
UVM Do’s and Don’ts for Effective Verification

Kathleen Meade Sharon Rosenberg

Solutions Architect Sr Solutions Architect

Cadence Design Systems Cadence Design Systems

meade@cadence.com sharonr@cadence.com

ABSTRACT

With more than a year of production use, the

Accellera Systems Initiative UVM is now clearly the

methodology of choice for verification. The rush to

adopt UVM has both matured the BCL quickly,

producing UVM 1.1 and 1.1a bug-fix versions, as

well as created a wealth of institutional know-how.

Of course, the challenge with know-how is that it

tends to be distributed among all the members of

the community with little pearls appearing in

various forums and contributions. While many

sessions introduce the UVM to new users or specific

aspects of it for advanced users, the critical tips and

best practices are often diffused throughout that

material if they are presented at all. So for all of the

verification engineers that have been working this

year and thought “I wonder if this is the best

approach” or “should I use this UVM feature”, this

presentation cuts right to the answer with specific

pointers and code examples, gathered from live

projects worldwide, that you can use immediately

for more effective verification.

Some of the topics covered in the paper include,

but are not limited to, the following:

• Configuration: key features, which verification

elements to configure in certain test phases,

configuring hierarchically, and more

• How and where to use the objection mechanism

• Best practices for using the register package itself

and using it with IP-XACT

• How and where to use TLM2 in UVM

Readers may find concepts in this expert-to-expert

paper that challenge their thinking and trigger

interesting discussions leading to better utilization

of UVM. To further that goal, the code examples

discussed in the paper will be contributed to the

UVM World for the whole community to use.
Keywords

UVM, Functional Verification, Accellera Systems

Initiative, Phasing, Register Package, IEEE 1800,

TLM2, IP-XACT

1. INTRODUCTION

The UVM was introduced March 2010 and the

verification community declared “We now have one

methodology on all simulators. Hurrah!” Soon after

books, tutorials, training classes became available

and engineers started to apply it. The simulator

vendors incorporated UVM in their product

portfolios and added support, including debug, to

the library.

While the UVM is built on a solid, proven code

foundation many users have questions about the

new features introduced in UVM 1.0 and 1.1. This

paper focuses on those new features.

2. UVM Objection Mechanism

The UVM objection mechanism is designed to

coordinate activities such as the test termination.

For example, a master agenda may need to

complete its entire read and write operations

before it can be considered complete. In this

example, the various UVM verification components

(UVCs) can raise objections assuring that they are

able to complete before the master agenda

declares that it is done. When those other UVCs

complete their work, they clear their objection flags

enabling the simulation to continue.

When the objections are implemented, there are a

few things to be sure to do. A simplistic way to use

objections is to raise these in the pre_body() before

starting the sequence and dropped in the

post_body(). For easier debugging and possibly

better performance, the creation of a sequencer

root sequence is suggested. Some users create a

base sequence that implements the raise/drop logic

and have active sequences extend from this to

simplify the derivative sequences implementation.

Associating the raise description string with the

same string for drop is a good practice for debug.

Finally, note that slave agent sequences typically do

not object to end-of-test because they are merely

serving requests as they appear.

3. UVM Configuration Mechanism

The configuration mechanism is a powerful means

to attribute configurations to the verification

environment. The mechanism is hierarchical so

an upper component can override lower-level

values without changing files or having to

derive a new component. The configuration

can occur at any point in the hierarchy and the

values are saved in a side-storage so they can

be fetched as needed. Wild cards and regular

expressions can be used as can user defined

types. With these benefits, the engineer needs

to also be aware that the configuration is type

sensitive implying that the types need to be

communicated carefully between the UVC

developer and the end user.

When implementing the configuration, there

are some points to note. All of the

uvm_config_db functions are static so they

must be called using the :: operator. The virtual

interfaces should be configured in the connect

phase and the uvm_error (not fatal) should be

used to get all of the connectivity errors in one

simulation run. The exact the same parameter

type must be used in the set and get calls or the

configuration will not work. For users familiar

with the methodologies leading to the UVM,

the new API for loosely typed strings should be

used. Note that using wildcard can impact the

environment performances. Finally, don’t use

the resource_db interface for hierarchical

configuration because db semantics are not

fully defined and are still being evaluated for a

future UVM revision.

4. UVM Register Package UVM_REG

The UVM_REG memory and register package was

introduced as part of the UVM 1.0 release to

streamline and automate register related activities.

The package derives the register level API from

VMM and the use model, register sequenced,

register operation items, layering concepts, and

more from the UVM_RGM package contributed to

UVM World. It is important to note that the

SystemVerilog code generators typically associated

with a register package are not provided by

Accellera.

The register package will meet the needs of most

verification environments and it is extensible. It is

recommended that users capture register

specifications using Accellera IP-XACT standard for

portability and to drive the SystemVerilog code

generators. The code generators can be obtained

from multiple sources including Cadence. It is

important to note that the checking and coverage in

sequences does not support all of the modes,

including passive. Engineers should update and

compare design values against the mirror value in

the predictor and randomized register values

should be copied to prevent collisions.

5. TLM2

A partial implementation of the TLM2 standard is

implemented in the UVM to support the high-speed

connection to SystemC and to implement both bi-

directional ports and generic payloads. For the

SystemC connections, the current solution is a

partial implementation and does required

proprietary simulator support. Future work will be

done in Accellera to enable more interoperable

multi-language support. With that said, the bi-

directional ports and generic payload is

interoperable and should be used as needed.

6. Run-Time Phases

Run-time phases were added to the UVM to

simplify the integration of verification IP that

require distinct segmentation of the time-

consuming portion of the verification run. To

enable this, a dozen built-in phases were defined,

but the implementation also provides support for

complex phasing operations. The API to the more

complex operations are the subject of discussion for

a future release of the UVM so that API will likely

change. If run-time phases are needed, be sure to

carefully review the implementation and the project

requirements.

7. ACKNOWLEDGMENTS

The authors would like to thank the many users that

are working with the UVM for their deep technical

discussions and recommendations.

