
UVM and SystemC Transactions - An Update

David Long John Aynsley

Doulos, Ringwood, UK. Doulos, Ringwood, UK.

Abstract-: This paper revisits the differences between Transaction Level Modeling (TLM) components implemented

in SystemC and SystemVerilog UVM and the requirements of an efficient mechanism for passing transactions between

them. It examines and compares the approaches taken by the most popular open-source solutions for connecting SystemC

to UVM: UVM Connect [1] and UVM-ML [2]. It demonstrates how UVM Connect and UVM-ML provide a simple

solution for insertion of an untimed or “loosely timed” SystemC model into a UVM environment. The paper goes on to

explore additional features required by more accurate "approximately timed" SystemC models and looks at how these

may be utilized in UVM Connect and UVM-ML. It also suggests possible approaches for unsupported features such as

pipelined transactions and “payload event queues” in SystemC. The paper concludes by considering how the adoption of

the proposed UVM-SystemC [3] standard might change our recommended approach, and looking further ahead, the

implications of a multi-language standard supported by all tool vendors.

I. INTRODUCTION

In many SoC designs, the embedded processors are blocks of IP that each have a SystemC TLM model. The

testbenches for hardware blocks and the complete SoC are typically written in SystemVerilog. To verify the operation

of hardware blocks, embedded software and the complete SoC, it is natural to want to connect together the various

SystemC and SystemVerilog models. Unfortunately, even though SystemVerilog simulators have supported co-

simulation of SystemC code for many years, passing transactions between models written in different languages is

still not straight-forward.

In 2010, Doulos presented a paper [4] at DVCon looking at passing transactions between a SystemC model and a

SystemVerilog testbench. It demonstrated that if you wanted your code to work consistently across multiple vendors'

tools, your best bet was create your own string-based mechanism using DPI.

Today, the Universal Verification Methodolgy (UVM) has become the standard approach for writing SystemVerilog

testbenches. UVM contains SystemVerilog implementations of SystemC's TLM1 and TLM-2.0 classes and major

EDA vendors offer open-source solutions for passing transactions between the languages. An Accellera Systems

Initiative (ASI) working group has recently proposed a SystemC implementation of UVM [3] and another ASI

working group is currently looking at standard simulation interfaces for multi-language models. So is it any easier for

end users to pick a mechanism for sending transactions between SystemC and SystemVerilog? Judging from the

questions we regularly get asked: Apparently not!

II. BACKGROUND

This section is aimed at readers who may not have an in-depth knowledge of UVM or SystemC. It provides a brief

summary of the structure and operation of a UVM environment, a SystemC transaction level model and the issues of

communication between them.

The standard UVM package provides a set of base classes that can be extended to create the building blocks of a

complex verification environment. Communication between components takes place at a transaction level. Each

transaction in a typical UVM environment (e.g. for a device-under-test accessed via a memory-mapped bus) might

represent a single read or write bus-cycle or even a burst of data corresponding to many bus cycles. TLM

communication has several advantages for UVM components compared to the wires used within traditional RTL

testbenches:

1) transactions provide a higher level of abstraction that masks low-level details and hence assists reuse of

components between testbenches;

2) the number of simulation events associated with each transaction (often just one event) is many times less than

the corresponding number of RTL “pin wiggles” which leads to improved simulator performance;

3) transaction classes for basic tests may be extended to easily produce transaction classes for more specialized

tests (and components that only accessed the fields in the original transaction classes would not require any

modifications to continue working correctly with the extended transaction classes).

The TLM approach in UVM has been adapted from the TLM1 and TLM-2.0 approaches that are part of the SystemC

standard [5]. As in SystemC, a transaction in UVM is initiated by calling a method provided by a “port” that is part of

a component. The port is connected to a matching “export” on another component. If the parent component of the

export implements the called method (rather than passing it on by calling a corresponding method in a child

component) the export is known as an “imp” The method calls may either by “blocking” (the call may wait before

returning so is implemented by a task) or non-blocking (the call returns immediately so may be implemented by a

function). The port and export are parameterized classes that provide a mechanism to check that the connections

between components are valid. The most common UVM TLM connection is between a “sequencer” component

generating a stream of transactions and a “driver” that translates each transaction into a corresponding set of

waveforms to drive the pins of the device under test. The other common TLM connection is the “analysis port/export”

used to send transactions from a monitor (e.g. looking at bus activity) to a checker or scoreboard. An example showing

the connections between components in a typical UVM environment, including the TLM ports and exports, is given

in Figure 1.

The first TLM library (“TLM1”) released by OSCI (Open SystemC Initiative – now part of ASI) did not meet the

requirements for high-speed models and provided limited support for model interoperability. A second library (“TLM-

2.0”) was subsequently developed which took a different approach to address these limitations. A fundamental

difference between TLM1 and TLM-2.0 is the mechanism used to transfer the data within a transaction: with TLM1

the transaction object is copied or passed by reference at each “hop” between initiator and target; with TLM-2.0 the

transaction uses a standard “generic payload” class which contains a pointer to the actual data array (a block of bytes).

The generic payload enables transactions to be sent efficiently across multiple hops – the data array pointer is used to

access the actual data only once the transaction has reached its final destination. The SystemC standard also defines a

base protocol for TLM-2.0 to encourage interoperability of models from different providers (“IP Vendors”). At each

step of the base protocol, information may be sent either from the initiator to the target or back from the target to the

initiator. TLM-2.0 connections therefore require two port/export pairs – one for the forward path and another for the

backward path. For convenience, the initiator port/export are grouped together in an “initiator socket” while a “target

socket” does the same for the target’s port/export. UVM supports TLM-2.0 communication between components but

there are some differences compared to SystemC, which are discussed below.

The UVM implementation of TLM1 and TLM-2.0 is based on SystemVerilog versions of the relevant SystemC

classes. Fundamental differences between C++ and SystemVerilog mean that the UVM class hierarchy and certain

operations have to use a different approach. The SystemC classes for TLM communication make use of multiple

inheritance of C++ virtual interface classes. This mechanism was not provided by SystemVerilog when UVM was

created so comparing the source code for ports and exports against the SystemC ones will reveal significant

differences. However, in practice, a typical UVM user does not need to be aware of these differences for TLM1

connections. For TLM-2.0 connections, UVM provides a separate initiator and target socket for blocking and non-

blocking connections. In SystemC, initiator and target sockets support both blocking and non-blocking transactions

(an initiator is allowed to switch between blocking and non-blocking behavior between transactions). TLM-2.0

handles conversion between blocking and non-blocking transport calls automatically using the simple target socket,

Figure 1 TLM connections within a typical UVM environment

which provides both blocking and non-blocking transport methods, only one of which actually needs to be

implemented within the target. UVM does not provide this kind of automatic adaption.

In TLM-2.0, the generic_payload class defines get/set methods that must be used to access the members. In UVM,

the generic payload data members are public and are declared as rand so the set/get methods are not required, although

they are still provided. The UVM approach makes sense in the context of constrained random transaction generation;

the UVM generic payload includes a set of default constraints to generate transactions with reasonable attribute values.

(In contrast, the SystemC TLM-2.0 standard was developed with deterministic execution in mind, i.e. running system

software.) Also, the UVM generic payload extends uvm_sequence_item, as would be the case for most other UVM

transaction types, and defines methods for copying, comparing, and printing the payload contents.

Unlike C++, SystemVerilog does not support pointers. Objects are uniformly accessed by reference, and

SystemVerilog provides automatic garbage collection. Because of these language differences, the UVM generic

payload does not provide methods for explicit memory management (i.e. acquire, release, reset).

Unlike SystemC, where the data and byte enable array attributes are pointers, in UVM they are dynamic arrays. This

makes the transaction data part of the transaction object itself, which is a difference in philosophy from TLM-2.0.

Like TLM-2.0, UVM supports adding generic extensions to the generic payload class. However, because

SystemVerilog has no support for function templates, extensions have to be accessed by passing the extension ID as

an argument to the set/get/clear_extension methods.

III. INTEGRATION OF SYSTEMC TLM MODELS IN UVM

Given the similarities between the TLM classes in UVM and SystemC, it is tempting to believe that integrating a

SystemC TLM model in UVM would be a trivial exercise. All current simulators support mixed-language designs,

and specifically permit SystemC modules to be instantiated directly from SystemVerilog. All simulators support the

ability to make pin-level connections across languages, but unfortunately there is no standard for procedural (TLM)

communication between SystemVerilog and SystemC aside from the DPI. The native SystemVerilog DPI does not

explicitly support SystemC. However, it is possible to use the standard DPI with SystemC in the sense that SystemC

is just another C++ application. SystemC modules typically provide a procedural interface either by implementing a

SystemC interface or by offering a SystemC export. Using this procedural interface requires the ability to make C++

method calls, which is not possible using the standard DPI. In [4] we discussed ways to overcome this method calling

limitation but there is also a limitation that applies to the transaction class itself. SystemVerilog DPI supports copying

of “simple” types across the language boundary but this does not apply to either simple transaction classes or the

generic payload: in order to copy them, they must first be converted to a format that is supported by DPI. UVM

provides a mechanism that can be used for this conversion: the pack and unpack functions translate a UVM transaction

class contents to/from a dynamic array of bit (or byte or int) – such arrays can be accessed in both SystemVerilog and

C++ using the DPI. However, writing the code for this translation is typically a manual process that requires

knowledge of how to use the DPI functions. The UVM Connect and UVM-ML are designed to automate this

translation process.

IV. OVERVIEW OF UVM CONNECT

UVM Connect has been developed by Mentor Graphics but is released under an Apache 2 license. It uses

SystemVerilog DPI features to communicate between SystemVerilog and SystemC and so can be used with any

simulator that provides support for the standard DPI (as defined in IEEE 1800-2012). It is essentially a library of

components that may be used to pass TLM1 and TLM-2.0 transactions between SystemC and SystemVerilog models.

It also includes a “UVM Command API” that provides synchronization of SystemC processes with UVM phases and

allows SystemC to raise and drop objections to prevent the current UVM phase from ending prematurely. It is intended

to be relatively simple to use (although it is expected that users have some knowledge of the SystemC, SystemVerilog,

UVM and TLM standards). It is well-suited to the application mentioned in the introduction (integrating an existing

SystemC TLM model into a UVM environment) since the UVM Connect features require only minor changes to the

existing code. A user guide, examples and compiler scripts for QuestaSim, Incisive and VCS are included in the

download (these currently only support Linux versions of the tools).

The first requirement for integration of SystemC and SystemVerilog TLM communication is to connect the

SystemC and SystemVerilog components. The UVM Connect library provides a set of connect and connect_hier

functions for this purpose. These functions are listed in Figure 2– note that the SystemVerilog requires differently

named parameterized functions for TLM1 and TLM-2.0 whereas SystemC can make use of overloaded function

templates. The lookup argument is a string that uniquely identifies the port/export:

The second requirement for SystemC and SystemVerilog TLM communication is convert the transaction class to

and from a stream format that can be used across the language boundary. The (optional) CVRT parameter in the

connect functions in Figure 2 refer to a converter class that performs this operation. TLM-2.0 transactions using a

generic payload (with no extensions) do not require a user-defined converter – UVM Connect provides built-in

converter that is automatically applied. In a UVM environment, transactions passed over TLM1 or analysis

ports/exports are often classes derived from the uvm_sequence_item base class. These classes will have inherited

virtual do_pack and do_unpack functions – providing a definition for these classes is all that is required to enable them

to work with UVM Connect. UVM provides a uvm_packer class that can be used within these functions to manage

packing and unpacking for commonly-used transaction member types. SystemVerilog classes that are not derived

from uvm_sequence_item require a custom converter class (derived from uvmc_converter) to be defined with static

do_pack and do_unpack functions. SystemC transaction classes also require a custom converter class. However, in

this case, the custom converter may be created as a template specialization of the uvmc_converter class for each

required SystemC transaction type, with overridden do_pack and do_unpack member functions.

To support synchronization between SystemC processes and UVM phases, the UVM Connect Command API

provides the methods shown in Figure 3. To enable the UVM Connect Command API layer, the top level

SystemVerilog module should call uvmc_init from an initial block.

V. OVERVIEW OF UVM-ML

The UVM-ML open architecture library has been developed by Cadence and like UVM-Connect, it is released

under an Apache 2 license. It also uses SystemVerilog DPI features to communicate between SystemVerilog and

SystemC and so can be used with any simulator that provides support for the standard DPI (as defined in IEEE 1800-

2012). However, it is intended to fulfill a more complex set of requirements than UVM Connect: it includes

frameworks for multiple languages together with associated adapters that manage the communication with its multi-

language backplane. A framework is the implementation of a verification methodology using a particular language,

for example UVM in SystemVerilog. An adapter provides the bridge between a framework and the multi-language

backplane, which allows multiple frameworks to communicate independently. Much of the code, documentation and

examples that make up UVM-ML is concerned with co-simulation of SystemVerilog and e. In this paper, we will only

be considering the features of UVM-ML that are related to co-simulation of SystemVerilog UVM and SystemC.

Whereas UVM Connect provides a mechanism to connect standard SystemC models to a SystemVerilog UVM

environment, UVM-ML provides a C++ implementation of various UVM classes that enable SystemC models to be

written as UVM components: classes derived from the uvm_component base class with member functions that are

automatically synchronized to the UVM phase scheduler. This requires a customized version of the ASI SystemC

uvmc_wait_for_phase(ph_name, UVM_PHASE_STARTED);

uvmc_raise_objection(ph_name, name(), "...");

uvmc_drop_objection(ph_name, name(), "...");

Figure 3 UVM Connect Synchronization Methods

SystemVerilog TLM-2.0
uvmc_tlm #(T, CVRT)::connect (port, lookup);

uvmc_tlm #(T, CVRT)::connect_hier (port, lookup);

SystemVerilog TLM1
uvmc_tlm1 #(T, CVRT)::connect (port, lookup);

uvmc_tlm1 #(REQ,RSP,CVRT_REQ,CVRT_RSP)::connect (port,lookup);

uvmc_tlm1 #(T, CVRT)::connect_hier (port, lookup); TLM1 uni

uvmc_tlm1 #(REQ,RSP,CVRT_REQ,CVRT_RSP)::connect_hier (port,lookup);

SystemC TLM1 and TLM-2.0
uvmc_connect (port, lookup);

uvmc_connect <CVRT> (port, lookup);

uvmc_connect_hier (port, lookup);

uvmc_connect_hier <CVRT> (port, lookup);

Figure 2 UVM Connect Functions

library (the source code is provided as part of the UVM-ML download). A SystemC hierarchy of these

uvm_component classes may be created within a SystemVerilog uvm_component hierarchy. It is also possible to use

the customized SystemC libraries provided with each supported simulator. However, this requires the top of the

SystemC hierarchy to be either an sc_module class or the sc_main function. To avoid C++ name conflicts, the UVM-

ML code uses two namespaces: uvm and uvm_ml.

The connection of ports and exports across the language boundary requires port registration functions in SystemC

and SystemVerilog. The registration functions provided by UVM-ML for standard TLM1 and TLM-2.0 connections

are given in Figure

A connect function must also be called in either SystemC or SystemVerilog to make the connection between ports

and exports or between initiator and target sockets: The connect function takes two string arguments that give the

hierarchical path name of each port/export/socket.

bit res = uvm_ml::connect("sys.prod.isocket",c.target_socket.get_full_name()); //SV

uvm_ml::uvm_ml_connect("sys.u.my_outport" , sc_env.cons.my_export.name ()); //SC

UVM-ML provides automatic conversion between SystemC and SystemVerilog for TLM-2.0 transactions using the

standard tlm_generic_payload class. TLM1 transaction classes are derived from the uvm_object base class (in both

SystemC and SystemVerilog). Each TLM1 transaction class should provide an overridden do_pack and do_unpack

function. The SystemC implementation of the uvm_packer class has overloaded streaming operators (<< and >>) for

primitive and common types (e.g. vector<int>) as well as for standard SystemC data types.

When using the UVM-ML SystemC library, a call to the wait function in a SystemC process will automatically

synchronize the SystemC time with the SystemVerilog time. If a different SystemC library is used, explicit

synchronization between the SystemC and SystemVerilog frameworks can be achieved by calling the

uvm::synchronize function from within a SystemVerilog process – this broadcasts the current time to the other

frameworks

VI. INTEGRATION OF TLM1

This section compares the implementations of a mixed SC-SV TLM1 producer-consumer model in UVM Connect

and UVM-ML. The producer is a SystemC model while the consumer is a SystemVerilog UVM component. Since

our main focus here is on the mechanism for passing transactions between SystemC and SystemVerilog, we have

simplified the model by omitting other components that would usually be found in a typical UVM environment (e.g.

drivers, sequencers, monitors, etc). The model architecture is shown in Figure 6. To highlight the differences between

UVM Connect and UVM-ML, we have built and run the code on the same simulator – in this case Mentor Graphics

QuestaSim version 10.4b running on a specially created virtual machine with a standard version of CentOS Linux 7

64-bit installed. The version of UVM Connect used for the tests was uvmc-2.3.0 with UVM 1.1d. It was compiled

using the Makefile supplied in the download. The version of UVM-ML was 1.5.1 with UVM 1.1d and SystemC 2.3.0

(we used the version supplied with UVM-ML since we could not get the “portable” adapter and the QuestaSim version

of SystemC to work together correctly).

SystemVerilog TLM-2.0
uvm_ml::ml_tlm2 #(T)::register(socket);

SystemVerilog TLM1
uvm_ml::ml_tlm1#(T1,T2)::register(port,T1_name,T2_name);

uvm_ml::ml_tlm1#(T1,T2):register_directed(port,dir,T1_name,T2_name);

SystemC TLM-2.0
ml_tlm2_register_initiator(this,socket,i_socket_name,this_name);

ml_tlm2_register_target(this,socket,t_socket_name,this_name);

SystemC TLM1
uvm_ml::uvm_ml_register(&port);

Figure 4 UVM-ML register functions

The significant features of the SystemC producer used with UVM Connect are illustrated by the code in Figure 5.

Note that the transaction class trans_t is not derived from any “special” class and that it includes a vector. The

translation of transactions to and from a format that can cross the language boundary is performed by the do_pack and

do_unpack functions respectively which are static members of the template specialization of the built-in

uvmc_converter class. A template specialization of uvmc_converter must be defined for each type of transaction that

will be used with UVM Connect but this is easily done since the uvmc_packer class has overloaded streaming

operators that allow packing/unpacking of each type in trans_t (including the vector). The producer run function calls

the TLM put task provided by its tlm_blocking_put_if port to send a series of transactions to the consumer.

Figure 6 Demonstration TLM1 Model Architecture

#include "uvmc.h"

enum dir_t { READ, WRITE };

class trans_t {

public:

 int addr;

 std::vector<unsigned char> data;

 dir_t dir;

};

class producer : public sc_core::sc_module {

 public:

 sc_core::sc_port<

 tlm::tlm_blocking_put_if<trans_t> >

 put_port;

 producer (sc_core::sc_module_name nm) :

 put_port("put_port") {

 SC_THREAD(run_proc);

 }

 SC_HAS_PROCESS(producer);

 void run() {

 trans_t * t;

 sc_core::wait(10, SC_NS);

 t = new trans_t;

 for (int i = 0; i < 8; i++) {

 ...

 put_port->put(*t);

 }

 }

 void run_proc() {

 uvmc_raise_objection("run");

 run();

 uvmc_drop_objection("run");

 }

};

template <>

struct uvmc_converter<trans_t> {

 static void do_pack(const trans_t &t,

 uvmc::uvmc_packer &packer){

 packer << t.addr << t.data << t.dir;

 }

 static void do_unpack(trans_t &t,

 uvmc::uvmc_packer &packer){

 packer >> t.addr >> t.data >> t.dir;

 }

};

int sc_main(int argc, char* argv[])

{

 producer producer1("producer1");

 uvmc::uvmc_connect(producer1.put_port,

 "put_port");

 sc_start();

 return 0;

}

Figure 5 UVM Connect SystemC producer

The producer run_proc thread raises an objection in the UVM run phase before calling a run function. When the

run function returns, run_proc drops the objection which allows the UVM phase scheduler to move on to the next

phase and end the simulation. The run and run_proc functions could have been combined into a single function but

keeping them separate is an easier approach when reusing an existing SystemC model : run_proc is the only part of

the producer class that depends on UVM Connect.

The SystemVerilog code for the UVM Connect consumer is given in Figure 7. Note that the transaction class is

derived from uvm_sequence_item and has overridden do_pack and do_unpack (here we are using macros provided

by UVM for packing and unpacking but we could have alternatively called the corresponding uvm_packer

pack_*/unpack_* functions). The put_export member of the consumer class is a uvm_blocking_put_imp. This places

a requirement on the consumer to provide an implementation of the put task. The trans_t and consumer class are

standard UVM code. The UVM Connect features are used in the test that instantiates the consumer and the top level

model. The connect_phase function in the test calls the UVM Connect uvmc_tlm1 #(T)::connect function to connect

the consumer’s put_export to the SystemC producer port. The parameter T is trans_t (the type of transaction) and the

function string argument matches the name given to the producer’s port when it was created. An initial block in the

import uvm_pkg::*;

`include "uvm_macros.svh"

class trans_t extends uvm_sequence_item;

 `uvm_object_utils(trans_t)

 typedef enum {READ,WRITE} dir_t;

 rand int addr;

 rand byte data[$];

 rand dir_t dir;

 function new(string name="");

 super.new(name);

 endfunction: new

 virtual function void do_pack(

 uvm_packer packer);

 `uvm_pack_int(addr)

 `uvm_pack_queue(data)

 `uvm_pack_enum(dir)

 endfunction: do_pack

 virtual function void do_unpack(

 uvm_packer packer);

 `uvm_unpack_int(addr)

 `uvm_unpack_queue(data)

 `uvm_unpack_enum(dir, dir_t)

 endfunction: do_unpack

endclass: trans_t

class consumer extends uvm_component;

 uvm_blocking_put_imp #(trans_t,consumer)

 put_export;

 `uvm_component_utils(consumer)

 function new(string name,

 uvm_component parent=null);

 super.new(name,parent);

 put_export = new("put_export", this);

 endfunction

 task put (trans_t p);

 ...

 endtask

endclass

import uvm_pkg::*;

import uvmc_pkg::*;

`include "uvm_consumer.sv"

class my_test extends uvm_test;

`uvm_component_utils(my_test)

function new(string name,

 uvm_component parent);

 super.new(name,parent);

endfunction

consumer cons;

function void build_phase(uvm_phase phase);

 cons = consumer::type_id::create(

 "cons",this);

endfunction

function void connect_phase(

 uvm_phase phase);

 uvmc_tlm1 #(trans_t)::connect(

 cons.put_export, "put_port");

endfunction

endclass: my_test

module topmodule;

initial begin

 uvmc_init();

end

initial begin

 run_test("my_test");

end

endmodule

Figure 7 UVM Connect SystemVerilog consumer

topmodule calls the UVM Connect uvmc_init function to enable the synchronization features in the SystemC model

(a call to wait and raising/dropping objections).

The UVM-ML code for the SystemC transaction, producer and top level is given in Figure 8. The first thing to

notice about this example is that it includes the uvm.h and uvm_ml.h header files which allows the SystemC code to

look much more like regular UVM! The transaction class is now derived from uvm_object while the producer is

derived from uvm_component. Also notice the UVM_OBJECT_UTILS and UVM_COMPONENT_UTILS macros –

UVM-ML includes a “factory” for creating objects and components which can be overridden just as in the standard

version of UVM (although we are not using any of those features here). The SystemC UVM-ML uvm_object class

has pure virtual do_pack, do_unpack, do_print, do_copy and do_compare functions so overriding them in our

transaction class is mandatory. The uvm_packer class in UVM-ML overloads the streaming operators in a similar way

to UVM Connect. The UVM_OBJECT_REGISTER macro that is called for the transaction class registers the type

#include "uvm.h"

enum dir_t { READ, WRITE };

class trans_t : public uvm::uvm_object {

public:

 UVM_OBJECT_UTILS(trans_t)

 trans_t() {

 data.reserve(8); //allocate space

 }

 int addr;

 std::vector<unsigned char> data;

 dir_t dir;

 virtual void do_pack(

 uvm::uvm_packer &packer) const {

 packer << addr << data << dir;

 }

 virtual void do_unpack(

 uvm::uvm_packer &packer) {

 int i;

 packer >> addr >> data >> i;

 dir = static_cast<dir_t>(i);

 }

 virtual void do_print(ostream& os) const {

 ...

 }

 virtual void do_copy(

 const uvm::uvm_object* rhs) {

 ...

 }

 virtual bool do_compare(

 const uvm::uvm_object* rhs) const {

 ...

 }

};

UVM_OBJECT_REGISTER(trans_t)

class producer : public uvm::uvm_component {

public:

sc_core::sc_port<

 tlm::tlm_blocking_put_if<trans_t> >

 put_port;

producer(sc_core::sc_module_name nm) :

 uvm_component(nm),

 put_port("put_port") { }

 UVM_COMPONENT_UTILS(producer)

void run() {

 trans_t * t;

 sc_core::wait(10, SC_NS);

 ...

 put_port->put(*t) ... }

 };

#include "uvm_ml.h"

class sctop : public sc_core::sc_module {

public:

 producer prod;

 sctop(sc_core::sc_module_name nm) :

 sc_module(nm), prod("prod") {

 uvm_ml::uvm_ml_register(&prod.put_port);

 }

 void before_end_of_elaboration() {

 uvm_ml::uvm_ml_connect(

 prod.put_port.name(),

 "svtop.consumer.put_export");

 }

};

int sc_main(int argc, char** argv) {

 return 0;

}

UVM_ML_MODULE_EXPORT(sctop)

UVM_COMPONENT_REGISTER(producer)

Figure 8 UVM-ML SystemC producer

name with the UVM-ML backplane so that the corresponding SystemVerilog class can be accessed when the

transaction is passed to the SystemVerilog framework.

The top level module constructor instantiates the producer and calls uvm_ml_register (to give UVM-ML access to

the producer’s port). Before the end of elaboration, it calls uvm_ml_connect to connect the producer port to the

consumer export. The sc_main function is required by QuestaSim in order to build the SystemC framework but it does

not instantiate the top level module or call sc_start (since the simulation will be run under the control of the

SystemVerilog framework).The top level module and the producer component are registered with UVM-ML by

calling the UVM_ML_MODULE_EXPORT and UVM_COMPONENT_REGISTER macros respectively.

The UVM-ML SystemVerilog consumer and top level are shown in Figure 9. The transaction class and consumer

are standard UVM and are exactly the same as for the UVM Connect example. The svtop component creates the

consumer in the build phase and then registers the consumer’s export with UVM-ML at the end of the build phase (in

the phase_ended callback function). The top level module sets up an array containing the names of the top level

SystemC and SystemVerilog components. This is then passed as the first argument to the uvm_ml_run_test task to

start the simulation. Note that the UVM run_test task is not called! UVM-ML automatically raises and drops objections

around the SystemC component’s run thread so no explicit raising or dropping of objections are required in this simple

example. If the run_phase of the SystemVerilog components also raised and dropped objections, regular calls to

uvm_ml::synchronize would be required from System,Verilog to ensure the simulation time in both frameworks

remained in step.

We compiled the UVM Connect and UVM-ML versions of the producer-consumer model and ran simulations for

each one under the same conditions. On comparing the results, we found the behavior for both was the same.

import uvm_pkg::*;

`include "uvm_macros.svh"

class trans_t extends uvm_sequence_item;

 typedef enum {READ,WRITE} dir_t;

 rand int addr;

 rand byte data[$];

 rand dir_t dir;

 `uvm_object_utils(trans_t)

 ...

endclass

class consumer extends uvm_component;

 uvm_blocking_put_imp #(trans_t, consumer)

 put_export;

 `uvm_component_utils(consumer)

 ...

endclass

import uvm_pkg::*;

`include "uvm_macros.svh"

 import uvm_ml::*;)

class svtop extends uvm_env;

 consumer cons;

 `uvm_component_utils(svtop)

 function void build_phase(uvm_phase phase);

 cons = consumer::type_id::create(

 "consumer", this);

 endfunction

 function void phase_ended(uvm_phase phase);

 if (phase.get_name() == "build") begin

 uvm_ml::ml_tlm1#(trans_t)::

 register(cons.put_export);

 end

 endfunction

endclass

module topmodule;

initial begin

 string tops[2];

 tops[0] = "SC:sctop";

 tops[1] = "SV:svtop";

 uvm_ml_run_test(tops, "");

end

endmodule

Figure 9 UVM-ML SystemVerilog consumer

VII. INTEGRATION OF TLM-2.0

A mixed SC-SV loosely-timed or untimed TLM-2.0 initiator-target model will use the blocking transport interface

to pass transactions. Note that while the standard SystemC initiator and target sockets support both blocking and non-

blocking transport, UVM sockets are either blocking or non-blocking – you cannot call b_transport and nb_transport

throught the same UVM socket. The TLM1 producer-consumer model from the previous section can be converted to

a TLM-2.0 version by replacing the blocking put port and blocking put export with a tlm_initiator_socket and a

uvm_tlm_b_target_socket respectively. The transaction class will be replaced by tlm_generic_payload

/uvm_tlm_generic_payload. Conversion between SystemC and SystemVerilog generic payload transactions is

managed automatically by both UVM Connect and UVM-ML – it is not necessary to write functions such as do_pack

or do_unpack.. It is important to understand that the contents of a generic payload are managed differently in a mixed

SC-SV environment compared to a pure SystemC one. As discussed in section II, the SystemC and SystemVerilog

UVM implementations of the generic payload are slightly different. Further, it is not legal to pass a reference to

memory allocated by SystemC to SystemVerilog, or vice-versa. Therefore, whenever a generic payload gets passed

across the language boundary, its contents must be copied to a different transaction object. With blocking transport in

both UVM Connect and UVM-ML, the payload is copied from the initiator to the target at the start of the transaction

and is then copied back from the target to the initiator at the end of the transaction – neither the initiator that calls

b_transport or the target that implements b_transport need to be aware that the payload content has been copied.

The other changes that need to be made to convert the producer-consumer to TLM-2.0 is to replace the TLM1

connect and register functions given in Figure 2 and Figure 4 with the corresponding TLM-2.0 ones (we are not

showing the code here due to lack of space).

Converting the producer-consumer example to use non-blocking transport could become far more complicated!

Firstly, the TLM standard requires non-blocking transport to use a memory manager to allocate the memory for each

payload object (usually from a managed “memory pool”). Secondly, the base protocol means a transaction could

potentially consist of up to four phases. Each phase is associated with a corresponding call to nb_transport_fw or

nb_transport_bw. The payload object may therefore have to be copied between the initiator and target, along the

forward and backwards path, multiple times during each transaction. Each payload object must be returned to the

memory pool when the transaction is complete, but not before. Great care is required when implementing the initiator

and target to make sure the content and lifetime of the payload is managed correctly!

VIII. LIMITATIONS

UVM Connect and UVM-ML do not support the entire SystemC TLM1 and TLM-2.0 interfaces. Features such as

the Direct Memory Interface would not be legal between SystemC and SystemVerilog. Other limitations appear to be

a result of each vendor prioritizing their development efforts and concentrating on the features which they believe are

most likely to be of interest to users: For example, UVM-ML does not support the use of generic payload transactions

for TLM1 interfaces or hierarchical SystemC exports bound to a SystemVerilog port; while UVM Connect does not

support instance-specific extensions of the generic payload.

A feature that is commonly used in approximately-timed SystemC simulations is the “payload event queue”. This

is a mechanism that simplifies the code for managing dynamic processes associated with multiple, overlapping

transactions (such as may be found with an AXI bus model). The payload event queue is part of the SystemC standard

(even though the language reference manual classifies it as one of the “TLM-2.0 utilities)” but it is not directly

supported by either UVM Connect or UVM-ML. However, we found that it is still possible to include a payload event

queue on the SystemC side, although it was necessary create a clone of the returned transaction data (using

deep_copy_from) within nb_transport_bw before putting the transaction in the payload event queue. On the

SystemVerilog side, we had to write code to create copies of pending transactions and to schedule each associated

processes using uvm_event::p_trigger.

IX. CLOSER INTEGRATION OF SYSTEMVERILOG AND SYSTEMC

The proposed UVM-SystemC library provides an interesting addition to the field of mixed SystemC-SystemVerilog

simulation. UVM-SystemC provides a SystemC implementation of the core classes in the UVM library. This should

make it easier to package a SystemC model as UVM verification IP (the term “Universal Verification Component” or

UVC is often applied to such models). As with UVM-ML, UVM-SystemC includes a phase scheduler to ensure that

component phase methods are called in the correct sequence, taking into account their position in the component

hierarchy. The build_phase and connect_phases are called before the SystemC scheduler initializes and runs the

simulation (while its status is still SC_ELABORATION) to enable deterministic configuration of components.

While UVM-SystemC describes a pin-level interface (sc_signal<T>) for RTL-level connections it does not

currently address the issues of synchronizing phases and passing transactions between SystemC and SystemVerilog

UVM models (although it does provide an implementation of the uvm_packer class and streaming operators for

do_pack and do_unpack). In fact, the initial release does not include any support for TLM-2.0 (primarily to avoid the

inconsistencies between the UVM version and the SystemC standard). Synchronization and passing TLM-2.0

transactions between UVM-SystemC and SystemVerilog UVM will therefore still require the use of an additional

library such as UVM Connect or UVM-ML. Since UVM-ML and UVM-SystemC define many of the same classes

and both also use a “uvm” namespace, care would be required in building an application that used both libraries to

avoid compiler name clashes or linker errors.

A standard solution to synchronization and transaction passing between SystemC and SystemVerilog TLM models

might come from the ASI Multi-Language working group. This group has been looking at the issues of multi-language

UVM and TLM models since 2012. It has generated a list of requirements and spawned a sub-group to work on a

“skeleton” code implementation. However, at the time of writing (early 2016) there has been little other visible activity

recently within the main group.

X. CONCLUSIONS

UVM Connect and UVM-ML both provide portable solutions for passing transactions between SystemC and

SystemVerilog using SystemVerilog simulators from the three major EDA vendors. It is no longer necessary to create

your own solution based on DPI and strings! We used Mentor Graphics QuestaSim for the examples presented here

but it should be possible to re-run them on other vendors’ tools by making only slight changes to the top level SystemC

and SystemVerilog modules. Both UVM Connect and UVM-ML come with multiple examples showing how to do

this.

We found that when connecting an existing SystemC model to a UVM environment, it was easier to get everything

built and working correctly with UVM Connect since it only required us learning how to use a few basic constructs.

On the other hand, UVM-ML was more complicated to learn but allowed us to create SystemC models in the same

style as regular UVM, so in that sense it is more like UVM-SystemC. If you also need to include e code in your UVM

environment, UVM-ML would be the obvious choice since it was specifically designed to support SystemVerilog,

SystemC and e flavors of UVM!

Documentation, examples and scripts are provided with both UVM Connect and UVM-ML. There are also on-line

tutorials for UVM Connect. However, we found that building the libraries and running the examples was still quite

challenging (compared to installing the standard SystemC or UVM libraries). Building the UVM-ML library with

QuestaSim was considerably more complicated than building UVM Connect (even taking into account that you would

naturally expect Mentor’s UVM Connect to be easier to build with the Mentor simulator). Extra attention was needed

during the UVM-ML build to make sure the environment was set correctly and that the correct versions of SystemC

and UVM were included. We would recommend that Cadence Incisive users wishing to investigate UVM-ML should

use the version of the library that is part of their Incisive installation rather than attempting to build it for themselves.

REFERENCES
[1] http://forums.accellera.org/files/file/92-uvm-connect-a-systemc-tlm-interface-for-uvmovm-v22/
[2] http://forums.accellera.org/files/file/65-uvm-ml-open-architecture/

[3] “UVM-SystemC language reference manual – draft”, December 2015.

[4] J. Aynsley, “SystemVerilog meets C++: Re-use of existing C/C++ models just got easier”, DVCon, 2010,
[5] “IEEE Standard for Standard SystemC Language Reference Manual”, IEEE Std 1666-2011, January 2012

