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This paper details some of the key features and frustrations of using the package construct in 
SystemVerilog.  The package construct is compared to similar features in other languages such as 
the identically named construct in VHDL and namespaces in C++.  Valuable lessons learned over 
the course of multiple projects in the development of verification environments are described, and 
the paper makes recommendations for basic DOs and DONTs for SystemVerilog package use. The 
theme of code reusability is always important, and tips on how packages can be used to achieve this 
are discussed. 

Users of languages such as VERA, which does not have the package construct, are more 
accustomed to using include files, which provide some but not all the features packages provide.  
The paper discusses why the continuance of this approach, while possible in SystemVerilog, is not 
recommended and why the package construct is superior.  

Finally, the paper discusses how SystemVerilog allows packages and classes to be mixed in 
interesting ways not seen in other languages. 

 

I. INTRODUCTION 
The package construct is one of the many incremental 
improvements added to SystemVerilog that Verilog notably 
lacked.  With its introduction, all users of SystemVerilog, from 
RTL designers to verification engineers, now have an 
encapsulation mechanism that VHDL users have had for many 
years.  Since SystemVerilog also added the class data type 
many interesting usage models for packages are possible as a 
consequence, some of which are not applicable to VHDL since 
VHDL does not provide classes. 

This paper is divided into three sections.  The first summarizes 
the properties of the package construct, highlighting important 
features that underpin the rationale for using packages.  Similar 
constructs in other languages, such as VHDL packages and 
C++ namespaces are discussed and compared.  Important 
changes to the semantics of the construct made between IEEE 
1800-2005 [1] and 1800-2009 [2] that are of interest to 
verification engineers are highlighted. 

The second section describes practical issues that arise from 
the deployment of SystemVerilog verification environments.  
Problems that we have encountered in recent projects are 
described and the pros and cons of various solutions discussed.  
The last section explores advanced things one can achieve with 
packages.  The discussion centres on how packages and classes 
can be used together to implement common design patterns, 
solving problems such as bridging hierarchical boundaries. 

II. PROPERTIES OF SYSTEMVERILOG PACKAGES 
SystemVerilog (SV) packages are a top-level design element 
that provides an encapsulation mechanism for grouping 
together data types (including classes), tasks/functions, 
constants and variables.  Additionally, assertion related 
constructs such as sequences and properties can be 
encapsulated, which is of particular interest to verification 
engineers.  Once encapsulated into a named package, the 
contents are available for use in other design elements (such as 
modules, programs, interfaces or other packages) irrespective 
of module or class hierarchy. 

Surprisingly, this construct is unavailable to Verilog (1364-
1995 and 1364-2001) users, who often resort to using modules 
to emulate package behaviour.  Modules also serve as an 
encapsulation mechanism, and when left uninstantiated, 
become a top-level module whose contents are accessible 
through hierarchical reference.  It is common in FPGA libraries 
to have global definitions and/or variables, and it is informative 
to note that the VHDL version of these libraries use the 
package construct while the equivalent library in Verilog uses 
modules [6].  Caution must be exercised to ensure that the 
module must never be instantiated more than once since 
variables encapsulated inside will then exist multiple times.  
The use of packages avoids this problem, since packages are 
not instantiated, thereby guaranteeing that all variables inside 
are singletons (with exactly one instance in existence). 

Packages can be considered as stand-alone elements, dependent 
only on other packages and not on anything in the context they 
are used.  Thus, they can be compiled separately into libraries 
of functionality, pulled in only when required.  One can view 
this to be conceptually equivalent to how ‘C’ libraries are 



organised and used.  This stand-alone property means that code 
inside packages cannot contain hierarchical references to 
anything outside the package, including the compilation unit.  
Other encapsulation mechanisms such as modules and classes 
do not require this, so a module/class meant to be reusable 
must rely on the discipline of the writer to avoid these external 
dependencies.  Thus packages represent a much better 
mechanism for encouraging reuse, since external dependencies 
are explicitly disallowed and checked at compile-time.  Users 
of purchased verification IP should insist that their vendors 
provide the IP in the form of a package. 

While the stand-alone property of packages may make it seem 
that it is impossible to tightly integrate outside code with 
package code, this is not the case.  By using callbacks and 
abstract base classes, this is possible.  A subsequent section 
describes this further. 

SV packages were inspired by and share many commonalities 
with similar constructs in other languages.  Namespaces in 
C++ are similar, providing a scope for encapsulating 
identifiers.  Explicit access is given through the :: scope 
operator, identical in both SV and C++.  Importation of 
namespace symbols in C++ with the using keyword mirrors the 
use of the import keyword in SV.  A notable difference is that 
nested C++ namespaces can be hierarchically referenced using 
multiple :: operators.  A user which imports a SV package, 
top_pkg, which imports another package, bottom_pkg, does not 
automatically have access to any of the symbols in bottom_pkg, 
and access through multiple :: operators is not possible.  This 
lack of package “chaining”, and the closely related export 
statement, is described in more detail in a subsequent section. 

VHDL packages also share many common features with SV 
packages.  One notable feature of packages in VHDL absent in 
SV is the explicit separation of the package header and body.  
The header represents the publically visible interface to the 
package, giving access to type definitions and function 
prototypes.  The body implements the various functions 
described in the header, and are invisible and irrelevant to the 
user. 

SystemVerilog allows the collection of files defining a 
simulation to be broken into compilation units, the definition of 
which is implementation dependent.  This is often a function of 
the compile strategy implemented by the tool, with an “all-in-
one” command line defining one large compilation unit for all 
files, and an “incremental-compile” strategy defining 
compilation units on a per file basis.  Various issues ranging 
from visibility to type compatibility are linked to compilation 
units, leading to unpleasant surprises when switching compile 
strategies.  Using packages avoids this problem, since the rules 
of visibility and type compatibility surrounding package items 
are independent of compilation unit.  The problems described 
later in III-E do not occur when packages are used. 

III.  PRACTICALITIES IN PACKAGE USE 
Over the past several years, we have deployed SV 
environments using packages in multiple projects.  With each 
passing project, lessons learned from the previous mistakes 
refine the implementation choices made going forward.  This 
section discusses some selected lessons from this experience. 

A. COMPILE PACKAGES BEFORE USE.  While this may sound 
obvious, it is sometimes not as trivial as it seems.  Nicely 
written packages are good reuse candidates and may be 
referred to by other packages, bringing up the issue of inter-
package dependencies.  Large projects typically have many 
packages with complex inter-dependencies, with some 
packages reused from other projects and others reused from 
block to cluster to chip level environments.  The mechanism 
which controls how all the files for a particular simulation are 
compiled, be it one file at a time, or all files together, must 
infer the dependency structure of the packages and generate an 
appropriate compile order.  This is most easily done by a tree 
graph with each node representing a package.  From the 
resultant tree, the packages furthest away from the root must be 
compiled first.  As the project evolves, careless modifications 
can lead to the formation of circular dependencies, resulting in 
no suitable compile order.  This is most likely to occur in 
projects with a large set of packages and multiple environments 
that use different subsets of packages. 

The following guidelines are suggested to minimize the chance 
of circular dependencies among packages as well as promote 
better reuse. 

- Prefer smaller packages to larger ones. 
- Don’t let the entire team modify packages. 
- Adequately document the contents of every package 

and what each package item does.  It is also 
important to document which projects and 
environments use a particular package. 

- Categorize packages into two types: those reused 
from other projects, and those reused from block to 
cluster to chip levels. 

Finer grained package structuring reduces the possibility of 
unintended dependencies.  Packages designed to be reused over 
multiple projects should be as flat and dependency free as 
possible.  This allows re-users of the package to not pull in 
additional dependencies, which may cause problems.  A typical 
package structure involves separate packages for each block 
level, which are brought together to form packages for higher-
level environments.  The direction of reuse should start from 
block environments and move upwards.  Monolithic 
environments are particularly at risk of introducing downward 
dependencies as code evolves, creating potential circular 
dependencies. 

When circular compile dependencies do occur, they can be 
resolved by repartitioning code between packages.  The 
extreme solution of creating one huge package, guaranteed to 
have no circular compile dependencies, is always an option if 
one gets desperate. 

B. IMPORTING PACKAGES.  The easiest way to use packages is 
through a wildcard import, with the “import pkg::*” statement. 
This gives the importing scope access to all identifiers inside 
the package without having to use explicit imports for each 
desired identifier, or prefixing each identifier with the package 
name.  While the latter two methods of package use are legal, 
they can be overly verbose and unpractical.  Prefixing at each 
use has the added disadvantage of making it difficult to quickly 
determine package dependencies.  Thus, using wildcard 
imports while understanding their disadvantages is the most 
practical strategy.  These disadvantages are discussed below. 



When a package is wildcard imported, the importer’s 
namespace is widened to include every possible symbol from 
the package, even the undesired ones, or the ones that the 
package designer had no intention of making externally visible.  
Noteworthy is that the labels of enumerated types are also 
added.  Thus, special care must be made to avoid naming 
conflicts, when possible.  This is sometimes difficult with 
packages containing a lot of code, or where the code has been 
split out into multiple sub-files. 

Purchased IP may be in package form, but encrypted, meaning 
that the user has no way of knowing what a wildcard import 
will bring.  When the user imports multiple packages, the risk 
of naming conflicts between the various packages or with the 
importing scope is even higher.  While naming conflicts are 
legal in some situations, the rules defining how these are 
resolved are lengthy and complex.  Following a naming 
convention using reasonable and relatively unique names can 
greatly reduce the changes of naming conflicts, thus avoiding 
the task of having to learn SV’s name resolution rules. 

The question of whether package symbols are chained is 
specifically addressed in SV-2009, but not mentioned in the 
earlier SV-2005 LRM.  This has led to the unfortunate situation 
of diverging behaviour between different simulation tool 
implementations.  One tool disallows package chaining by 
default, consistent with SV-2009 rules, while another tool 
automatically chains all symbols.  The export statement added 
in SV-2009 was meant to give package designers explicit 
control on which symbols are chained and visible to importers 
of the higher-level package.  The code example below 
illustrates how the two tools described above are divergent. 

package bottom_pkg; int foo; endpackage 
 
package top_pkg; 
  import bottom_pkg::*; 
`ifndef VCS 
  export bottom_pkg::*; 
`endif 
  int bar; 
endpackage 
 
module importer; 
import top_pkg::*; 
  initial 
    begin 
    foo = 1;         // from bottom_pkg 
    bar = foo + 2; 
    end 
endmodule 

Note that the tool that automatically chains all the symbols 
from bottom_pkg also does not support the export statement.  
In effect, the export is automatically implied, whereas the LRM 
requires the statement to be explicitly present for chaining to 
occur. 

The export statement, together with the use of a wrapper 
package, can fine tune and control exactly what is to be 
externally visible.  This technique further mitigates the side 
effects of wildcard imports.  SV packages have no explicit 
mechanism to define certain symbols as private (e.g., through 
the use of the local keyword as a modifier), and the wrapper 
technique is an alternative to overcome this fact.  These 
wrappers can be tailored to each use case, on a per project or 

per environment basis.  The use of wrappers on unfamiliar or 
encrypted package contents can be viewed as a safety 
precaution. 

C. USING SUB-INCLUDES.  When many large classes are defined 
in a package, the sheer amount of code can lead to very large 
and difficult to maintain files.  It is tempting to separate the 
package contents into multiple files, then have the package 
definition consist simply of a list of `include statements.  This 
solution is seen often, but several dangers need to be managed, 
discussed below. 

By separating package code out into other files, the original 
context can be easily forgotten.  Allowed dependencies owing 
to the fact that multiple files make up the compilation unit, as 
well as disallowed ones are not readily evident. A further 
problem is that the file could be included in multiple places, 
resulting in several packages with the same definition.  These 
packages could then be used together, causing problems at 
import.  Specifically, identical type definitions included into 
two different packages may not be compatible.  One must 
remember that with packages, it is no longer required or 
appropriate to implement reuse at the file level using `include 
statements. 

The context loss problem can be easily addressed by having a 
clear warning comment at the top of the file indicating that 
only the intended package may include the file.  An example is 
shown below. 

file: my_huge_pkg.sv 

package my_huge_pkg; 
  `include "my_class1.svh" 
  `include "my_class2.svh" 
endpackage 

file: my_class1.svh 

// WARNING: 
// This file is meant to be used only by 
// “my_huge_pkg.sv”.  DO NOT directly include 
// in any other context. 
class my_class1; 
  ... 
endclass 

A more robust mechanism, for people who don’t read 
comments, is to use an #ifdef check with an #error clause to 
trigger an immediate compilation error in cases of unintended 
inclusion.  Modelled after the mechanism used by ‘C’ include 
files, the main package file would define a unique pre-
processor symbol, then include the various sub-files.  Each 
included file would check that the symbol is defined and 
trigger an error if it is not.  The previous example, modified to 
incorporate this, is shown below. 

file: my_huge_pkg.sv 

package my_huge_pkg; 
  `define _IN_MY_HUGE_PKG_ 
  `include "my_class1.svh" 
endpackage 

 
 
 
 
 
 
 



file: my_class1.svh 

`ifndef _IN_MY_HUGE_PKG_ 
** ERROR     ERROR      ERROR 
** This file is meant to be used only by 
** “my_huge_pkg.sv”.  DO NOT directly include 
** in any other context. 
`error “SV doesn’t have this” 
`endif 
class my_class1; 
   ... 
endclass 

Since the SV pre-processor does not have the `error directive, 
inserting text which will cause a compile syntax error can be 
used to do the same thing. 

D. THE PARAMETER PROBLEM.  Parameters can be used to 
define constants.  They can also be used to facilitate generic 
programming, where the parameterized values can be varied.  
The usage of constant parameters in packages is problem free 
and a recommended replacement for pre-processor `defines for 
constants.  This effectively gives a namespace to constants and 
avoids the potential problem of multiple (and/or conflicting) 
pre-processor symbols in the same compilation unit. 

The second usage, for generic programming, causes a serious 
problem when used in the context of a package.  When a 
function defined in a package uses a parameter, one might 
think a template function is defined.  However, since packages 
are not instantiated, there is no way to vary the parameter to 
create different specializations of the function.  The example 
below shows the problem for both type and value parameters.  
The same function defined in a module does not suffer this 
problem, since many instances of the modules may be created, 
with varying parameterizations. 

package utils_pkg; 
  parameter type T = int; 
  typedef T T_list[]; 
 
  // extend ‘n’ samples right 
  // extend ‘m’ samples left 
  function T_list dwt_extend(T sin[],int n,m); 
    T sout[$] = sin; 
    int unsigned size = sin.size(); 
    for (int i=0; i<m; i++) 
      sout = {sout[2*i+1], sout}; 
    for (int i=1; i<=n; i++) 
      sout = {sout, sout[$-(2*i)+1]}; 
    return sout; 
  endfunction 
 
parameter win = 8; 
localparam wout = win+1; 
  function void do_rct( 
    input bit signed[win:1] rgb[3], 
    output bit signed[wout:1] ycbcr[3]); 
  endfunction 
endpackage 
 

To overcome this problem, a static class can be used to wrap 
the function.  The class can be parameterized, and access to the 
function is through the class resolution operator along with the 
parameterization.  This, however, leads to unsynthesizable 
code, a problem if the code is to be used for RTL design.  We 
have found that this problem occurs often in modelling 
mathematical algorithms meant for a DSP where the bit-depth 

of the operands is parameterized.  An example of the solution 
is shown below. 

package utils_pkg; 
  virtual class colour_trans#(int win=8); 
  localparam wout = win+1; 
  static function void do_rct( 
    input bit signed[win:1] rgb[3], 
    output bit signed[wout:1] ycbcr[3]); 
  endfunction 
  endclass 
endpackage 

 

import utils_pkg::*; 
initial 
  begin 
  bit signed [18:1] rgb[3]; 
  bit signed [19:1] ycbcr[3]; 
  colour_trans#(18)::do_rct(rgb, ycbcr); 
  end 

 
E. DEFINING CLASSES AT TOP-LEVEL.  Class definitions may 
appear in various design elements, but packages remain by far 
the best place for classes.  Alternatives such as modules or 
program blocks suffer from problems such as poor accessibility 
or reusability issues due to hierarchical references. 

Users with a VERA background often do not appreciate the 
multitude of choices where classes may be defined.  In VERA, 
all classes are typically defined in separate files, included when 
required and exist in a single global scope — in other words, 
“floating” at top-level.  The code example below illustrates 
this, with each box representing a separate file and compile. 

class logger { 
  integer curr_sev; 
  task put_msg(integer lvl, string msg); 
} 
task logger::put_msg(integer lvl, string msg) 
{  ...  } 
 

#include "logger.vrh" 
class ahb_trans { 
  logger log_obj; 
  task new(logger l) { log_obj = l; } 
} 
 

#include "logger.vrh" 
#include "ahb_trans.vrh" 
class ahb_write_trans extends ahb_trans { 
  task new(logger l) { super.new(l); } 
} 
 

#include "logger.vrh" 
#include "ahb_trans.vrh" 
#include "ahb_write_trans.vrh" 
program top { 
  logger log_obj; 
  ahb_trans       a1; 
  ahb_write_trans a2; 
  log_obj = new; 
  a1 = new(log_obj); 
  a2 = new(log_obj); 
} 

 
While an equivalent structure is possible in SV, this usage style 
is not recommended.  Not only are these potentially non-



reusable, the rules governing such structures (compilation-
units) have changed between SV-2005 and SV-2009. 

When class (or other) definitions do not appear in a module, 
package or program block scope, these “floating” definitions 
are part of the compilation unit scope (also called $unit).  SV-
2005 specifies that $unit behaves as an anonymous package.  
The consequences of this are significant and negative.  Since 
the package is unnamed, there is no way to refer to any of its 
contents outside the compilation unit.  Additionally, having to 
adhere to the rules governing packages means the code in $unit 
may not have hierarchical references.  Unable to enjoy the 
advantages of package membership but still subject to its 
restrictions, the anonymous package concept is overall a bad 
idea and should be avoided. 

SV-2009 has completely eliminated the term “anonymous 
package” from the LRM and changes the semantics of 
compilation-units to allow hierarchical references.  The 
reasoning behind this is that compilation-units are not 
considered stand-alone, but rather always considered within 
some other context.  This allows for the use of top-level classes 
with hierarchical references (consistent with the VERA usage 
described above), but the code cannot be reasonably considered 
reusable. 

Notwithstanding the relaxation of rules in SV-2009, we 
recommend against the use of “floating” code in compilation- 
unit scopes.  As previously mentioned, situations may arise 
where the definition of compilation unit boundaries is 
dependent not only on the way the source files are specified on 
the command-line to the compiler, but also compiler 
implementation decisions allowed by the LRM and outside the 
control of the user. 

Further complicating the issue is the inconsistent application of 
the rules among different simulators.  One product strictly 
enforces the SV-2005 hierarchical reference rule for 
compilation units even as the LRM has changed to allow for it.  
Surveying the releases over the past 3 years of another product 
shows that early versions falsely allowed hierarchical 
references in packages, with later versions corrected to produce 
a compile error, compliant with SV-2005.  The latest revision 
adopts SV-2009 rules, reallowing hierarchical references in 
compilation units. 

Another important issue is the type compatibility rules in SV 
(both 2005 and 2009 versions) surrounding compilation units.  
User-defined types and classes residing in the compilation-unit 
scope, as will be the case when top-level include files are used, 
are not equivalent to another type with the identical name and 
contents in another compilation-unit.  Using the same include 
file for both compiles, ensuring that the type’s name and 
contents are identical, does not make the types equivalent.  An 
“all-in-one” compilation strategy with one large compilation-
unit solves this problem, but this precludes the advantages of 
using separate compile, including the creation of libraries of 
reusable code.  Using packages for these user-defined types is a 
superior approach, independent of compilation strategy 
adopted or how any tool implements compilation-units. 

The type checking that an SV simulator performs occurs after 
all the source files are compiled, at the elaboration (linking) 

stage.  In other words, the problem described above passes 
compile, but fails to link.  One may wonder why the same 
approach in “C” does not encounter this problem.  The key 
difference lies in the nature of the object file, which is low-
level assembly code for the case of a “C” compiler.  The type 
information is long gone, and the linker resolves symbols, 
reporting an error when symbols are not found or duplicated. 

IV.  ADVANCED USE CASES (CLASSES AND 

PACKAGES) 
Packages and classes may be mixed together to implement 
interesting and useful things. 

A. SINGLETON IMPLEMENTATION.  The pure nature of its 
specification means that packages are singletons, or objects 
with exactly one instantiation.  One can use classes with a 
private constructor to also implement the singleton design 
pattern and both approaches are equally effective. 

Singletons find several uses in testbenches, from the 
encapsulation of global variables to the creation of testbench 
services such as logging objects and abstract factories.  While 
ultimately a question of style, the author has the flexibility to 
choose between package- and class-based implementations.  
We find the package-based approach more lightweight, suitable 
for global variables such as error counters.  The class-based 
approach is more suitable when the singleton is used as part of 
another design pattern, such as factories. 

B. CALLBACKS AND ABSTRACT BASE CLASSES.  The value of 
packages being standalone is its reusability.  However, each 
reuse situation might have slightly different requirements in its 
interaction with package code.  Hierarchical references from 
package code are not allowed and a workaround using DPI and 
strings with paths, suggested in [5], violates the spirit of the 
rule.  We strongly recommend against it.  A better solution, 
using callbacks, is recommended. 

Well-defined and placed callbacks provide a mechanism for 
customization while at the same time keeping the package code 
closed.  This technique is well proven in multiple verification 
methodologies and found in software libraries such as the 
standard C library.  It is instructive to illustrate from there the 
signal()  function, shown below. 

signal(int sig, void (*func)(int)); 
 

This allows the user to register a callback, func , to be called 
when the named event occurs.  Here, the callback is a function 
pointer, reminding us that an object-oriented language is not 
required for implementations.  SV has no function pointers, so 
implementations using abstract base classes are used.  The 
example below illustrates this. 

package ebcot_pkg; 
 
  // define callback function interface that 
  // ‘ebcot_enc’ will use. 
  // (pure not in SV-2005) 
  virtual class ebcot_encoder_cb; 
    pure virtual task push(...); 
  endclass 
 



  function ebcot_enc(data, state, 
                  ebcot_encoder_cb cb=null); 
    // iterate over rows/cols, calling ‘doit’ 
    for (int r=0; r<nrows; r+=4) 
      for (int c=0; c<ncols; c++) 
        begin 
        partial = doit(data,state); 
          // execute callback, if it exists 
        if (cb!=null) cb.push(partial); 
        end 
  endfunction 
endpackage 

 

// Application which uses ebcot_pkg::ebcot_enc 
module enc(clk, data, data_valid); 
import ebcot_pkg::*; 
  // customize callback for this application 
class my_enc_cb extends ebcot_encoder_cb; 
   task push(...); ... endtask 
endclass 
 
my_enc_cb cb = new; 
always @(posedge clk) 
    // call encoder, passing in callback 
  if (data_valid) ebcot_enc(data,state,cb); 
 
endmodule 

An abstract base class with a pure virtual method is defined in 
the package alongside all the other contents.  In each use 
situation, this base class is extended to concretely implement 
what the function is to do.  An object of this extension is then 
indicated when the package code is used.  The example above 
provides the callback procedurally as part of the entry point to 
the package code.  Many other techniques of “registering” the 
callback are possible. 

C. CONNECTING TESTBENCH COMPONENTS WITH ABSTRACT 

BASE CLASSES.  The SV language unifies a hardware 
description language, with its statically elaborated module 
hierarchy with features from object-oriented programming, 
with dynamic elements such as class objects.  It is sometimes 
necessary to merge the two worlds together in a testbench.  The 
combination of classes and packages, along with abstract base 
classes is one way to achieve this. 

When testbench components (such as transactors), written as 
SV modules need to interface to other class-based testbench 
components, a bridge needs to be created.  The interface that 
the module wishes to expose needs to be written as a set of 
tasks/functions forming an API.  The class-based component 
may assume this API in its abstract base class form.  The 
module-based component implements the concrete class 
extended from this virtual base.  The abstract base class needs 
to be globally visible and thus must be implemented in a 
package.  The concrete extension is normally local and defined 
in the module, since access to the variables/ports in the 
module’s scope is required.  A handle to an instance of the 
concrete extension class is obtained through an accessor 
function, which can then be bound to the class-based world. 

This technique, an extension of the one described in [4], allows 
testbench components, regardless of their hierarchical 
relationship, to communicate with each other.  This is done 
without the use of hard-coded XMRs (cross-module 
references), or virtual interfaces.  While the motivation in [4]  
centred around BFMs, our treatment is more general, 

abstracting the communication with an API embodied in an 
abstract base class.  Not only a class object and module 
instance can be bridged, but also two modules can also be 
bridged.  One recent project uses this technique to embody the 
API of a module-based testbench-top (test harness), of which 
there were several varieties including multiple block levels to 
chip level harnesses.  This API was then passed to a series of 
testcases (scenarios), which could be implemented either as 
top-level modules or classes.  

An example of this technique is shown below.  A module-
based memory with a set of backdoor tasks exists in the 
statically elaborated world.  The API for these tasks can be 
exported and connected to any other component, be it another 
module (as shown) or another class (not shown).  All 
components are independent, with only a single place (in 
‘harness’) where everything is tied together. 

The package that holds the abstract base class representing the 
API is shown below: 

package mem_access_pkg; 
  virtual class mem_access; 
  pure virtual function bit [7:0] 
      backdoor_read(bit [31:0] addr); 
  pure virtual function void 
      backdoor_write(bit[31:0] a, bit[7:0] d); 
  endclass 
endpackage 

The module based memory model, ‘ddr’, implements backdoor 
memory access functions.  The module-based version of the 
functions may be called using hierarchical reference.  The 
class-based version may be used by any component regardless 
of hierarchy, once a handle to the API object has been 
obtained. 

module ddr; 
  bit [7:0] mem_array[bit[31:0]]; 
    // backdoor memory access functions 
  function bit [7:0] backdoor_read( 
                            bit [31:0] addr); 
    return mem_array[addr]; 
  endfunction 
  function void backdoor_write( 
                bit [7:0] d, bit[31:0] addr); 
    mem_array[addr] = d; 
  endfunction 
 
    // implement class-based version 
  import mem_access_pkg::*; 
  class my_mem_access extends mem_access; 
    function bit[7:0] backdoor_read( 
                             bit[31:0] addr); 
      return ddr.backdoor_read(addr); 
    endfunction 
      // NB:arguments swapped for illustration 
    function void backdoor_write( 
                  bit [31:0] a, bit [7:0] d); 
      ddr.backdoor_write(d,a); 
    endfunction 
  endclass 
 
  // definition of object, with accessor 
my_mem_access _obj; 
  function mem_access get_mem_access(); 
    if (_obj==null) _obj=new; 
    return _obj; 
  endfunction 
endmodule 



The module below shows how the class-based API enables the 
backdoor access functions to be used, without knowledge of 
the hierarchical relationship between the two modules.  Only 
the package holding the abstract base class is required. 

module sister_module; 
  import mem_access_pkg::*; 
  mem_access ma_handle; 
  function void put_mem_access(mem_access a); 
    ma_handle = a; 
  endfunction 
 
initial 
  begin 
  wait (ma_handle != null); 
  ma_handle.backdoor_write(100, 8’h2b); 
  $display (“read=%x”, 
               ma_handle.backdoor_read(100)); 
  end 
 

The top level testbench module ties everything together and is 
the only place where the hierarchical relationships (u_ddr and 
u_oth) are used. 

module harness; 
  ddr u_ddr(); 
  sister_module u_oth(); 
 
initial 
  begin 
    // this triggers u_oth to do mem accesses 
  u_oth.put_mem_access(u_ddr.get_mem_access); 
  #10; 
    // again, but with hierarchical reference 
    // to functions in u_ddr 
  u_ddr.backdoor_write(8’h45, 100); 
  $display (“read=%x”, 
                 u_ddr.backdoor_read(100)); 
  end 
 
endmodule 

Without the use of packages to store the abstract base class, 
this technique becomes hard to implement.  One can use an 
include file for the class, including it in each place that requires 
it.  However, this runs into the type compatibility problems 
described previously. 

Alternatives to this approach include using hard-coded XMRs 
from the class to module in question.  Not only is this not 
reusable due to the hard-coded XMRs, this is not even legal 
when the class is defined in a package or program block scope. 

D. BINDS, PACKAGES, AND WHITE-BOX TESTING.  The 
combination of the SV bind construct along with a package 
implementing a global symbol-table allows verification code to 
be deeply embedded in a DUT with no hard-coded hierarchical 
references.  A module or interface with the verification code, 
be it assertions, a monitor, or coverage collector is bound to the 
DUT module in question.  Access to the results of the monitor 
or coverage collector is normally problematic, requiring 
hierarchical references through the DUT module hierarchy to 
reach the target. 

By using packages, each monitor can define an API and 
register it in a global symbol table implemented in the package.  
The end-user of the monitor/coverage result can access the API 

through the package.  The symbol table acts as a drop-box and 
avoids the need for hierarchical references. 

E. POOR MAN’S INHERITANCE.  Packages containing variables 
and tasks/functions can be compared to classes with data and 
methods.  However support for inheritance of packages is not 
as flexible as that in classes.  A so-called poor man’s 
inheritance mechanism is possible, allowing for static 
(compile-time) polymorphism but not the dynamic 
polymorphism that classes can implement.  A wrapper package 
can be created which redefines some of the functions in the 
underlying package, provided the prototypes are identical.  In 
the extreme case where all functions are redefined a complete 
substitute package can be made, with a different 
implementation of all functions provided by the package. 

It is interesting to note that VHDL, a non object-oriented 
language, is capable of this by strictly separating the package 
implementation from its declaration.  Modules from ordinary 
Verilog can be said to have the same capability. 

F. MIXED USE OF VHDL  AND SV PACKAGES.  Mixed language 
simulation is sometimes a necessary evil.  The combination 
that we see most often is an SV testbench verifying a VHDL 
design. Often, a rich set of records, types and functions on the 
VHDL side is defined in packages.  Unfortunately, neither SV 
nor VHDL LRMs specify how these definitions can be mapped 
across the language boundary, even though most package items 
have exact parallels in SV.  Tool specific implementations, 
often as simple as adding an additional compile-line switch, are 
available. 

V. CONCLUSION 
We have given an overview of the SystemVerilog package 
construct, from its motivation to the characteristics that make it 
an important feature of the language. 

Practical issues that arose when using packages in real projects 
were described.  Suggestions to avoid or overcome these issues 
were made.  We further discussed how packages and classes 
could be used together to implement interesting constructs. 
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