IIIIIIIIIIIIIIIIIIIIII

RYSE UVM-based verification of
a RISC-V Processor Core Using
a Golden predictor model and a
Configuration Layer

Speaker: Ritesh Goel — Mentor, A Siemens Business
Authors: Marcela Zachariasova, Lubos Moravec — Codasip Ltd.

John Stickley, Hans van der Schoot, Shakeel Jeeawoody —
Mentor, A Siemens Business

eodosip Menlor

A Siemens Business

IIIIIIIIIIIIIIIIIIIIII

BVEDT CcONTENT

* What is RISC-V

* Codasip Automation Flow

* RISC-V Verification Strategies
« Configuration Layer
« Golden Predictor Model
« Emulation for Running Tests

e What have we achieved
e Summary

IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

What is RISC-V

IIIIIIIIIIIIIIIIIIIIII

RYLLL RISC-V Introduction

* Free to use, modern and open instruction set architecture (ISA)

* Originally designed to support research and education, now standard
for industry implementations under RISC-V Foundation

* No patents

RISC

IIIIIIIIIIIIIIIIIIIIII

RN . Flexibility OF RISC-V ISA

* 1 RISC-V ISA standard = many RISC-V HW architecture variants:
— Base is only integer instruction set ("l /E")

— Can be enhanced by standard extensions: integer multiplication and
division ("M"), atomic instructions for handling real-time concurrency ("A"),
IEEE floating point ("F") with double-precision ("D") and quad-precision

("Q%)
— Can have compressed instructions (“C")

— Can have different number of the registers (16 or 32) of different sizes (32
or 64 bits).

* We do not verify only 1 processor but many of its variants with
enabled/disabled extensions.

IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

Codasip Automation Flow

2018

DESIGN AND VERIFICATION™

DVCCIN CUSTOMIZED RISC-V CORES

Codasip Studio processor design and
customization environment

Berkelium
Processor IP

* RISC-V ISA compliant ' — CodAlmodels * Profile target RISC-V
* Bk-1: no pipeline, 32 bit applications
* Bk-3: 3-stage, 32 bit

* Explore optimization

_ _ - : 5 opportunities, and
* Bk-5: 5-stage, 32-bit or 64 bit 25 Architecture o o Nl)
%5_ Instruction Accurate ol |mp|ement extensions
° ® £
Suppor.t for standard and custom .’ S Autemeticel resEn e
extensions RTL and software tools

CAISS, :
UM, pArchitecture

Cosim Cycle Accurate

RTL

* Full JTAG and debug support

* Sleep modes and low power
support simulation

* Comprehensive
verification and

ASIC/FPGA

uoyp|NWIg

2018

DESIGN AND VERIFICATION™

DV OIN

=== UNIQUE AUTOMATION TECHNOLOGY

Processor Modeling 2?]%2{:‘ Verification

Application(s)/Programs(s)

C/C++ Compiler

Assembler

Linker

Codix Instruction

IA Simulator, Profiler, Debugger
Accurate Models

RISC-V Instruction Set

__ UVM Verification
Codix CodAL Models D — -

Codix Cycle Accurate
Models

CA Simulator, Profiler, Debugger Co_dERTL Nﬁ&ﬂ_ﬂ,

Microarchitecture

IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

RISC-V Verification Strategies

IIIIIIIIIIIIIIIIIIIIII

Y= \erification Strategies
1. Defining configuration layer for RISC-V design and verification

2. Defining a golden predictor model based on ISA simulator

3. Utilizing emulation to effectively perform tests

IIIIIIIIIIIIIIIIIIIIII

* Many RISC-V core variants = many RTL source codes and UVM
test-benches

* Optimization: configurabllity at a suitable layer
* Options:

1. Configuration layer = automation tool = generated RTL +
generated UVM

2. RTL and UVM configurable via static compile time constructs and
Scripts

3. UVM configurable via dynamic runtime configuration approaches

2018

DESIGN AND VERIFICATION™

DVCON Option 1: Codasip Studio

Bk3-32IM-pd Bk3-32IMC-pd

Options:

Name Value % Clear All Standard ISA
MEMORY SIZE | 0x80000 nn | = integer ISA, 32 GPRs
E = integer ISA, 16 GPRs
ENABLE_ICACHE | false o] M = multiplication extension
C = compressed instructions
ENABLE_DCACHE | false nn F = floating-point ISA
Codasip hardware extensions:

p — parallel multiplier
d — JTAG debug interface

2018

DESIGN AND VERIFICATION™

DVl

CONFERENCE AND EXHIBITION

Option 2: static compile time Constructs

Compile of configurations "bk3-32IMC-pd :
+de fine+EXTENSION M+EXTENSION C+...

RTL
files

UvM
files

[* Decoder description

* file : codex_berkelium_ca _core _dec_t decoder.svh
*/

/I enumeration code for every decoded instruction
typedef enum {

add_,

and_,

} m_instruction;

instruction
[ifdef EXTENSION_M
t
mul_,
mulh_,
} m_instructuon_ext_m;
“endif

Cifdef EXTENSION_M)
' —J7Codex_berkelium.core.decompressor_16b32b

icodix berkglium_ca_core_decompressor_16b32b_t_pro be probe

2018

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Option 3: Dynamic Runtime Configuration

[* Decoder agent configuration
* file : codex_berkelium _ca core dec_t agent _config.svh
*/
/[uvm_config_db configuration and set
function void set_decoder_config_params ();
Il set configuration info
decoder = new();

@r.extension_l\ﬂ)

uvm_config_db #(decoder_config)::set(this, “*”, “decoder_config”, decoder);
endfunction

;.Mp:i-ns[ructlons . coverpoint ction(....);
if(m_config.extention_M) B
W

cvp_instructions_ext_m : coverpoint m_transaction_h.m_instruction_ext m{....... }
end

DESIGN AND VERIFICATION™

Y= 2. |SA simulator as Golden Model

simulator

simulator

GOLDEN

MODEL

IIIIIIIIIIIIIIIIIIIIII

2NN 3. Emulation For Fast Verification

* 48 RISC-V variants x 10,000 programs x 500 instructions =
unbearable simulation runtime!

* Porting UVM to Veloce emulator:

1. Comparison of pure simulation and emulation environment runtimes
for 1 program.

2. Creating 2 top-levels — simulation and emulation. For the emulation,
the processor is moved into emulator and agents are divided
between emulator and simulator for the best efficiency.

3. Connecting UVM objects while analyzing and minimizing/removing
bottlenecks.

2018

DESIGN AND VERIFICATION™

=Xote Codasip UVM ported to Veloce

top_level_UVM top_level_emul

loader > loader

-<: loader_dut
loader_gold

FlexMem dut_module

codasip_top_level_t_env

codasip_top_level_t

top_leve_agent_dut | NSRGERERIN _crver 1] >

berkelium_t_env

hw_dec_agent_dut
\---- - dumping content

halt_detector T of registers and
B halt_probe_dut memories to files
(after every program)

dumping of reference

ISA simulator > content of registers
and memories

IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

What we have achieved

2018

oV AT« COMPARISON OF RISC-V VERIFICATION
CONFIGURATION APPROACHES

CONFERENCE AND EXHIBITION

ADVANTAGES AND DISADVANTAGES OF THE CONFIGURATION METHODS

Pros

Cons

Configuration set at higher
abstraction level and RTL +
UVM are generated

Easy setting of desired configuration.
Better readability of generated source files.
Very fast.

The generated RTL + UVM are dedicated just to one
processor configuration.
Price - generator presented in this paper 1s a paid tool.

Ifdefs for manually written
RTL and UVM files

Support of multiple processor configurations.

Worse readability of code 1n source files.

uvin_config db for manual-
Iy written UVM files

Support of multiple processor configurations in UVM
source files.

Worse readability of code in source files.
Limited only to UVM.

cectinte COMPARISON OF RISC-V EMULATION
EEEEEEEEEEEEEEEEEEEE APPROAGHES

Average runtime for 1 program in

Accelerati hi
seconds (~100 000 instructions) cceleration achieved

Pure simulation-based verification vs. pure 128 (simulation) 100x
emulation-based verification 1.28 (emulation)
Emulation-based verification with simple test- 32 4x

bench and pipes

Emulation-based verification with UVM, 1.7 75x
FlexMem and external ISA simulator

IIIIIIIIIIIIIIIIIIIIII

CONFERENCE AND EXHIBITION

Summary

IIIIIIIIIIIIIIIIIIIIII

RYZS Summary

* RISC-V flexiblility introduces verification challenge in the number of
variants that must be verified

* Verification strategy that targets variability:
— Configurability (we introduced 3 approaches)

— Utilizing existing ISA simulators as golden predictor model (Codasip, Spike
simulator)

— Employing emulation for running huge amount of tests (we provided
recommendations how to proceed by porting UVM to Veloce)

2018

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

