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UVM Based vs Software-Driven testing
• UVM Environment

– Test Sequences
– Strong ability for constrained random testing
– Advanced verification using monitors, scoreboards, assertions
– Little vertical reuse
– No horizontal reuse

• Software Driven Testing
– C testing, running (or as if) on the core processor
– Use of the Software API stack
– Little random testing, no constrained random
– No vertical reuse
– Horizontal reuse

• How to get the best of both with minimum limitations and setup complexity ?
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The DUT
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The Verification Goals and Constraints
• Verify the signal processing of the design
• Verify the control and synchronization
• No virtual CPU to simulate, No ISS (easily) available
• Existing UVM setup using AXI QVIP from Mentor
• Need either to use software drivers or redevelop the corresponding

sequences
• Need simulations to ease debug
• Final proof is the FPGA with the CPU, not the simulation.
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Software Driven UVM verification environment
• Use the advantages of UVM, while still doing software driven tests
• Still need UVM and SystemVerilog for 

– scoreboarding, 
– assertions, 
– AXI bus driving/monitoring with on-the-shelf AXI VIP.
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Software Driven UVM environment
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Mapping Software to Verification
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Generic DPI to UVM VIP link
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DPI to UVM Code Snippet
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C

extern void dpi2uvm_read16 (int,uint16_t*);
void main() {

dpi2uvm_read16( address , data );

SystemVerilog DPI calls

export "DPI-C" task dpi2uvm_read16;
uvm_tlm_b_transport_port #(dpi2uvm_trans) transport;

task dpi2uvm_read(dpi2uvm_address_t addr,
output byte unsigned read_val[],
input int size);

uvm_tlm_generic_payload trans;
trans.set_address(addr);
trans.set_read();
trans.set_data_length(size);

transport.b_transport(tr,tt);

trans.get_data(read_val);

virtual class dpi2uvm_tlm_conv_container extends dpi2uvm_tlm_conv_base_container;
/// TLM Conversion Tasks to VIP Single Access Sequence
pure virtual task b_transport(dpi2uvm_trans tr, uvm_tlm_time delay);

class dpi2uvm_demo_vip_custom_conv extends dpi2uvm_tlm_conv_container;

/// User Conversion of the demo_dpi_trans to the actual User Sequence Call
virtual task b_transport(uvm_tlm_generic_payload tr, uvm_tlm_time delay);

axi_trans = new("AXI_TRANS");

// Alternate non-random code:
if ( tr.is_write() )

axi_trans.data = {tr.m_data[3],tr.m_data[2],tr.m_data[1],tr.m_data[0]};
axi_trans.address = tr.m_address;
axi_trans.direction = (tr.is_write() ? WRITE : READ);

// Send the transaction to the sequencer
this.sequencer.execute_item(cvtd_trans);

endtask

DPI to UVM Link

inherits from



DPI to UVM Limitations
• Need to have read/write calls

– Macros: can be redefined
– Functions: can be linked to another driver

• First driver from Xilinx was ok.
• Other Software contained pointers
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test.c
p* = 12; 
Val = &p;

How to deal with such software drivers ? 



Host Code Execution Principles
• Define memory address space as « protected »
• Pointers to memories will hit a segmentation fault
• Implement a fault handler that catches the memory access
• Call the memory read/write functions
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Linux Memory Map Fault Handler
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void hce_protect_memory_map(char *__buffer) 
{

int pagesize = sysconf(_SC_PAGE_SIZE);
_buffer = (char *) mmap ( (void*)addr, 

pagesize, 
PROT_READ | PROT_WRITE | PROT_EXEC , 
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (mprotect(__buffer, pagesize, PROT_NONE ) == -1)
hce_fatal("mprotect","Internal Error: Unable to proect memory");

}

// Handler links to external read/write functions
static void hse_memory_handler(){  

uint8_t temp = 0x0;  hse_read8(hhs.g_addr, &temp);
}
void hse_read8(int addr, char* data) {

if ( hse_func.read8 != NULL && hse_init_done != 0) {        
hse_func.read8(addr,data);    

}
} 



Generic Host Software/Code Execution
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Generic Software Driven UVM
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C Code HSE function DPI Calls VIP action taken 
( equivalence through the TLM 
conversion)

P* = 12; hse_write( &p , 12 ) dpi2uvm_write ( addr, 12 ) `uvm_do_with ( REQ , 
{

REQ.address   == local::address;
REQ.data      == 12;
REQ.direction == WRITE;
} )

val = &p; hse_read( &p , &val ) dpi2uvm_read( addr, data ) `uvm_do_with ( REQ , 
{

REQ.address == local::address;
REQ.direction == READ;

} )
return REQ.data;



Considered Alternatives
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Techniques Pros Cons

ISS Instruction Accurate
Transaction Accurate (also on the instruction fetch)
Potentially Cycle Accurate

Development time
On-the-shelf component availability
On-the-shelf component cost

QEMU Instruction Accurate
Transaction Accurate (also on the instruction fetch)
Potentially Cycle Accurate

Availability for the given processor
No easy/generic integration

Simulated
RTL

Cycle Accurate Slow
Encrypted FPGA soft core (no RTL available)

FPGA Only Use the real CPU Little debug
No advanced verification ( assertions, 
scoreboards, … )



Results
• Integration of the generic DPI2UVM : 1/2 day
• Getting the Xilinx DMA software driver working: < 1 day
• Bugs:

– Synchronization issue in RTL. 
– Software bug in HAL 
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Questions

Zzzzz !
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Guidelines (1)
• Please keep the default font size for main lines at 28pt (or 26pt)

– And use 24pt (or 22pt) font size for the sub bullets

• Use the default bullet style and color scheme supplied by this template
• Limited the number of bullets per page. 
• Use keywords, not full sentences
• Please do not overlay Accellera or DVCon logo’s
• Check the page numbering
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Guidelines (2)
• Your company name and/or logo are only allowed to appear on the title 

page. 
• Minimize the use of product trademarks
• Page setup should follow on-screen-show (4:3)
• Do not use recurring text in headers and/or footers
• Do not use any sound effects
• Disable dynamic slide transitions
• Limit use of animations (not available in PDF export)
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Guidelines (3)
• Use clip-art only if it helps to state the point more effectively (no generic 

clip-art)
• Use contrasting brightness levels, e.g., light-on-dark or dark-on-light. 

Keep the background color white
• Avoid red text or red lines 
• Use the MS equation editor or MathType to embed formulas
• Embed pictures in vector format (e.g. Enhanced or Window Metafile 

format)
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