
UVM based Hardware/Software Co-
Verification of a HW Coprocessor using Host

Execution Techniques
François Cerisier, Christian Rivier, Andrea Battistella

AEDVICES Consulting
Arnaud Grasset, Thales Research & Technologies

© Accellera Systems Initiative 1

UVM Based vs Software-Driven testing
• UVM Environment

– Test Sequences
– Strong ability for constrained random testing
– Advanced verification using monitors, scoreboards, assertions
– Little vertical reuse
– No horizontal reuse

• Software Driven Testing
– C testing, running (or as if) on the core processor
– Use of the Software API stack
– Little random testing, no constrained random
– No vertical reuse
– Horizontal reuse

• How to get the best of both with minimum limitations and setup complexity ?

© Accellera Systems Initiative 2

The DUT

© Accellera Systems Initiative 3

Mac ArrayBuff
In

Buff
Out

DMA

AXI
Conf reg

Conf reg
AXI

AXI
Interrupts (to CPU)

Memory I/F

CPU

AXI

Memories

AXI Interconnect

AXI

DUT

The Verification Goals and Constraints
• Verify the signal processing of the design
• Verify the control and synchronization
• No virtual CPU to simulate, No ISS (easily) available
• Existing UVM setup using AXI QVIP from Mentor
• Need either to use software drivers or redevelop the corresponding

sequences
• Need simulations to ease debug
• Final proof is the FPGA with the CPU, not the simulation.

© Accellera Systems Initiative 4

Software Driven UVM verification environment
• Use the advantages of UVM, while still doing software driven tests
• Still need UVM and SystemVerilog for

– scoreboarding,
– assertions,
– AXI bus driving/monitoring with on-the-shelf AXI VIP.

© Accellera Systems Initiative 5

Software Driven UVM environment

© Accellera Systems Initiative 6

Mac ArrayBuff In Buff
Out

DMA

AXI
Conf reg

Conf reg
AXI

AXI

Interrupts (to CPU)

Memory I/F

AXI Master VIP

DUT

AXI Master VIP

AXI Slave VIP

test.c libhse.c libdpi2uvm.c

libtest.so

Main Sequence

dpi

Assertions /
Checks /

Scoreboards

Mapping Software to Verification

© Accellera Systems Initiative 7

Application / Test

HAL / BSP

R/W Macros

HW Platform

Application / Test

HAL / BSP

Modified R/W Macros

DPI Layer

Verification Environment

Maping

Generic DPI to UVM VIP link

© Accellera Systems Initiative 8

test.c
dpi2uvm_read()
dpi2uvm_write()

dpi calls task
dpi2uvm_read()

my_axi_conv

mti_sequencer
uvm_tlm_b_transport_port.b_transport()

sequencer.execute_item(tr)

dpi2uvm_pkg.sv

External VIP

DPI to UVM Code Snippet

© Accellera Systems Initiative 9

C

extern void dpi2uvm_read16 (int,uint16_t*);
void main() {

dpi2uvm_read16(address , data);

SystemVerilog DPI calls

export "DPI-C" task dpi2uvm_read16;
uvm_tlm_b_transport_port #(dpi2uvm_trans) transport;

task dpi2uvm_read(dpi2uvm_address_t addr,
output byte unsigned read_val[],
input int size);

uvm_tlm_generic_payload trans;
trans.set_address(addr);
trans.set_read();
trans.set_data_length(size);

transport.b_transport(tr,tt);

trans.get_data(read_val);

virtual class dpi2uvm_tlm_conv_container extends dpi2uvm_tlm_conv_base_container;
/// TLM Conversion Tasks to VIP Single Access Sequence
pure virtual task b_transport(dpi2uvm_trans tr, uvm_tlm_time delay);

class dpi2uvm_demo_vip_custom_conv extends dpi2uvm_tlm_conv_container;

/// User Conversion of the demo_dpi_trans to the actual User Sequence Call
virtual task b_transport(uvm_tlm_generic_payload tr, uvm_tlm_time delay);

axi_trans = new("AXI_TRANS");

// Alternate non-random code:
if (tr.is_write())

axi_trans.data = {tr.m_data[3],tr.m_data[2],tr.m_data[1],tr.m_data[0]};
axi_trans.address = tr.m_address;
axi_trans.direction = (tr.is_write() ? WRITE : READ);

// Send the transaction to the sequencer
this.sequencer.execute_item(cvtd_trans);

endtask

DPI to UVM Link

inherits from

DPI to UVM Limitations
• Need to have read/write calls

– Macros: can be redefined
– Functions: can be linked to another driver

• First driver from Xilinx was ok.
• Other Software contained pointers

© Accellera Systems Initiative 10

test.c
p* = 12;
Val = &p;

How to deal with such software drivers ?

Host Code Execution Principles
• Define memory address space as « protected »
• Pointers to memories will hit a segmentation fault
• Implement a fault handler that catches the memory access
• Call the memory read/write functions

© Accellera Systems Initiative 11

Linux Memory Map Fault Handler

© Accellera Systems Initiative 12

void hce_protect_memory_map(char *__buffer)
{

int pagesize = sysconf(_SC_PAGE_SIZE);
_buffer = (char *) mmap ((void*)addr,

pagesize,
PROT_READ | PROT_WRITE | PROT_EXEC ,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (mprotect(__buffer, pagesize, PROT_NONE) == -1)
hce_fatal("mprotect","Internal Error: Unable to proect memory");

}

// Handler links to external read/write functions
static void hse_memory_handler(){

uint8_t temp = 0x0; hse_read8(hhs.g_addr, &temp);
}
void hse_read8(int addr, char* data) {

if (hse_func.read8 != NULL && hse_init_done != 0) {
hse_func.read8(addr,data);

}
}

Generic Host Software/Code Execution

© Accellera Systems Initiative 13

test.c
p* = 12;
Val = &p;

Memory
Segmentation
Fault

hse_memory_handler()

task
dpi2uvm_read()

hse_read()

hse.c dpi2uvm.c

hse_write()

dpi2uvm_write()

dpi2uvm_read()
dpi calls

dpi2uvm_pkg.sv

calls hse_func.read()

Generic Software Driven UVM

© Accellera Systems Initiative 14

C Code HSE function DPI Calls VIP action taken
(equivalence through the TLM
conversion)

P* = 12; hse_write(&p , 12) dpi2uvm_write (addr, 12) `uvm_do_with (REQ ,
{

REQ.address == local::address;
REQ.data == 12;
REQ.direction == WRITE;
})

val = &p; hse_read(&p , &val) dpi2uvm_read(addr, data) `uvm_do_with (REQ ,
{

REQ.address == local::address;
REQ.direction == READ;

})
return REQ.data;

Considered Alternatives

© Accellera Systems Initiative 15

Techniques Pros Cons

ISS Instruction Accurate
Transaction Accurate (also on the instruction fetch)
Potentially Cycle Accurate

Development time
On-the-shelf component availability
On-the-shelf component cost

QEMU Instruction Accurate
Transaction Accurate (also on the instruction fetch)
Potentially Cycle Accurate

Availability for the given processor
No easy/generic integration

Simulated
RTL

Cycle Accurate Slow
Encrypted FPGA soft core (no RTL available)

FPGA Only Use the real CPU Little debug
No advanced verification (assertions,
scoreboards, …)

Results
• Integration of the generic DPI2UVM : 1/2 day
• Getting the Xilinx DMA software driver working: < 1 day
• Bugs:

– Synchronization issue in RTL.
– Software bug in HAL

© Accellera Systems Initiative 16

Questions

Zzzzz !

© Accellera Systems Initiative 17

Guidelines (1)
• Please keep the default font size for main lines at 28pt (or 26pt)

– And use 24pt (or 22pt) font size for the sub bullets

• Use the default bullet style and color scheme supplied by this template
• Limited the number of bullets per page.
• Use keywords, not full sentences
• Please do not overlay Accellera or DVCon logo’s
• Check the page numbering

© Accellera Systems Initiative 18

Guidelines (2)
• Your company name and/or logo are only allowed to appear on the title

page.
• Minimize the use of product trademarks
• Page setup should follow on-screen-show (4:3)
• Do not use recurring text in headers and/or footers
• Do not use any sound effects
• Disable dynamic slide transitions
• Limit use of animations (not available in PDF export)

© Accellera Systems Initiative 19

Guidelines (3)
• Use clip-art only if it helps to state the point more effectively (no generic

clip-art)
• Use contrasting brightness levels, e.g., light-on-dark or dark-on-light.

Keep the background color white
• Avoid red text or red lines
• Use the MS equation editor or MathType to embed formulas
• Embed pictures in vector format (e.g. Enhanced or Window Metafile

format)

© Accellera Systems Initiative 20

	 UVM based Hardware/Software Co-Verification of a HW Coprocessor using Host Execution Techniques
	UVM Based vs Software-Driven testing
	The DUT
	The Verification Goals and Constraints
	Software Driven UVM verification environment
	Software Driven UVM environment
	Mapping Software to Verification
	Generic DPI to UVM VIP link
	DPI to UVM Code Snippet
	DPI to UVM Limitations
	Host Code Execution Principles
	Linux Memory Map Fault Handler
	Generic Host Software/Code Execution
	Generic Software Driven UVM
	Considered Alternatives
	Results
	Questions
	Guidelines (1)
	Guidelines (2)
	Guidelines (3)

