
Figure 1. MDV Closed Loop Flow

UVM Based Approach To Model Validation

For SV-RNM Behavioral Models

Donald Lewis and Courtney Fricano
Analog Devices, Inc.

3 Technology Way

Norwood, MA 02062

Abstract- The prevalence and complexity of mixed-signal designs are rapidly increasing in the industry. With in-

creased complexity, the need for verification of these designs becomes more critical. Often, top level co-simulations of the

full chip are not feasible, resulting in the use of behavioral models for analog sub-blocks to achieve simulation speed-up.

Model validation is the process of confirming that these digital models correctly simulate the analog functionality of the

block. It is generally easier to debug and verify behavioral models by running block level simulations. This paper dis-

cusses a UVM based approach to model validation at the block level.

I. INTRODUCTION

Across the industry, analog and mixed-signal (AMS) designs are becoming more common. The AMS portions of

chips are also increasing in scope, complexity, and integration with the chip. Additionally, there are more instances

of the signal path and feedback crossing between the analog and digital domains of the chip. These factors make

verification of the AMS designs critical to the success of chip tapeouts.

For the digital domain, metric driven verification (MDV) is used to ensure high verification quality. Figure 1 below

shows the basic MDV closed loop flow. The MDV framework is enabled by verification planning, testbench devel-

opment using the Universal Verification Methodology (UVM), and running regressions. A typical UVM testbench

makes use of SystemVerilog’s [1] constrained randomization capabilities and regular regressions to collect coverage

over many runs. Simulations that are exclusively digital are able to be simulated very quickly, allowing the MDV

loop to be iterated many times over the course of the verification process. The MDV closed loop flow, when followed,

has been proven in the industry to result in successful verification of designs.

Figure 2. UVM based Model Validation Approach

AMS designs typically simulate at much slower speeds than digital designs due to their reliance on numerical solv-

ers. Top-level simulations with multiple AMS blocks can take days, if not weeks, depending upon the design. The

MDV flow requires multiple iterations and typically relies on the ability to complete many simulations a night, which

is not possible with very slow AMS simulations. The solution is to use behavioral models of the analog blocks to

reduce the simulation speed at the top level.

With the enhancement to SystemVerilog’s handling of real-numbered ports and nets in SystemVerilog-2012, writ-

ing real-number models (RNM) in SystemVerilog (SV) has become more straightforward and easier to do. However,

a key issue whenever behavioral models are used is the validation of the models with respect to the actual analog

design. This paper describes a UVM based approach to model validation. This approach provides a high-level of

confidence in the analog model which allows for the use of the iterative MDV flow at the top level. The approach

also enables the re-use of testbench components from the block level testbench at the top level to provide detailed

functional checking in top level simulations.

II. APPROACH

A SV-RNM behavioral model allows for fast simulation at the top level as well as easy integration into the digital

testbench environment. For system level UVM based testbenches, being able to run the whole chip with valid mod-

els is critical for identifying potential issues. Typically, at the system level, the testbench is validating some func-

tional aspects as well as the connectivity of the AMS blocks through their models. In order to validate and verify

the model, the approach that we used was to run both the model and the AMS block through the same block level

UVM testbench.

The idea behind this approach is that the block level testbench will be able to verify functionality and pin behav-

ior. Using the MDV flow with a UVM testbench allows us to use constrained random test cases and regressions to

fully verify the block. Then, once the testbench is in place, it can be used to check both the RTL model as well as

the analog netlist. Figure 2 provides an overview of how this approach works. By running the same test cases, stim-

ulus, and checks against both the analog netlist and the RTL model, a 1 to 1 comparison can be made to validate the

model.

This UVM model-validation approach requires the ability to run Verilog co-simulations with the analog solver, as

well as a standalone Verilog simulator. Additionally, a way to manage and compare the regressions of the behavioral

model simulations to the co-simulations is required. This will work well for analog blocks that are small enough such

that the simulation time is fast enough to allow for regular regressions. The ability to run regressions regularly (nightly

in our case) is important as the regression delta is key to monitoring the health and accuracy of the model. Creating a

UVM testbench for each analog block does result in some additional overhead. However, provided the system level

testbench is also UVM based, there often will be an opportunity for agent re-use.

Figure 3 depicts how the block level UVM agents could be re-used vertically at the system level. The re-use of the

UVM agents provides additional confidence in the model and can provide insight into the veracity of the signals

provided to the block at the system level. Re-using the monitors for the block in a passive manner at the system level

ensures that any issues with signals going to the block will be found. Additionally, the re-use of TB agents helps to

mitigate the impact of the upfront overhead related to creating a UVM testbench for each analog block.

III. IMPLEMENTATION

To implement this strategy, the block level testbench must be architected to allow for co-simulation as well as dig-

ital only simulations. To get an accurate comparison of the behavioral model to the design, the same stimulus must

be provided in both environments. As a result, the stimulus should be driven by the UVM testbench, so the

testbench should always be running a digital simulator.

Generally, if the analog simulator supports co-simulations with the digital simulator as the master, a UVM

testbench can be created for the behavioral model and then re-used by replacing the RTL model with the analog cir-

cuit for co-simulation. If required, the testbench can be architected to allow for either simulator to be the master and

drive the simulation. Due to design requirements, some blocks require the analog simulator to be the master. The

architecture that was used to allow for different simulator masters in the same testbench is shown in Figures 4 and 5.

Figure 3. System Level Reuse

Figure 4 depicts the setup of the testbench for the digital only simulations involving the behavioral model, while

Figure 5 shows the replacement of the model, interface, and power supplies with analog blocks.

Figure 4. Block Level Digital Testbench Architecture

Figure 5. Block Level Co-simulation Testbench Architecture

The scope of what the behavioral models will be functionally modeling is critical. The scope will drive which

aspects of the models need to be validated at the block level. In this project, the behavioral models were being used

to verify functionality and connectivity of the top level digital simulation. Some deviation between the behavioral

model and the analog design will be present, but the limits of what we deemed acceptable was driven by the block’s

specification as well as the ultimate function of the models. For example, for one of the blocks there was a specifi-

cation that a signal was required to propagate within a certain time. Figure 6 shows how this was checked using a

SystemVerilog assertion. This check was used in simulations for both the behavioral model as well as the analog

design. If the check passed in both simulations, then the model and the design both follow the specification. There

may be variation in the delay between the model and the design, but in this case this variation will not have an im-

pact on functionality. If it does, the check should be adjusted to match the functional requirements.

property sva_prop_tsbh_check;
 time pdm33_3v_change;
 disable iff(!resetb_3v || fault_code === 3'h4 || !rstb)
 @(negedge tb_clk) ($rose(pdm33_3v)) |-> (((pdm33_changed - pdm33_timer) >= min_tsbh) &&

(pdm33_3v == pdm33_set_value));
endproperty : sva_prop_tsbh_check

Figure 6. Specification Check From Testbench

An example of a check that was adjusted to allow for variation in the signal due to the analog nature of the circuit

was a check of the glitch rejection circuitry of the block. Figure 7 shows how the glitch rejection specification for

one of the blocks was checked. For this specification, a window for a valid edge is defined and then verified. The

behavioral model and the design passing this check shows that the model has the proper functionality.

For the blocks in this project, the goal was not to have the behavioral models exactly match the analog behavior of

the analog design across process, voltage, and temperature (PVT) conditions, but rather to get a close enough match-

ing that would be appropriate for the interface with the top level digital simulations. If the requirements of the be-

havioral model were to change to require tighter matching, then the model and testbench would need to be adjusted

accordingly. The key for this approach is that the requirements of the behavioral model and assumptions about what

is and is not modeled must match up with the assumptions made at the top level testbench.

//check for glitch pulses

if(this.ctl_en === 1) begin
// count increments based on voltage level

 if(evdd_in > ovlo_e_th && this.ctl_evddcompen == 1) evdd_ov = evdd_ov + inc;
 else evdd_ov = 0;
 if(evdd_in < uvlo_e_th && this.ctl_evddcompen == 1) evdd_uv = evdd_uv + inc;
 else evdd_uv = 0;
 //...
end

// check multiple thresholds to determine if an error must be flagged

if(evdd_max > 64 || evdd_ov > 100 || evdd_uv > 100 || evdd_min > 64) evdd_err_req = 1;

//...

// check multiple thresholds to determine if an error can be flagged to complete the window

evdd_err_valid = (evdd_max >= 10 || evdd_ov >= 12 || evdd_uv >= 12 || evdd_min >= 10);

//...

// when TB sees error flag

if(!evdd_err_valid) `uvm_error(get_type_name(),"evdd_err flagged before glitch timeout")
// if no error flag is seen

if(evdd_err_req) `uvm_error(get_type_name(),"evdd_err not latched after min glitch pulse")

Figure 7. Glitch Rejection Check

IV. RESULTS

By using this approach we were able to successfully validate the behavioral models for the AMS blocks on our

chip. Multiple issues with both the behavioral models and the design were both found and tracked. One of the issues

that we found as a result of this approach was a mismatch between the way test modes were implemented between

the behavioral model and the design. The regression results for the test mode tests did not match, leading us to find

an issue with the way the test modes had been implemented in the design.

Another example of an issue found using this approach was that the way an oscillator trim was modeled did not

match the design. This finding led to an update of the behavioral model to more accurately model the trimming im-

plementation. In addition to finding bugs in both the behavioral model and the design, this approach allowed for

quick feedback whenever there was a change in either. If the model and the design got out of sync, regression fail-

ure mismatches quickly flagged the issue. Figure 8 shows an example of our regression tracking for one of the AMS

block level testbenches that used this approach. Regression failures and mismatches are indicated in red, and trig-

gered either a model, design, or testbench update as required. The chip was successfully taped out, with no func-

tional bugs in the AMS blocks that used this verification approach.

The behavioral models were also critical in identifying issues and bugs at the system level. In one instance, the

polarity of a reset pin was reversed in the system level and was identified through the block level monitors. Addition-

ally, a signal sequencing error at the system level was found in the handshaking between an AMS block and another

digital block. The resulting fix included a specification update, as the offending behavior existed in both the design

and the behavioral model, which is the type of bug that would not have been caught without this model validation

approach.

Figure 8. Regression History for AMS Block

V. CONCLUSIONS

The approach for model validation presented in this paper had the following benefits:

 Allowed for thorough validation of an analog behavioral model from a functional perspective

 Provided quick feedback on the impact of model or design changes

 Facilitated the use of modern MDV methodologies on AMS blocks

 Enabled re-use of testbench agents at system level to reduce development time and ensure coherence be-

tween block and system level

The methodology presented in this paper successfully verified several new and modified analog blocks on our

large multi-core SoC. The validated models were key in verifying top-level connectivity and functionality between

blocks, and this approach found multiple bugs at both the block level and the top level.

This UVM based model validation approach is generic and simulator independent. The level of matching be-

tween the behavioral model and the AMS design can vary from purely functional to accurate across PVT variation

as required by the design. The UVM testbench can be designed to validate the model at either block or top level.

However, this approach is recommended for models that are focused on functional verification and connectivity, as

SV-RNM models are generally not sufficient for checking chip power up and power draw analysis.

ACKNOWLEDGEMENTS

The following Analog Devices employees provided input and feedback that was critical to the writing of this pa-

per: David Brownell, John Mackintosh.

REFERENCES

[1] IEEE Standard Verilog Hardware Description Language, IEEE Standard 1364, 2001.

