
UVM-based verification of

a RISC-V Processor Core Using

a Golden predictor model and a

Configuration Layer

Speaker: Ritesh Goel – Mentor, A Siemens Business

Authors: Marcela Zachariasova, Lubos Moravec – Codasip Ltd.

John Stickley, Hans van der Schoot, Shakeel Jeeawoody –

Mentor, A Siemens Business

CONTENT

• What is RISC-V

• Codasip Automation Flow

• RISC-V Verification Strategies

• Configuration Layer

• Golden Predictor Model

• Emulation for Running Tests

• What have we achieved

• Summary

What is RISC-V

RISC-V Introduction

• Free to use, modern and open instruction set architecture (ISA)

• Originally designed to support research and education, now standard

for industry implementations under RISC-V Foundation

• No patents

Flexibility OF RISC-V ISA

• 1 RISC-V ISA standard  many RISC-V HW architecture variants:

– Base is only integer instruction set ("I /E")

– Can be enhanced by standard extensions: integer multiplication and
division ("M"), atomic instructions for handling real-time concurrency ("A"),
IEEE floating point ("F") with double-precision ("D") and quad-precision
("Q")

– Can have compressed instructions (“C")

– Can have different number of the registers (16 or 32) of different sizes (32
or 64 bits).

• We do not verify only 1 processor but many of its variants with
enabled/disabled extensions.

Codasip Automation Flow

CUSTOMIZED RISC-V CORES

Berkelium
Processor IP

• RISC-V ISA compliant

• Bk-1: no pipeline, 32 bit

• Bk-3: 3-stage, 32 bit

• Bk-5: 5-stage, 32-bit or 64 bit

• Support for standard and custom
extensions

• Full JTAG and debug support

• Sleep modes and low power
support

Codasip Studio processor design and
customization environment

• Profile target RISC-V
applications

• Explore optimization
opportunities, and
implement extensions

• Automatically regenerate
RTL and software tools

• Comprehensive
verification and
simulation

UNIQUE AUTOMATION TECHNOLOGY

RISC-V Verification Strategies

Verification Strategies

1. Defining configuration layer for RISC-V design and verification

2. Defining a golden predictor model based on ISA simulator

3. Utilizing emulation to effectively perform tests

1. Configuration Layer

• Many RISC-V core variants = many RTL source codes and UVM

test-benches

• Optimization: configurability at a suitable layer

• Options:

1. Configuration layer  automation tool  generated RTL +

generated UVM

2. RTL and UVM configurable via static compile time constructs and

scripts

3. UVM configurable via dynamic runtime configuration approaches

Option 1: Codasip Studio

Bk3-32IM-pd Bk3-32IMC-pd

Standard ISA:

I = integer ISA, 32 GPRs

E = integer ISA, 16 GPRs

M = multiplication extension

C = compressed instructions

F = floating-point ISA

Codasip hardware extensions:

p – parallel multiplier

d – JTAG debug interface

Option 2: static compile time Constructs
/* Decoder description

* file : codex_berkelium_ca_core_dec_t_decoder.svh

*/

// enumeration code for every decoded instruction

typedef enum {

add_,

and_,

.

} m_instruction;

// “M” instruction

`ifdef EXTENSION_M

typedef enum {

mul_,

mulh_,

.

} m_instructuon_ext_m;

`endif

`ifdef EXTENSION_M

bind HDL_DUT_U.codex_berkelium.core.decompressor_16b32b

icodix_berkelium_ca_core_decompressor_16b32b_t_probe probe

(……);

`endif

/* Decoder agent configuration

* file : codex_berkelium_ca_core_dec_t_agent_config.svh

*/

// uvm_config_db configuration and set

function void set_decoder_config_params ();

// set configuration info

decoder = new();

……..

decoder.extension_M = 1;

………

………

uvm_config_db #(decoder_config)::set(this, “*”, “decoder_config”, decoder);

endfunction

………….

…………..

cvp_instructions : coverpoint m_instruction(….);

if(m_config.extention_M)

begin

cvp_instructions_ext_m : coverpoint m_transaction_h.m_instruction_ext_m { ……. }

end

Option 3: Dynamic Runtime Configuration

2. ISA simulator as Golden Model

3. Emulation For Fast Verification

• 48 RISC-V variants x 10,000 programs x 500 instructions =

unbearable simulation runtime!

• Porting UVM to Veloce emulator:

1. Comparison of pure simulation and emulation environment runtimes

for 1 program.

2. Creating 2 top-levels – simulation and emulation. For the emulation,

the processor is moved into emulator and agents are divided

between emulator and simulator for the best efficiency.

3. Connecting UVM objects while analyzing and minimizing/removing

bottlenecks.

Codasip UVM ported to Veloce

What we have achieved

COMPARISON OF RISC-V VERIFICATION

CONFIGURATION APPROACHES

COMPARISON OF RISC-V EMULATION

APPROACHES

Average runtime for 1 program in
seconds (~100 000 instructions)

Acceleration achieved

Pure simulation-based verification vs. pure
emulation-based verification

128 (simulation)
1.28 (emulation)

100x

Emulation-based verification with simple test-
bench and pipes

32 4x

Emulation-based verification with UVM,
FlexMem and external ISA simulator

1.7 75x

Summary

Summary

• RISC-V flexibility introduces verification challenge in the number of

variants that must be verified

• Verification strategy that targets variability:

– Configurability (we introduced 3 approaches)

– Utilizing existing ISA simulators as golden predictor model (Codasip, Spike

simulator)

– Employing emulation for running huge amount of tests (we provided

recommendations how to proceed by porting UVM to Veloce)

Q & A

