
Using SystemVerilog Packages in Real Verification Projects

Kaiming Ho
 Fraunhofer IIS

Erlangen, Germany
kaiming.ho@iis.fraunhofer.de

This paper details some of the key features and frustrations of using the package construct in
SystemVerilog. The package construct is compared to similar features in other languages such as
the identically named construct in VHDL and namespaces in C++. Valuable lessons learned over
the course of multiple projects in the development of verification environments are described, and
the paper makes recommendations for basic DOs and DONTs for SystemVerilog package use. The
theme of code reusability is always important, and tips on how packages can be used to achieve this
are discussed.

Users of languages such as VERA, which does not have the package construct, are more
accustomed to using include files, which provide some but not all the features packages provide.
The paper discusses why the continuance of this approach, while possible in SystemVerilog, is not
recommended and why the package construct is superior.

Finally, the paper discusses how SystemVerilog allows packages and classes to be mixed in
interesting ways not seen in other languages.

I. INTRODUCTION
The package construct is one of the many incremental
improvements added to SystemVerilog that Verilog notably
lacked. With its introduction, all users of SystemVerilog, from
RTL designers to verification engineers, now have an
encapsulation mechanism that VHDL users have had for many
years. Since SystemVerilog also added the class data type
many interesting usage models for packages are possible as a
consequence, some of which are not applicable to VHDL since
VHDL does not provide classes.

This paper is divided into three sections. The first summarizes
the properties of the package construct, highlighting important
features that underpin the rationale for using packages. Similar
constructs in other languages, such as VHDL packages and
C++ namespaces are discussed and compared. Important
changes to the semantics of the construct made between IEEE
1800-2005 [1] and 1800-2009 [2] that are of interest to
verification engineers are highlighted.

The second section describes practical issues that arise from
the deployment of SystemVerilog verification environments.
Problems that we have encountered in recent projects are
described and the pros and cons of various solutions discussed.
The last section explores advanced things one can achieve with
packages. The discussion centres on how packages and classes
can be used together to implement common design patterns,
solving problems such as bridging hierarchical boundaries.

II. PROPERTIES OF SYSTEMVERILOG PACKAGES
SystemVerilog (SV) packages are a top-level design element
that provides an encapsulation mechanism for grouping
together data types (including classes), tasks/functions,
constants and variables. Additionally, assertion related
constructs such as sequences and properties can be
encapsulated, which is of particular interest to verification
engineers. Once encapsulated into a named package, the
contents are available for use in other design elements (such as
modules, programs, interfaces or other packages) irrespective
of module or class hierarchy.

Surprisingly, this construct is unavailable to Verilog (1364-
1995 and 1364-2001) users, who often resort to using modules
to emulate package behaviour. Modules also serve as an
encapsulation mechanism, and when left uninstantiated,
become a top-level module whose contents are accessible
through hierarchical reference. It is common in FPGA libraries
to have global definitions and/or variables, and it is informative
to note that the VHDL version of these libraries use the
package construct while the equivalent library in Verilog uses
modules [6]. Caution must be exercised to ensure that the
module must never be instantiated more than once since
variables encapsulated inside will then exist multiple times.
The use of packages avoids this problem, since packages are
not instantiated, thereby guaranteeing that all variables inside
are singletons (with exactly one instance in existence).

Packages can be considered as stand-alone elements, dependent
only on other packages and not on anything in the context they
are used. Thus, they can be compiled separately into libraries
of functionality, pulled in only when required. One can view
this to be conceptually equivalent to how ‘C’ libraries are

organised and used. This stand-alone property means that code
inside packages cannot contain hierarchical references to
anything outside the package, including the compilation unit.
Other encapsulation mechanisms such as modules and classes
do not require this, so a module/class meant to be reusable
must rely on the discipline of the writer to avoid these external
dependencies. Thus packages represent a much better
mechanism for encouraging reuse, since external dependencies
are explicitly disallowed and checked at compile-time. Users
of purchased verification IP should insist that their vendors
provide the IP in the form of a package.

While the stand-alone property of packages may make it seem
that it is impossible to tightly integrate outside code with
package code, this is not the case. By using callbacks and
abstract base classes, this is possible. A subsequent section
describes this further.

SV packages were inspired by and share many commonalities
with similar constructs in other languages. Namespaces in
C++ are similar, providing a scope for encapsulating
identifiers. Explicit access is given through the :: scope
operator, identical in both SV and C++. Importation of
namespace symbols in C++ with the using keyword mirrors the
use of the import keyword in SV. A notable difference is that
nested C++ namespaces can be hierarchically referenced using
multiple :: operators. A user which imports a SV package,
top_pkg, which imports another package, bottom_pkg, does not
automatically have access to any of the symbols in bottom_pkg,
and access through multiple :: operators is not possible. This
lack of package “chaining”, and the closely related export
statement, is described in more detail in a subsequent section.

VHDL packages also share many common features with SV
packages. One notable feature of packages in VHDL absent in
SV is the explicit separation of the package header and body.
The header represents the publically visible interface to the
package, giving access to type definitions and function
prototypes. The body implements the various functions
described in the header, and are invisible and irrelevant to the
user.

SystemVerilog allows the collection of files defining a
simulation to be broken into compilation units, the definition of
which is implementation dependent. This is often a function of
the compile strategy implemented by the tool, with an “all-in-
one” command line defining one large compilation unit for all
files, and an “incremental-compile” strategy defining
compilation units on a per file basis. Various issues ranging
from visibility to type compatibility are linked to compilation
units, leading to unpleasant surprises when switching compile
strategies. Using packages avoids this problem, since the rules
of visibility and type compatibility surrounding package items
are independent of compilation unit. The problems described
later in III-E do not occur when packages are used.

III. PRACTICALITIES IN PACKAGE USE
Over the past several years, we have deployed SV
environments using packages in multiple projects. With each
passing project, lessons learned from the previous mistakes
refine the implementation choices made going forward. This
section discusses some selected lessons from this experience.

A. COMPILE PACKAGES BEFORE USE. While this may sound
obvious, it is sometimes not as trivial as it seems. Nicely
written packages are good reuse candidates and may be
referred to by other packages, bringing up the issue of inter-
package dependencies. Large projects typically have many
packages with complex inter-dependencies, with some
packages reused from other projects and others reused from
block to cluster to chip level environments. The mechanism
which controls how all the files for a particular simulation are
compiled, be it one file at a time, or all files together, must
infer the dependency structure of the packages and generate an
appropriate compile order. This is most easily done by a tree
graph with each node representing a package. From the
resultant tree, the packages furthest away from the root must be
compiled first. As the project evolves, careless modifications
can lead to the formation of circular dependencies, resulting in
no suitable compile order. This is most likely to occur in
projects with a large set of packages and multiple environments
that use different subsets of packages.

The following guidelines are suggested to minimize the chance
of circular dependencies among packages as well as promote
better reuse.

- Prefer smaller packages to larger ones.
- Don’t let the entire team modify packages.
- Adequately document the contents of every package

and what each package item does. It is also
important to document which projects and
environments use a particular package.

- Categorize packages into two types: those reused
from other projects, and those reused from block to
cluster to chip levels.

Finer grained package structuring reduces the possibility of
unintended dependencies. Packages designed to be reused over
multiple projects should be as flat and dependency free as
possible. This allows re-users of the package to not pull in
additional dependencies, which may cause problems. A typical
package structure involves separate packages for each block
level, which are brought together to form packages for higher-
level environments. The direction of reuse should start from
block environments and move upwards. Monolithic
environments are particularly at risk of introducing downward
dependencies as code evolves, creating potential circular
dependencies.

When circular compile dependencies do occur, they can be
resolved by repartitioning code between packages. The
extreme solution of creating one huge package, guaranteed to
have no circular compile dependencies, is always an option if
one gets desperate.

B. IMPORTING PACKAGES. The easiest way to use packages is
through a wildcard import, with the “import pkg::*” statement.
This gives the importing scope access to all identifiers inside
the package without having to use explicit imports for each
desired identifier, or prefixing each identifier with the package
name. While the latter two methods of package use are legal,
they can be overly verbose and unpractical. Prefixing at each
use has the added disadvantage of making it difficult to quickly
determine package dependencies. Thus, using wildcard
imports while understanding their disadvantages is the most
practical strategy. These disadvantages are discussed below.

When a package is wildcard imported, the importer’s
namespace is widened to include every possible symbol from
the package, even the undesired ones, or the ones that the
package designer had no intention of making externally visible.
Noteworthy is that the labels of enumerated types are also
added. Thus, special care must be made to avoid naming
conflicts, when possible. This is sometimes difficult with
packages containing a lot of code, or where the code has been
split out into multiple sub-files.

Purchased IP may be in package form, but encrypted, meaning
that the user has no way of knowing what a wildcard import
will bring. When the user imports multiple packages, the risk
of naming conflicts between the various packages or with the
importing scope is even higher. While naming conflicts are
legal in some situations, the rules defining how these are
resolved are lengthy and complex. Following a naming
convention using reasonable and relatively unique names can
greatly reduce the changes of naming conflicts, thus avoiding
the task of having to learn SV’s name resolution rules.

The question of whether package symbols are chained is
specifically addressed in SV-2009, but not mentioned in the
earlier SV-2005 LRM. This has led to the unfortunate situation
of diverging behaviour between different simulation tool
implementations. One tool disallows package chaining by
default, consistent with SV-2009 rules, while another tool
automatically chains all symbols. The export statement added
in SV-2009 was meant to give package designers explicit
control on which symbols are chained and visible to importers
of the higher-level package. The code example below
illustrates how the two tools described above are divergent.

package bottom_pkg; int foo; endpackage

package top_pkg;
 import bottom_pkg::*;
`ifndef VCS
 export bottom_pkg::*;
`endif
 int bar;
endpackage

module importer;
import top_pkg::*;
 initial
 begin
 foo = 1; // from bottom_pkg
 bar = foo + 2;
 end
endmodule

Note that the tool that automatically chains all the symbols
from bottom_pkg also does not support the export statement.
In effect, the export is automatically implied, whereas the LRM
requires the statement to be explicitly present for chaining to
occur.

The export statement, together with the use of a wrapper
package, can fine tune and control exactly what is to be
externally visible. This technique further mitigates the side
effects of wildcard imports. SV packages have no explicit
mechanism to define certain symbols as private (e.g., through
the use of the local keyword as a modifier), and the wrapper
technique is an alternative to overcome this fact. These
wrappers can be tailored to each use case, on a per project or

per environment basis. The use of wrappers on unfamiliar or
encrypted package contents can be viewed as a safety
precaution.

C. USING SUB-INCLUDES. When many large classes are defined
in a package, the sheer amount of code can lead to very large
and difficult to maintain files. It is tempting to separate the
package contents into multiple files, then have the package
definition consist simply of a list of `include statements. This
solution is seen often, but several dangers need to be managed,
discussed below.

By separating package code out into other files, the original
context can be easily forgotten. Allowed dependencies owing
to the fact that multiple files make up the compilation unit, as
well as disallowed ones are not readily evident. A further
problem is that the file could be included in multiple places,
resulting in several packages with the same definition. These
packages could then be used together, causing problems at
import. Specifically, identical type definitions included into
two different packages may not be compatible. One must
remember that with packages, it is no longer required or
appropriate to implement reuse at the file level using `include
statements.

The context loss problem can be easily addressed by having a
clear warning comment at the top of the file indicating that
only the intended package may include the file. An example is
shown below.

file: my_huge_pkg.sv

package my_huge_pkg;
 `include "my_class1.svh"
 `include "my_class2.svh"
endpackage

file: my_class1.svh

// WARNING:
// This file is meant to be used only by
// “my_huge_pkg.sv”. DO NOT directly include
// in any other context.
class my_class1;
 ...
endclass

A more robust mechanism, for people who don’t read
comments, is to use an #ifdef check with an #error clause to
trigger an immediate compilation error in cases of unintended
inclusion. Modelled after the mechanism used by ‘C’ include
files, the main package file would define a unique pre-
processor symbol, then include the various sub-files. Each
included file would check that the symbol is defined and
trigger an error if it is not. The previous example, modified to
incorporate this, is shown below.

file: my_huge_pkg.sv

package my_huge_pkg;
 `define _IN_MY_HUGE_PKG_
 `include "my_class1.svh"
endpackage

file: my_class1.svh

`ifndef _IN_MY_HUGE_PKG_
** ERROR ERROR ERROR
** This file is meant to be used only by
** “my_huge_pkg.sv”. DO NOT directly include
** in any other context.
`error “SV doesn’t have this”
`endif
class my_class1;
 ...
endclass

Since the SV pre-processor does not have the `error directive,
inserting text which will cause a compile syntax error can be
used to do the same thing.

D. THE PARAMETER PROBLEM. Parameters can be used to
define constants. They can also be used to facilitate generic
programming, where the parameterized values can be varied.
The usage of constant parameters in packages is problem free
and a recommended replacement for pre-processor `defines for
constants. This effectively gives a namespace to constants and
avoids the potential problem of multiple (and/or conflicting)
pre-processor symbols in the same compilation unit.

The second usage, for generic programming, causes a serious
problem when used in the context of a package. When a
function defined in a package uses a parameter, one might
think a template function is defined. However, since packages
are not instantiated, there is no way to vary the parameter to
create different specializations of the function. The example
below shows the problem for both type and value parameters.
The same function defined in a module does not suffer this
problem, since many instances of the modules may be created,
with varying parameterizations.

package utils_pkg;
 parameter type T = int;
 typedef T T_list[];

 // extend ‘n’ samples right
 // extend ‘m’ samples left
 function T_list dwt_extend(T sin[],int n,m);
 T sout[$] = sin;
 int unsigned size = sin.size();
 for (int i=0; i<m; i++)
 sout = {sout[2*i+1], sout};
 for (int i=1; i<=n; i++)
 sout = {sout, sout[$-(2*i)+1]};
 return sout;
 endfunction

parameter win = 8;
localparam wout = win+1;
 function void do_rct(
 input bit signed[win:1] rgb[3],
 output bit signed[wout:1] ycbcr[3]);
 endfunction
endpackage

To overcome this problem, a static class can be used to wrap
the function. The class can be parameterized, and access to the
function is through the class resolution operator along with the
parameterization. This, however, leads to unsynthesizable
code, a problem if the code is to be used for RTL design. We
have found that this problem occurs often in modelling
mathematical algorithms meant for a DSP where the bit-depth

of the operands is parameterized. An example of the solution
is shown below.

package utils_pkg;
 virtual class colour_trans#(int win=8);
 localparam wout = win+1;
 static function void do_rct(
 input bit signed[win:1] rgb[3],
 output bit signed[wout:1] ycbcr[3]);
 endfunction
 endclass
endpackage

import utils_pkg::*;
initial
 begin
 bit signed [18:1] rgb[3];
 bit signed [19:1] ycbcr[3];
 colour_trans#(18)::do_rct(rgb, ycbcr);
 end

E. DEFINING CLASSES AT TOP-LEVEL. Class definitions may
appear in various design elements, but packages remain by far
the best place for classes. Alternatives such as modules or
program blocks suffer from problems such as poor accessibility
or reusability issues due to hierarchical references.

Users with a VERA background often do not appreciate the
multitude of choices where classes may be defined. In VERA,
all classes are typically defined in separate files, included when
required and exist in a single global scope — in other words,
“floating” at top-level. The code example below illustrates
this, with each box representing a separate file and compile.

class logger {
 integer curr_sev;
 task put_msg(integer lvl, string msg);
}
task logger::put_msg(integer lvl, string msg)
{ ... }

#include "logger.vrh"
class ahb_trans {
 logger log_obj;
 task new(logger l) { log_obj = l; }
}

#include "logger.vrh"
#include "ahb_trans.vrh"
class ahb_write_trans extends ahb_trans {
 task new(logger l) { super.new(l); }
}

#include "logger.vrh"
#include "ahb_trans.vrh"
#include "ahb_write_trans.vrh"
program top {
 logger log_obj;
 ahb_trans a1;
 ahb_write_trans a2;
 log_obj = new;
 a1 = new(log_obj);
 a2 = new(log_obj);
}

While an equivalent structure is possible in SV, this usage style
is not recommended. Not only are these potentially non-

reusable, the rules governing such structures (compilation-
units) have changed between SV-2005 and SV-2009.

When class (or other) definitions do not appear in a module,
package or program block scope, these “floating” definitions
are part of the compilation unit scope (also called $unit). SV-
2005 specifies that $unit behaves as an anonymous package.
The consequences of this are significant and negative. Since
the package is unnamed, there is no way to refer to any of its
contents outside the compilation unit. Additionally, having to
adhere to the rules governing packages means the code in $unit
may not have hierarchical references. Unable to enjoy the
advantages of package membership but still subject to its
restrictions, the anonymous package concept is overall a bad
idea and should be avoided.

SV-2009 has completely eliminated the term “anonymous
package” from the LRM and changes the semantics of
compilation-units to allow hierarchical references. The
reasoning behind this is that compilation-units are not
considered stand-alone, but rather always considered within
some other context. This allows for the use of top-level classes
with hierarchical references (consistent with the VERA usage
described above), but the code cannot be reasonably considered
reusable.

Notwithstanding the relaxation of rules in SV-2009, we
recommend against the use of “floating” code in compilation-
unit scopes. As previously mentioned, situations may arise
where the definition of compilation unit boundaries is
dependent not only on the way the source files are specified on
the command-line to the compiler, but also compiler
implementation decisions allowed by the LRM and outside the
control of the user.

Further complicating the issue is the inconsistent application of
the rules among different simulators. One product strictly
enforces the SV-2005 hierarchical reference rule for
compilation units even as the LRM has changed to allow for it.
Surveying the releases over the past 3 years of another product
shows that early versions falsely allowed hierarchical
references in packages, with later versions corrected to produce
a compile error, compliant with SV-2005. The latest revision
adopts SV-2009 rules, reallowing hierarchical references in
compilation units.

Another important issue is the type compatibility rules in SV
(both 2005 and 2009 versions) surrounding compilation units.
User-defined types and classes residing in the compilation-unit
scope, as will be the case when top-level include files are used,
are not equivalent to another type with the identical name and
contents in another compilation-unit. Using the same include
file for both compiles, ensuring that the type’s name and
contents are identical, does not make the types equivalent. An
“all-in-one” compilation strategy with one large compilation-
unit solves this problem, but this precludes the advantages of
using separate compile, including the creation of libraries of
reusable code. Using packages for these user-defined types is a
superior approach, independent of compilation strategy
adopted or how any tool implements compilation-units.

The type checking that an SV simulator performs occurs after
all the source files are compiled, at the elaboration (linking)

stage. In other words, the problem described above passes
compile, but fails to link. One may wonder why the same
approach in “C” does not encounter this problem. The key
difference lies in the nature of the object file, which is low-
level assembly code for the case of a “C” compiler. The type
information is long gone, and the linker resolves symbols,
reporting an error when symbols are not found or duplicated.

IV. ADVANCED USE CASES (CLASSES AND

PACKAGES)
Packages and classes may be mixed together to implement
interesting and useful things.

A. SINGLETON IMPLEMENTATION. The pure nature of its
specification means that packages are singletons, or objects
with exactly one instantiation. One can use classes with a
private constructor to also implement the singleton design
pattern and both approaches are equally effective.

Singletons find several uses in testbenches, from the
encapsulation of global variables to the creation of testbench
services such as logging objects and abstract factories. While
ultimately a question of style, the author has the flexibility to
choose between package- and class-based implementations.
We find the package-based approach more lightweight, suitable
for global variables such as error counters. The class-based
approach is more suitable when the singleton is used as part of
another design pattern, such as factories.

B. CALLBACKS AND ABSTRACT BASE CLASSES. The value of
packages being standalone is its reusability. However, each
reuse situation might have slightly different requirements in its
interaction with package code. Hierarchical references from
package code are not allowed and a workaround using DPI and
strings with paths, suggested in [5], violates the spirit of the
rule. We strongly recommend against it. A better solution,
using callbacks, is recommended.

Well-defined and placed callbacks provide a mechanism for
customization while at the same time keeping the package code
closed. This technique is well proven in multiple verification
methodologies and found in software libraries such as the
standard C library. It is instructive to illustrate from there the
signal() function, shown below.

signal(int sig, void (*func)(int));

This allows the user to register a callback, func , to be called
when the named event occurs. Here, the callback is a function
pointer, reminding us that an object-oriented language is not
required for implementations. SV has no function pointers, so
implementations using abstract base classes are used. The
example below illustrates this.

package ebcot_pkg;

 // define callback function interface that
 // ‘ebcot_enc’ will use.
 // (pure not in SV-2005)
 virtual class ebcot_encoder_cb;
 pure virtual task push(...);
 endclass

 function ebcot_enc(data, state,
 ebcot_encoder_cb cb=null);
 // iterate over rows/cols, calling ‘doit’
 for (int r=0; r<nrows; r+=4)
 for (int c=0; c<ncols; c++)
 begin
 partial = doit(data,state);
 // execute callback, if it exists
 if (cb!=null) cb.push(partial);
 end
 endfunction
endpackage

// Application which uses ebcot_pkg::ebcot_enc
module enc(clk, data, data_valid);
import ebcot_pkg::*;
 // customize callback for this application
class my_enc_cb extends ebcot_encoder_cb;
 task push(...); ... endtask
endclass

my_enc_cb cb = new;
always @(posedge clk)
 // call encoder, passing in callback
 if (data_valid) ebcot_enc(data,state,cb);

endmodule

An abstract base class with a pure virtual method is defined in
the package alongside all the other contents. In each use
situation, this base class is extended to concretely implement
what the function is to do. An object of this extension is then
indicated when the package code is used. The example above
provides the callback procedurally as part of the entry point to
the package code. Many other techniques of “registering” the
callback are possible.

C. CONNECTING TESTBENCH COMPONENTS WITH ABSTRACT

BASE CLASSES. The SV language unifies a hardware
description language, with its statically elaborated module
hierarchy with features from object-oriented programming,
with dynamic elements such as class objects. It is sometimes
necessary to merge the two worlds together in a testbench. The
combination of classes and packages, along with abstract base
classes is one way to achieve this.

When testbench components (such as transactors), written as
SV modules need to interface to other class-based testbench
components, a bridge needs to be created. The interface that
the module wishes to expose needs to be written as a set of
tasks/functions forming an API. The class-based component
may assume this API in its abstract base class form. The
module-based component implements the concrete class
extended from this virtual base. The abstract base class needs
to be globally visible and thus must be implemented in a
package. The concrete extension is normally local and defined
in the module, since access to the variables/ports in the
module’s scope is required. A handle to an instance of the
concrete extension class is obtained through an accessor
function, which can then be bound to the class-based world.

This technique, an extension of the one described in [4], allows
testbench components, regardless of their hierarchical
relationship, to communicate with each other. This is done
without the use of hard-coded XMRs (cross-module
references), or virtual interfaces. While the motivation in [4]
centred around BFMs, our treatment is more general,

abstracting the communication with an API embodied in an
abstract base class. Not only a class object and module
instance can be bridged, but also two modules can also be
bridged. One recent project uses this technique to embody the
API of a module-based testbench-top (test harness), of which
there were several varieties including multiple block levels to
chip level harnesses. This API was then passed to a series of
testcases (scenarios), which could be implemented either as
top-level modules or classes.

An example of this technique is shown below. A module-
based memory with a set of backdoor tasks exists in the
statically elaborated world. The API for these tasks can be
exported and connected to any other component, be it another
module (as shown) or another class (not shown). All
components are independent, with only a single place (in
‘harness’) where everything is tied together.

The package that holds the abstract base class representing the
API is shown below:

package mem_access_pkg;
 virtual class mem_access;
 pure virtual function bit [7:0]
 backdoor_read(bit [31:0] addr);
 pure virtual function void
 backdoor_write(bit[31:0] a, bit[7:0] d);
 endclass
endpackage

The module based memory model, ‘ddr’, implements backdoor
memory access functions. The module-based version of the
functions may be called using hierarchical reference. The
class-based version may be used by any component regardless
of hierarchy, once a handle to the API object has been
obtained.

module ddr;
 bit [7:0] mem_array[bit[31:0]];
 // backdoor memory access functions
 function bit [7:0] backdoor_read(
 bit [31:0] addr);
 return mem_array[addr];
 endfunction
 function void backdoor_write(
 bit [7:0] d, bit[31:0] addr);
 mem_array[addr] = d;
 endfunction

 // implement class-based version
 import mem_access_pkg::*;
 class my_mem_access extends mem_access;
 function bit[7:0] backdoor_read(
 bit[31:0] addr);
 return ddr.backdoor_read(addr);
 endfunction
 // NB:arguments swapped for illustration
 function void backdoor_write(
 bit [31:0] a, bit [7:0] d);
 ddr.backdoor_write(d,a);
 endfunction
 endclass

 // definition of object, with accessor
my_mem_access _obj;
 function mem_access get_mem_access();
 if (_obj==null) _obj=new;
 return _obj;
 endfunction
endmodule

The module below shows how the class-based API enables the
backdoor access functions to be used, without knowledge of
the hierarchical relationship between the two modules. Only
the package holding the abstract base class is required.

module sister_module;
 import mem_access_pkg::*;
 mem_access ma_handle;
 function void put_mem_access(mem_access a);
 ma_handle = a;
 endfunction

initial
 begin
 wait (ma_handle != null);
 ma_handle.backdoor_write(100, 8’h2b);
 $display (“read=%x”,
 ma_handle.backdoor_read(100));
 end

The top level testbench module ties everything together and is
the only place where the hierarchical relationships (u_ddr and
u_oth) are used.

module harness;
 ddr u_ddr();
 sister_module u_oth();

initial
 begin
 // this triggers u_oth to do mem accesses
 u_oth.put_mem_access(u_ddr.get_mem_access);
 #10;
 // again, but with hierarchical reference
 // to functions in u_ddr
 u_ddr.backdoor_write(8’h45, 100);
 $display (“read=%x”,
 u_ddr.backdoor_read(100));
 end

endmodule

Without the use of packages to store the abstract base class,
this technique becomes hard to implement. One can use an
include file for the class, including it in each place that requires
it. However, this runs into the type compatibility problems
described previously.

Alternatives to this approach include using hard-coded XMRs
from the class to module in question. Not only is this not
reusable due to the hard-coded XMRs, this is not even legal
when the class is defined in a package or program block scope.

D. BINDS, PACKAGES, AND WHITE-BOX TESTING. The
combination of the SV bind construct along with a package
implementing a global symbol-table allows verification code to
be deeply embedded in a DUT with no hard-coded hierarchical
references. A module or interface with the verification code,
be it assertions, a monitor, or coverage collector is bound to the
DUT module in question. Access to the results of the monitor
or coverage collector is normally problematic, requiring
hierarchical references through the DUT module hierarchy to
reach the target.

By using packages, each monitor can define an API and
register it in a global symbol table implemented in the package.
The end-user of the monitor/coverage result can access the API

through the package. The symbol table acts as a drop-box and
avoids the need for hierarchical references.

E. POOR MAN’S INHERITANCE. Packages containing variables
and tasks/functions can be compared to classes with data and
methods. However support for inheritance of packages is not
as flexible as that in classes. A so-called poor man’s
inheritance mechanism is possible, allowing for static
(compile-time) polymorphism but not the dynamic
polymorphism that classes can implement. A wrapper package
can be created which redefines some of the functions in the
underlying package, provided the prototypes are identical. In
the extreme case where all functions are redefined a complete
substitute package can be made, with a different
implementation of all functions provided by the package.

It is interesting to note that VHDL, a non object-oriented
language, is capable of this by strictly separating the package
implementation from its declaration. Modules from ordinary
Verilog can be said to have the same capability.

F. MIXED USE OF VHDL AND SV PACKAGES. Mixed language
simulation is sometimes a necessary evil. The combination
that we see most often is an SV testbench verifying a VHDL
design. Often, a rich set of records, types and functions on the
VHDL side is defined in packages. Unfortunately, neither SV
nor VHDL LRMs specify how these definitions can be mapped
across the language boundary, even though most package items
have exact parallels in SV. Tool specific implementations,
often as simple as adding an additional compile-line switch, are
available.

V. CONCLUSION
We have given an overview of the SystemVerilog package
construct, from its motivation to the characteristics that make it
an important feature of the language.

Practical issues that arose when using packages in real projects
were described. Suggestions to avoid or overcome these issues
were made. We further discussed how packages and classes
could be used together to implement interesting constructs.

REFERENCES
[1] “IEEE Standard for SystemVerilog – Unified Hardware

Design, Specification, and Verification Language,” IEEE
Std 1800-2005, 2005.

[2] “IEEE Standard for SystemVerilog – Unified Hardware
Design, Specification, and Verification Language,” IEEE
Std 1800-2009, 2009.

[3] “IEEE Standard Verilog Hardware Description Language,”
IEEE Std 1364-2001, 2001.

[4] D. Rich, J. Bromley. “Abstract BFMs Outshine Virtual
Interfaces for Advanced SystemVerilog Testbenches”.
DVCon 2008.

[5] “XMR in Testbench-to-DUT or Top-Module Tasks.”
$VCS_HOME/doc/UserGuide/pdf/VCSLCAFeatures.pdf, p179.
Version C-2009.06. June 2009.

[6] Xilinx library code.
$XILINX/vhdl/src/simprims/simprim_Vcomponents.vhd and
$XILINX/vlog/src/glbl.v. Release v11.1i. Apr. 2009.

