantaneously”, in one simulation delta-time

– Caller and callee

— May be dependent on the current state of the testbench and/or DUT
— SV virtual interface (BFM) and class handle (proxy) based function calls

– For SVTB/UVM only; alternative to SV-DPI imports/exports

— Examples: register loads, interrupt responses, sending data that needs to
be consumed immediately

� Streaming transactions:
— Producer and consumer of data are largely decoupled
— Little or no dependence on state

– D[N+1] does not depend on result of sending D[N]

— Examples: Audio, Video, Ethernet traffic
— Semantics of control transfer is defined by the intermediary

– SCEMI 2.x pipes

— Additional notes:
– All streaming transactions can be built from reactive transactions
– Co-emulation solution creates buffers and other invisible infrastructure

48 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB25

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

SCEMI 2 Transaction Pipes – Overview

� Accelera SCEMI 2.x pipes specifically address transaction streaming,
data-shaping and variable length messaging
— A transaction payload is represented as a variable number of fixed-sized
bit-vector elements

— Deferred visibility semantics can give optimized performance for specific
scenarios if used right

� HVL and HDL sides call APIs to read/write from/to a pipe
— Blocking and non-blocking send/receive calls

� Pipes are unidirectional
— Input pipes allow data flow from HVL to HDL
(proxy to BFM)

— Output pipes allow data flow from HDL to HVL
(BFM to proxy)

� Pipes are deterministic
— Produce identical results in simulation & emulation

49 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Input Pipe

Output Pipe

HDL
BFM

HVL
PROXY

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

SCEMI 2 Transaction Pipes – Basic Usage

50 UVM & Emulation, DVCon Europe 2014, HvdS & EB

import scemi_pipes_pkg::*;

class some_driver

extends uvm_driver #(some_seq_item);

scemi_static_input_pipe #(16,1,400) req_pipe;

...

function connect_phase(uvm_phase phase);
...
req_pipe = new({cfg.hdl_bfm_path, “.in_pipe”});

endfunction

virtual task run_phase(uvm_phase phase);

fork bfm.run(); join_none

forever begin

seq_item_port.get_next_item(req);

put(req);

seq_item_port.item_done();

end

endtask

virtual protected task put(REQ req);

...

req.to_struct(req_s);

req_pipe.send_bits(.num_elements(1),req_s,.eom(1));

endtask

endclass

interface some_driver_bfm(some_if pins);

scemi_input_pipe
#(16,1,400) in_pipe(pins.clk);

...

task run();

bit[127:0] data;

int ne_valid;

bit eom;

forever begin

in_pipe.receive(1,ne_valid,data,eom);

assert(ne_valid == 1);

// Process data

...

if (eom == 1)

...

end

endtask

endinterface

Input pipe handle in driver proxy on

testbench side bound to SCEMI input

pipe in HDL-side BFM with large depth

scemi_input_pipe

#(.BYTES_PER_ELEMENT(<1>),

.PAYLOAD_MAX_ELEMENTS(<1>),

.BUFFER_MAX_ELEMENTS(< 32>),

in_pipe (<user_clk>);

Can also use scemi_dynamic_input_pipe::send_bytes

with open array ref byte unsigned data[] instead of fixed

size vector bit [STATIC_PAYLOAD_MAX_BYTES*8-1:0] data

Each call reads 1 element of 16 bytes;

16 bytes can be processed in one cycle

eom evaluates to true for

last element in a message

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB26

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

SCEMI 2 Transaction Pipes – Basic Usage

� A

UVM & Emulation, DVCon Europe 2014, HvdS & EB

import scemi_pipes_pkg::*;

class some_monitor extends uvm_monitor

scemi_static_output_pipe #(16,1,400) rsp_pipe;

...

function connect_phase(uvm_phase phase);
...
rsp_pipe = new({cfg.hdl_bfm_path, “.out_pipe”});

endfunction

virtual task run_phase(uvm_phase phase);

fork bfm.run(); join_none

forever begin

get(rsp);

ap.write(rsp)

end

endtask

virtual protected task get(output RSP rsp);

...

rsp_pipe.receive_bits(1,ne_valid,rsp_s,eom);

assert(ne_valid == 1);

assert(eom == 1);

rsp.from_struct(rsp_s);

endtask

endclass

interface some_monitor_bfm(some_if pins);

scemi_output_pipe
#(16,1,400) out_pipe(pins.clk);

...

task run();

bit[127:0] data;

forever begin

// Compute response data

...

out_pipe.send(.num_elements(1),

data,

.eom(1));

num_responses++;

if (num_responses == 10)

out_pipe.flush();

end

endtask

endinterface

Output pipe handle in monitor proxy on testbench

side bound by hierarchical path to SCEMI output

pipe in HDL-side BFM with large depth

scemi_output_pipe

#(.BYTES_PER_ELEMENT(<1>),

.PAYLOAD_MAX_ELEMENTS(<1>),

.BUFFER_MAX_ELEMENTS(< 32>),

out_pipe (<user_clk>);

Can also use scemi_dynamic_output_pipe::receive_bytes

with open array ref byte unsigned data[] instead of fixed

size vector bit [STATIC_PAYLOAD_MAX_BYTES*8-1:0] data

Each call writes 1 element of 16 bytes;

16 bytes can be processed in one cycle

eom set to true for last

element in a message

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

SCEMI 2 Transaction Pipes – Additional Usage

� Pipes are particularly useful in case of large or variable-length transactions
— How else to transfer a dynamic payload modeled as SV queue or dynamic array?
— Pipes break payload into smaller fixed-size elements for transfer
— BFMs consume/produce payload a specified number of elements at a time

� Pipes can have a different width at one end than the other for data-shaping
— Wide send end - narrow receive end
— Narrow send end - wide receive end
— Makes optimal use of channel bandwidth

Open Array

52 UVM & Emulation, DVCon Europe 2014, HvdS & EB

byte open_array [];

pipe.send_bytes(.num_elements(open_array.size()/16),

.data(open_array),

.eom(1)); wide array send in a single

call using a “dynamic” pipe

Nozzle

Bytes
Elements
Transactions
Messages

Funnel

eom

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB27

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UVM & Emulation Flow Summary

53 UVM & Emulation, DVCon Europe 2014, HvdS & EB

� Employ two distinct UVM and HDL top level modules
— UVM top must be untimed; HDL top must be synthesizable for emulation

– DUT, pin interfaces, and clock/reset logic can be largely preserved
– Upper testbench layers should remain (largely) unaffected

— Separate file lists for compilation required too!

� Split UVM drivers/monitors into untimed UVM proxies and timed HDL BFMs
— BFMs are modeled as SV interfaces accessing separate SV pin interface

– Implemented using implicit FSMs and other “RTL++” constructs
– Used for testbench-HDL binding instead of (virtual) pin interfaces

— Proxies encapsulate intra-transactor communication
– Hide BFM tasks and functions which are visible only to the proxy
– Represent interface to upper UVM testbench layers (remains unchanged)
– Are generally light-weight, implementing basic threads to pass generated
UVM stimulus to HDL side, and observed HDL responses back to UVM side

— Transaction objects must be converted to/from synthesizable BFM task and
function arguments
– Internal to UVM proxies, e.g. using “to_struct” and “from_struct” methods

� Tune UVM-HDL communication interface for optimal performance
— Reactive vs. streaming, inbound vs. outbound, one-way vs. two-way
— E.g. increased transaction sizes, SCEMI data-shaping features, ...

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Advanced UVM Co-Emulation Considerations

� Topology of HDL BFMs cannot be elaborated dynamically
— But HVL proxies can control (suspend, resume) model behavior
dynamically, i.e. self-starting HDL threads can be avoided

— Or can use shared package of static test parameters along with
SV generate constructs to control common topology among both
HVL and HDL sides

� HDL BFMs cannot be created using UVM factory
— But HVL proxies can

� HDL BFMs cannot be configured and controlled by UVM
configuration mechanism
— But HVL proxies can

� HDL BFMs can contain SystemVerilog cover groups too
— Basic data-oriented functional coverage inside BFMs to
complement normal UVM domain coverage

54 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB28

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Mentor UVM Framework – Directory Structure

55 UVM & Emulation, DVCon Europe 2014, HvdS & EB

/project_benches

/ahb2wb

/doc

/sim

/veloce

/tb

/testbench

/sequences

/tests

hdl_top
(module)

ahb_if()

ahb_driver_bfm()

DUT()

test_top extends test_base extends uvm_test

config (uvm_object)
predictorscoreboard

wb_agentahb_agent

env (uvm_env)

top_level_sequence
(uvm_sequence)

ahb_agent_config

wb_agent_config

DUT_config

DUT_Register_Model

ahb_slave_seq dut_config_seq wb_master_seq dut_stats_seq

SQR D

MCov

SQRD

M Cov
virtual ahb_if virtual wb_if

tb_top
(module)

initial begin
uvm_config_db
run_test()

end

ahb_monitor_bfm()

Env Coverage

/verification_ip

/uvmf_base_pkg

/interface_packages

/ahb_pkg

/wb_pkg

/spi_pkg

/project_packages

/ahb2wb_env_pkg

/wb2spi_env_pkg

Legend

Environment level reuse

Component level reuse

Not reusable

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Mentor UVM Framework – Interface Packages

UVM & Emulation, DVCon Europe 2014, HvdS & EB

interface_packages

|-- ahb_pkg.sv

|-- ahb_pkg_hdl.sv

|-- src

|-- ahb_configuration.svh

|-- ahb_driver.svh

|-- ahb_driver_bfm.sv

|-- ahb_if.sv

|-- ahb_monitor.svh

|-- ahb_monitor_bfm.sv

|-- ahb_sequence_lib.svh

|-- ahb_transaction.svh

|-- ahb_transaction_coverage.svh

|-- ahb_typedefs.svh

|-- ahb_typedefs_hdl.svh

|-- reg2ahb_adapter.svh

56

*.svh files are generally HVL files implementing

classes, or shared HVL-HDL files implementing

common parameters or typedefs.

These are included inside packages (hence the

.svh extension).

*_if.sv, *_bfm.sv and *_hdl.sv(h) files are HDL

files respectively implementing pin interfaces,

BFM interfaces, and synthesizable typedefs with

packages etc. (shown in red)

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB29

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

UNIFIED ANALYSIS & DEBUG

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Use of Advanced Verification Techniques

62%

71%

68%

70%

41%

40%

37%

48%

0% 20% 40% 60% 80%

Constrained-Random Simulation

Functional coverage

Assertions

Code coverage

Non-FPGA Study Participants

2007

2012

Source: Wilson Research Group and Mentor Graphics, 2012 Functional Verification Study

58 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB30

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Mentor Enterprise Verification Platform

59 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Mentor is Bridging the Gap
Questa and Veloce from simulation to emulation

Questa

Visualizer
Verification
Management

inFact Codelink

Tools

Questa Veloce

UCDB

VIP

Coverage

Assertions

Low Power

UVM & Emulation, DVCon Europe 2014, HvdS & EB60

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB31

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Functional Coverage and Assertions

� Assertions
— Broad language and
constructs

— SVA, PSL, OVL

� Functional coverage
— Cover groups, points,
bins, and crosses

— Cover properties

� Single UCDB file for
testbench, transactors
and DUT coverage

covergroups

coverpoints

bins

crosses

covergroups

coverpoints

bins

crosses

61 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Using Assertions/Coverage with Questa and Veloce
Unified UCDB gives one place to store and analyze metrics

� Same assertions and coverage – results go into Mentor UCDB
— Capacity-wise coverage in Veloce – instruments only covergroups not at 100%

� Questa verification management – 100s of man years in analysis tools

UCDB

Questa

SVA/PSL
Assert/Cover

Veloce

SVA/PSL
Assert/Cover

SV
Functional
Coverage

SV
Functional
Coverage

History Testplan
import

Test
Attributes

Diff Tool

Rank

Merge

Coverage
Queries

HTML

Code
Coverage
Analysis

Exclude

Text
Reports Create &

editUCDB

Questa Verification Management

62 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB32

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Built using

Supports ALL
major

simulators

Questa Verification IP

MonitorDriver

Sequence items
(Transactions)

Configuration

Constraints

Agents

Test PlanCoverageTest Suite Protocol
Debug

SV interface
DUT

Unencrypted SV / XML

Layered
Transactor
(object file)

Transactor

(object file)

Protocol
Assertions

63 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Veloce Accelerated Verification IP

MonitorDriver

Sequence items
(Transactions)

Configuration

Constraints

Agents

Test PlanCoverageTest Suite

SV interface
DUT

Unencrypted SV / XML

Layered
Transactor
(xRTL)

Layered
Transactor
(xRTL)

Protocol
Debug

VeloceProtocol
Assertions

64 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB33

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Low Power Verification
Unified from block to system

� Leakage power
reduction is key in
low-power design

� Chief aspects of
power management
— Power shut-off
— Isolation
— Retention
— Corruption
— Multiple voltages
— Level shifters

� Unified Power Format
(UPF)
— Power management
defined independent
of design

— UPF 2.1

PMB

Processor
Core

RAM

Power Domain 1 Power Domain 2

Power Domain 3 Power Domain 4

Iso_en

01100100

Retention

Pattern

111111Pattern

111111

1.0 V 0.8 V

Corruption

OFF OFF

65 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Unified Debug for Questa and Veloce
Maximize performance and still have ease of use

� Same debugger in simulation or emulation

� Unified debugger for simulation acceleration – Questa running
testbench and Veloce running DUT

� Emulator savvy, easy, powerful and FAST

Visualizer

66

VisualizerVisualizerVisualizerVisualizer

UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB34

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Powerful Co-Emulation Debug Features

Emulation Model

Backup
Replay

Go back in time to
enable additional
info for debug

(waveform, $display,
assertions, trackers,

etc.)

Replay Based
TB Restore

Boot the OS and
give multiple copies
of the environment
to SW engineers
(Light weight /fast

TB)

Check-Point
Restore

Check-point entire
environment &
restore

instantaneously (user
writes check point-

able TB)

IP
Replay

Create an IP debug
environment without
revealing other
intellectual
properties

Testbench
Replay

Standalone C
testbench replay
without use of
Veloce (offline TB

debug)

67 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

RESULTS & WRAP-UP

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB35

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Co-Emulation Performance for Network Chip

Pure simulation time vs. Veloce runtime

Number of Packets

Simulation

ime (sec)

Veloce

Wall Clock

Time (sec)

Speed Up

(X factor)

1 280 5.7 49

5 1473 16.7 88

10 2572 26.4 97

100 25720* 231.6 111*

1000 257200* 2321.2 111*

Comments

Compiled frequency 1.2 Mhz

Frequency for fastest

user clock

Capacity 5 Crystals 16 Crystals per AVB

* Extrapolated

69 UVM & Emulation, DVCon Europe 2014, HvdS & EB

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Accelerating Multimedia SoC Sub-System of
Wireless Design

5 hour simulation

46 second emulation

400X speedup

One testbench for simulation and acceleration

Phase I

Phase II

Phase III

Overall

70 UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB36

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Further Results/Examples

71

� High Performance Networking
— Full UVM/VIP/etc

� Multi-CPU subsystem
— ReUsed in multiple designs
— 51X

UVM & Emulation, DVCon Europe 2014, HvdS & EB

Design 1 (suite of tests) 171X - 268X

Design 2 (suite of tests) 250x – 317X

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

ST Microelectronic Success Story

72

� Previous acceleration T.A.T
— 3-4 weeks effort

� ST deployed Questa & Veloce
— UVM, VIP, TBX

� Current Questa to Veloce T.A.T
— A few hours

Co-emulation will be essential moving ahead, largely because it

is a much more efficient way to approach verification.

Specifically, it provides a much better way to accelerate

simulation while preserving familiar testbench architecture and

methodologies.

Alberto Allara, Engineering Manager, ST Microlelectronics

UVM & Emulation, DVCon Europe 2014, HvdS & EB

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB37

www.mentor.com
© 2014 Mentor Graphics Corp. Company Confidential

Collateral for Further Learning

UVM & Emulation, DVCon Europe 2014, HvdS & EB73

� Verification Academy

— Course: SystemVerilog Testbench Acceleration
https://verificationacademy.com/courses/systemverilog-testbench-acceleration

— UVM Cookbook: Testbench Acceleration through Co-Emulation
https://verificationacademy.com/cookbook/emulation

� Publications

— MGC 2014: “From Simulation to Emulation – A Fully Reusable UVM Framework”
www.mentor.com/products/fv/resources/overview/from-simulation-to-emulation-a-fully-reusable-uvm-framework-0def891c-ab7a-453d-b079-2c99f584650e

— IJVLSIDCS 2013: “Accelerating SystemVerilog UVM-based VIP to Improve Methodology for Verification of Image
Signal Processing Designs Using HW Emulator”
airccse.org/journal/vlsi/papers/4613vlsi02.pdf

— DVCon 2013/TechOnLine: “Unifying Hardware Assisted Verification and Validation using UVM and Emulation”
www.techonline.com/electrical-engineers/education-training/tech-papers/4425340/Unifying-Hardware-Assisted-Verification-and-Validation-Using-UVM-and-Emulation

— DAC 2012: “Development of a Unified Platform for Accelerated SoC Verification and Validation”
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-9_issue-1/articles/stream/bringing-verification-and-validation-under-one-
umbrella_vh-v9-i3.pdf

— MGC 2012: “Simulation + Emulation = Verification Success”
www.mentor.com/products/fv/success/stmicroelectronics_simulation-emulation

— TechOnLine India, 2011: “Taking Verification Productivity to the Next Level”
www.techonlineindia.com/techonline/news_and_analysis/169218/taking-verification-productivity-level

— DVCon 2011: “Off to the Races with Your Accelerated SystemVerilog Testbench”
events.dvcon.org/2011/proceedings/papers/05_3.pdf

verificationhorizons.verificationacademy.com/volume-7_issue-2/articles/stream/a-methodology-for-hardware-assisted-acceleration-of-ovm-and-uvm-testbenches_vh-
v7-i2.pdf

— DVCon 2008: “An Acceleratable OVM Methodology based on SCE-MI 2”
www.mentor.com/products/fv/resources/overview/an-acceleratable-ovm-methodology-based-on-sce-mi-2-ae7634ed-5672-4d8a-aa6a-3542451778d8

Summary

• UVM offers proven verification productivity through reuse

• Creating an emulation-ready UVM testbench requires

architecture considerations but performance benefits are

substantial

• Your next UVM project should be architected for simulation

and emulation portability to boost block-to-system

verification productivity

Architecting SystemVerilog UVM Testbenches for
Simulation-Emulation Portability to Boost Block-to-
System Verification Productivity

© 2014 Mentor Graphics Corp. Company Confidential

www.mentor.comUVM & Emulation, DVCon Europe 2014, HvdS & EB38

Thank You!

Questions?

© 2014 Mentor Graphics Corporation

© Accellera Systems Initiative

