Using SystemVerilog Packages in Real Verificatioojétts

Kaiming Ho
Fraunhofer IS
Erlangen, Germany
kaiming.ho@iis.fraunhofer.de

This paper details some of the key features anslraitions of using the package construct in
SystemVerilog. The package construct is compasesiniilar features in other languages such as
the identically named construct in VHDL and namesggan C++. Valuable lessons learned over
the course of multiple projects in the developmanterification environments are described, and
the paper makes recommendations for basic DOs &NTB for SystemVerilog package use. The
theme of code reusability is always important, ipsl on how packages can be used to achieve this
are discussed.

Users of languages such as VERA, which does nok hthe package construct, are more
accustomed to using include files, which providensdbut not all the features packages provide.
The paper discusses why the continuance of thieoaph, while possible in SystemVerilog, is not
recommended and why the package construct is superi

Finally, the paper discusses how SystemVerilogwallgpackages and classes to be mixed in
interesting ways not seen in other languages.

Il. PROPERTIES OFSYSTEMVERILOG PACKAGES

.~ INTRODUCTION SystemVerilog (SV) packages are a top-level desigment
The package construct is one of the many increrhenfigat provides an encapsulation mechanism for grmupi
improvements added to SystemVerilog that Verilodably together data types (including classes), taskstfiums
lacked. With its introduction, all users of Syskéanilog, from constants and variables. Additionally, asserticelated
RTL designers to verification engineers, now have &onstructs such as sequences and properties can be
encapsulation mechanism that VHDL users have hathémy encapsulated, which is of particular interest taifieation
years. Since SystemVerilog also added the clats @e engineers. Once encapsulated into a named paciage,
many interesting usage models for packages arébp®ss a contents are available for use in other design efesn(such as

consequence, some of which are not applicable tblVeince modules, programs, interfaces or other packagesjpective
VHDL does not provide classes. of module or class hierarchy.

This paper is divided into three sections. Thstfsummarizes Surprisingly, this construct is unavailable to Wagi (1364-
the properties of the package construct, highlightmportant 1995 and 1364-2001) users, who often resort togusiodules
features that underpin the rationale for using pgek. Similar to emulate package behaviour. Modules also sesvara
constructs in other languages, such as VHDL packagel encapsulation mechanism, and when left uninstauatjat
C++ namespaces are discussed and compared. Imporfi@come a top-level module whose contents are dbfess
changes to the semantics of the construct madeeketWEEE through hierarchical reference. It is common itSRRibraries
1800-2005 [1] and 1800-2009 [2] that are of inter&s to have global definitions and/or variables, arid informative
verification engineers are highlighted. to note that the VHDL version of these librariese uhe
package construct while the equivalent library ierivbg uses
modules [6]. Caution must be exercised to enshat the
module must never be instantiated more than onoeesi

The second section describes practical issuesatfsg from
the deployment of SystemVerilog verification enwineents.

Problems that we have encountered in recent psojact

described and the pros and cons of various sokitisstussed.
The last section explores advanced things one daie\ge with

packages. The discussion centres on how packagedasses
can be used together to implement common desigierpat

solving problems such as bridging hierarchical lozuies.

variables encapsulated inside will then exist midtitimes.
The use of packages avoids this problem, sincegugskare
not instantiated, thereby guaranteeing that aliabées inside
are singletons (with exactly one instance in erisg.

Packages can be considered as stand-alone elechepésdent
only on other packages and not on anything in tmext they
are used. Thus, they can be compiled separat@ylibraries
of functionality, pulled in only when required. ©wran view
this to be conceptually equivalent to how ‘C’ libes are

organised and used. This stand-alone property srisah code A. COMPILE PACKAGES BEFORE USE While this may sound
inside packages cannot contain hierarchical refa®nto obvious, it is sometimes not as trivial as it seenisicely
anything outside the package, including the cortipifaunit. written packages are good reuse candidates and beay
Other encapsulation mechanisms such as moduleslasgkes referred to by other packages, bringing up theeissuinter-

do not require this, so a module/class meant toelisable package dependencies. Large projects typicallye haany
must rely on the discipline of the writer to avdéliese external packages with complex inter-dependencies, with some
dependencies. Thus packages represent a muchr bgidekages reused from other projects and othersdefrem
mechanism for encouraging reuse, since externargmcies block to cluster to chip level environments. Thechmanism

are explicitly disallowed and checked at compiteeti Users
of purchased verification IP should insist thatitheendors
provide the IP in the form of a package.

While the stand-alone property of packages may nitakeem
that it is impossible to tightly integrate outsidede with
package code, this is not the case. By using aei and
abstract base classes, this is possible. A subseaection
describes this further.

which controls how all the files for a particulamsilation are
compiled, be it one file at a time, or all filesg&gher, must
infer the dependency structure of the packageggandrate an
appropriate compile order. This is most easilyeloy a tree
graph with each node representing a package. Riam
resultant tree, the packages furthest away frommabemust be
compiled first. As the project evolves, carelesdifications

can lead to the formation of circular dependenciesulting in

no suitable compile order. This is most likely docur in

projects with a large set of packages and mulgpl&ronments

SV packages were inspired by and share many conitiena that use different subsets of packages.

with similar constructs in other languages. Naraesp in

C++ are similar, providing a scope for encapsutatinhe following guidelines are suggested to minintize chance

identifiers. Explicit access is given through thescope
operator, identical in both SV and C++. Importatiof
namespace symbols in C++ with timng keyword mirrors the

use of thamport keyword in SV. A notable difference is that -

nested C++ namespaces can be hierarchically refedemsing
multiple :: operators. A user which imports a S&ckage,
top_pkg, which imports another packadmttom pkg, does not
automatically have access to any of the symbat®ttom_pkg,
and access through multiple :: operators is nosiptess This
lack of package “chaining”, and the closely relatgort
statement, is described in more detail in a sulE@gection.

VHDL packages also share many common features 8hth
packages. One notable feature of packages in Valident in
SV is the explicit separation of the package heaaher body.
The header represents the publically visible iateafto the
package, giving access to type definitions and tfanc
prototypes. The body implements the various faomsti
described in the header, and are invisible andeiramt to the
user.

SystemVerilog allows the collection of files defigi a
simulation to be broken into compilation units, tfedinition of
which is implementation dependent. This is oftdarection of
the compile strategy implemented by the tool, veith“all-in-
one” command line defining one large compilatiorit tor all
files, and an ‘“incremental-compile” strategy defupi
compilation units on a per file basis. Varioususs ranging
from visibility to type compatibility are linked toompilation
units, leading to unpleasant surprises when switclsompile
strategies. Using packages avoids this problemedihe rules
of visibility and type compatibility surrounding gleage items
are independent of compilation unit. The probletascribed
later in 1lI-E do not occur when packages are used.

I1l. PRACTICALITIES IN PACKAGE USE

Over the past several years, we have deployed
environments using packages in multiple projedt¢ith each
passing project, lessons learned from the previoigtakes
refine the implementation choices made going fodwaf his
section discusses some selected lessons fromxhésience.

of circular dependencies among packages as welr@saote
better reuse.

- Prefer smaller packages to larger ones.

Don't let the entire team modify packages.

- Adequately document the contents of every package
and what each package item does. It is also
important to document which projects and
environments use a particular package.

- Categorize packages into two types: those reused
from other projects, and those reused from block to
cluster to chip levels.

Finer grained package structuring reduces the Ipiigsiof
unintended dependencies. Packages designed ¢émedrover
multiple projects should be as flat and dependeineg as
possible. This allows re-users of the packageaopull in
additional dependencies, which may cause problefrigpical
package structure involves separate packages fir kelack
level, which are brought together to form packaigesigher-
level environments. The direction of reuse shaitt from
block environments and move upwards. Monolithic
environments are particularly at risk of introduridownward
dependencies as code evolves, creating potentiaulai
dependencies.

When circular compile dependencies do occur, thay loe
resolved by repartitioning code between package$he
extreme solution of creating one huge package,ageed to
have no circular compile dependencies, is alwayspion if
one gets desperate.

B. IMPORTING PACKAGES. The easiest way to use packages is
through a wildcard import, with the “import pkg::Statement.
This gives the importing scope access to all ifiensi inside
the package without having to use explicit impdds each
desired identifier, or prefixing each identifiertvithe package
name. While the latter two methods of packageawsdegal,
they can be overly verbose and unpractical. Hrefiat each
B¥ has the added disadvantage of making it diffioiquickly
determine package dependencies. Thus, using wddca
imports while understanding their disadvantageshe most
practical strategy. These disadvantages are disduselow.

When a package is wildcard imported, the
namespace is widened to include every possible slyfnbm

the package, even the undesired ones, or the twasthe
package designer had no intention of making extigrassible.

Noteworthy is that the labels of enumerated types aso
added. Thus, special care must be made to avaitnga
conflicts, when possible. This is sometimes difficwith

packages containing a lot of code, or where thes ¢ been
split out into multiple sub-files.

Purchased IP may be in package form, but encryptedning
that the user has no way of knowing what a wilddandort
will bring. When the user imports multiple packagthe risk
of naming conflicts between the various packagewitir the
importing scope is even higher. While naming dottl are
legal in some situations, the rules defining howsth are
resolved are lengthy and complex.
convention using reasonable and relatively unigames can
greatly reduce the changes of naming conflictss tawoiding
the task of having to learn SV's name resolutidesu

importerfger environment basis. The use of wrappers onmiha or

encrypted package contents can be viewed as aysafet
precaution.

C. UsING Sus-INcLUDES. When many large classes are defined
in a package, the sheer amount of code can leadriolarge
and difficult to maintain files. It is tempting t®eparate the
package contents into multiple files, then have paekage
definition consist simply of a list of “include &eaents. This
solution is seen often, but several dangers nebe tmanaged,
discussed below.

By separating package code out into other files, dhiginal
context can be easily forgotten. Allowed dependsnowing
to the fact that multiple files make up the comjidla unit, as
well as disallowed ones are not readily evidentfuither

Following a m@mi problem is that the file could be included in npiki places,

resulting in several packages with the same defimit These
packages could then be used together, causing epngbht
import. Specifically, identical type definitionsdluded into
two different packages may not be compatible. Omest

The question of whether package symbols are chaisedremember that with packages, it is no longer reglior

specifically addressed in SV-2009, but not mentibire the
earlier SV-2005 LRM. This has led to the unfortignsituation
of diverging behaviour between different simulatidool
implementations. One tool disallows package chaginby
default, consistent with SV-2009 rules, while amottool

appropriate to implement reuse at the file levéhaisinclude
statements.

The context loss problem can be easily addressdthbing a
clear warning comment at the top of the file inting that

automatically chains all symbols. Theport statement added only the intended package may include the file. ekample is
in SV-2009 was meant to give package designersio#xplshown below.

control on which symbols are chained and visiblentporters
of the higher-level package.
illustrates how the two tools described above arerdent.

package bottom_pkg; int foo; endpackage

package top_pkg;
import bottom_pkg::*;
‘ifndef VCS
export bottom_pkg::*;
“endif
int bar;
endpackage

module importer;
import top_pkg::*;
initial
begin
foo=1; /I from bottom_pkg
bar = foo + 2;
end
endmodule

Note that the tool that automatically chains ak tymbols

The code example vbelo fie: my huge pkg.sv

package my_huge_pkg;
‘include "my_classl.svh"
‘include "my_class2.svh"
endpackage

file: my_classl.svh

/Il WARNING:

/I This file is meant to be used only by

/l “my_huge_pkg.sv”. DO NOT directly include
/[in any other context.

class my_classi,;

endclass
A more robust mechanism, for people who don't read
comments, is to use an #ifdef check with an #ectause to
trigger an immediate compilation error in casesimhtended
inclusion. Modelled after the mechanism used byinClude
files, the main package file would define a unigpes-
processor symbol, then include the various suls-fileEach
included file would check that the symbol is definand

from bottom _pkg also does not support the export statemeffig9er an error if it is not. The previous examphodified to

In effect, the export is automatically implied, whas the LRM
requires the statement to be explicitly presentcfoining to
occur.

The export statement, together with the use of apper
package, can fine tune and control exactly whatoisbe
externally visible. This technique further mitigatthe side
effects of wildcard imports. SV packages have rplieit

mechanism to define certain symbols as private,(ghgough

incorporate this, is shown below.

file: my_huge_pkg.sv
package my_huge_pkg;
“define _IN_MY_HUGE_PKG_
‘include "my_class1.svh"
endpackage

the use of théocal keyword as a modifier), and the wrapper

technique is an alternative to overcome this facthese
wrappers can be tailored to each use case, on prgject or

file: my_classl.svh

‘ifndef _IN_MY_HUGE_PKG_

* ERROR ERROR ERROR

** This file is meant to be used only by

** “my_huge_pkg.sv”. DO NOT directly include
** in any other context.

“error “SV doesn't have this”

“endif

class my_classi,;

endclass

Since the SV pre-processor does not have the “dimective,
inserting text which will cause a compile syntaxoercan be
used to do the same thing.

D. THE PARAMETER PROBLEM.
define constants. They can also be used to taeiligeneric
programming, where the parameterized values cawabed.
The usage of constant parameters in packages lisepidree
and a recommended replacement for pre-processfineddor
constants. This effectively gives a namespacenstants and
avoids the potential problem of multiple (and/omfticting)
pre-processor symbols in the same compilation unit.

The second usage, for generic programming, causesi@us
problem when used in the context of a package. nWhe
function defined in a package uses a parameter, noiglt
think a template function is defined. Howevercsipackages
are not instantiated, there is no way to vary taeameter to
create different specializations of the functiofihe example
below shows the problem for both type and valuaipaters.
The same function defined in a module does notesuffis
problem, since many instances of the modules mayrdeged,
with varying parameterizations.

package utils_pkg;
parameter type T = int;
typedef T T_list[];

/I extend ‘n’ samples right
/I extend ‘m’ samples left
function T_list dwt_extend(T sin[],int n,m);
T sout[$] = sin;
int unsigned size = sin.size();
for (int i=0; i<m; i++)
sout = {sout[2*i+1], sout};
for (int i=1; i<=n; i++)
sout = {sout, sout[$-(2*i)+1]};
return sout;
endfunction

parameter win = 8;
localparam wout = win+1;
function void do_rct(
input bit signed[win:1] rgb[3],
output bit signed[wout:1] ycbcr[3]);
endfunction
endpackage

To overcome this problem, a static class can bd tsevrap
the function. The class can be parameterizedaaoéss to the
function is through the class resolution operatong with the
parameterization. This, however, leads to unswithble
code, a problem if the code is to be used for R&tigh. We
have found that this problem occurs often in maagll
mathematical algorithms meant for a DSP where thddpth

Parameters can be used tdg

of the operands is parameterized. An example efstiution
is shown below.

package utils_pkg;
virtual class colour_trans#(int win=8);
localparam wout = win+1;
static function void do_rct(
input bit signed[win:1] rgb[3],
output bit signed[wout:1] ycbcr[3]);
endfunction
endclass
endpackage

import utils_pkg::*;

initial
begin
bit signed [18:1] rgb[3];
bit signed [19:1] ycber[3];
colour_trans#(18)::do_rct(rgb, ycbcr);
end

E. DEFINING CLASSES AT TOP-LEVEL. Class definitions may
appear in various design elements, but packagesimeoy far
the best place for classes. Alternatives such adulas or
program blocks suffer from problems such as pooessibility
or reusability issues due to hierarchical referance

Users with a VERA background often do not apprecihie
multitude of choices where classes may be defifedVERA,

all classes are typically defined in separate filesluded when
required and exist in a single global scope — imeptwords,
“floating” at top-level. The code example belovustrates
this, with each box representing a separate fitecampile.

class logger {
integer curr_sev;
task put_msg(integer Ivl, string msg);

task logger::put_msg(integer Ivl, string msg)

..}

#include "logger.vrh"
class ahb_trans {

logger log_obj;

task new(logger I) { log_obj =1; }
}

#include "logger.vrh"

#include "ahb_trans.vrh"

class ahb_write_trans extends ahb_trans {
task new(logger) { super.new(l); }

}

#include "logger.vrh"
#include "ahb_trans.vrh"
#include "ahb_write_trans.vrh"
program top {

logger log_obj;

ahb_trans al;

ahb_write_trans a2;

log_obj = new;

al = new(log_obj);

a2 = new(log_obj);

}

While an equivalent structure is possible in S\s tisage style
is not recommended. Not only are these potentiabiy-

reusable, the rules governing such structures (datigm-
units) have changed between SV-2005 and SV-2009.

When class (or other) definitions do not appeaa imodule,
package or program block scope, these “floatinginit@®ns
are part of the compilation unit scope (also cafledit). SV-
2005 specifies that $unit behaves as an anonymacisage.
The consequences of this are significant and negatBince
the package is unnamed, there is no way to refanyoof its
contents outside the compilation unit. Additiogathaving to
adhere to the rules governing packages means tieeiedbunit
may not have hierarchical references. Unable foyethe
advantages of package membership but still subjecits
restrictions, the anonymous package concept isativarbad
idea and should be avoided.

SV-2009 has completely eliminated the term “anonysno
package” from the LRM and changes the semantics
compilation-units to allow hierarchical references.The
reasoning behind this is that compilation-units amet
considered stand-alone, but rather always consdesi¢hin
some other context. This allows for the use ofleygl classes
with hierarchical references (consistent with thERA usage
described above), but the code cannot be reasocabsydered
reusable.

Notwithstanding the relaxation of rules in SV-2008e
recommend against the use of “floating” code in piation-
unit scopes. As previously mentioned, situatioresy marise
where the definition of compilation unit boundarigs
dependent not only on the way the source filespeeified on

stage. In other words, the problem described alpasses
compile, but fails to link. One may wonder why teeme
approach in “C" does not encounter this problemhe key
difference lies in the nature of the object filehigh is low-
level assembly code for the case of a “C” compil&he type
information is long gone, and the linker resolvesnisols,
reporting an error when symbols are not found qlidated.

IV. ADVANCED
PACKAGES)

Packages and classes may be mixed together to rmapte
interesting and useful things.

USe CASES (CLASSES AND

A. SINGLETON IMPLEMENTATION. The pure nature of its
specification means that packages are singletongbfects

with exactly one instantiation. One can use ckssih a

prlivate constructor to also implement the singlettgsign

0 .

pattern and both approaches are equally effective.

Singletons find several uses in testbenches, frdm t
encapsulation of global variables to the creatibriestbench
services such as logging objects and abstractrfasto While
ultimately a question of style, the author hasfteribility to
choose between package- and class-based impleinastat
We find the package-based approach more lightwesglitable
for global variables such as error counters. Tlassebased
approach is more suitable when the singleton id asepart of
another design pattern, such as factories.

B. CALLBACKS AND ABSTRACT BASE CLASSES The value of

the command-ine to the compiler, but also Comp”@ackages being standalone is its reusability. Heweeach

implementation decisions allowed by the LRM andsalg the
control of the user.

Further complicating the issue is the inconsiségmlication of
the rules among different simulators. One prodstcictly
enforces the SV-2005 hierarchical reference
compilation units even as the LRM has changedItvalor it.
Surveying the releases over the past 3 years dhanproduct
shows that early versions falsely allowed hierarahi
references in packages, with later versions cardet produce
a compile error, compliant with SV-2005. The lates/ision
adopts SV-2009 rules, reallowing hierarchical refiees in
compilation units.

Another important issue is the type compatibilityes in SV
(both 2005 and 2009 versions) surrounding compifatinits.

User-defined types and classes residing in the tatigm-unit

scope, as will be the case when top-level inclilde fre used,
are not equivalent to another type with the idetiame and
contents in another compilation-unit. Using thensanclude
file for both compiles, ensuring that the type’smea and
contents are identical, does not make the typewagut. An

“all-in-one” compilation strategy with one large mapilation-

unit solves this problem, but this precludes theaathges of
using separate compile, including the creationilmfaties of
reusable code. Using packages for these useredetypes is a
superior approach, independent of compilation etpat
adopted or how any tool implements compilation-ginit

The type checking that an SV simulator performsucs@fter
all the source files are compiled, at the elaboraflinking)

ruleg f

reuse situation might have slightly different requients in its
interaction with package code. Hierarchical rafees from
package code are not allowed and a workaround B#igand
strings with paths, suggested in [5], violates spé&it of the
rule. We strongly recommend against it. A bettelution,
gsing callbacks, is recommended.

Well-defined and placed callbacks provide a medranior

customization while at the same time keeping ttekage code
closed. This technique is well proven in multipkerification

methodologies and found in software libraries swashthe
standard C library. It is instructive to illusteatrom there the
signal() function, shown below.

signal(int sig, void (*func)(int));

This allows the user to register a callbatikgc , to be called
when the named event occurs. Here, the callbaakiusiction
pointer, reminding us that an object-oriented lagguis not
required for implementations. SV has no functiaingers, so
implementations using abstract base classes am: u3ée
example below illustrates this.

package ebcot_pkg;

/I define callback function interface that
/I *ebcot_enc’ will use.
/I (pure not in SV-2005)
virtual class ebcot_encoder_cb;
pure virtual task push(...);
endclass

function ebcot_enc(data, state,
ebcot_encoder_cb cb=null);
I/ iterate over rows/cols, calling ‘doit’
for (int r=0; r<nrows; r+=4)
for (int c=0; c<ncols; c++)
begin
partial = doit(data,state);
/I execute callback, if it exists
if (cb!=null) cb.push(partial);
end
endfunction
endpackage

/I Application which uses ebcot_pkg::ebcot_enc
module enc(clk, data, data_valid);
import ebcot_pkg::*;
/I customize callback for this application
class my_enc_cb extends ebcot_encoder_cb;
task push(...); ... endtask
endclass

my_enc_cb cb = new;
always @(posedge clk)
/I call encoder, passing in callback
if (data_valid) ebcot_enc(data,state,cb);

endmodule

An abstract base class with a pure virtual metlsodefined in
the package alongside all the other contents. dcheuse
situation, this base class is extended to congréteplement
what the function is to do. An object of this exdmn is then
indicated when the package code is used. The dgaabpve
provides the callback procedurally as part of thyepoint to
the package code. Many other techniques of “regig” the
callback are possible.

C. CONNECTING TESTBENCH COMPONENTS WITH ABSTRACT
BAse CLASSES
description language, with its statically elabodateodule
hierarchy with features from object-oriented prognaing,
with dynamic elements such as class objects. $bisetimes
necessary to merge the two worlds together inthg¢ash. The
combination of classes and packages, along wittraddase
classes is one way to achieve this.

When testbench components (such as transactorigerwas
SV modules need to interface to other class-basstbeénch
components, a bridge needs to be created. Theaiogethat
the module wishes to expose needs to be writtea set of
tasks/functions forming an API. The class-basedhpmment
may assume this API in its abstract base class.forfhe
module-based component

to be globally visible and thus must be implementeda
package. The concrete extension is normally landl defined
in the module, since access to the variables/portghe
module’s scope is required. A handle to an ingaoft the
concrete extension class is obtained through aresaoc
function, which can then be bound to the classdbas®|d.

This technique, an extension of the one describéd]j allows
testbench components, regardless of their
relationship, to communicate with each other.

without
references), or virtual interfaces. While the wutiion in [4]
centred around BFMs, our treatment

Tikiglone

The SV language unifies a hardwar

implements the concretes clas
extended from this virtual base. The abstract loéses needs

hierzathi
the use of bhard-coded XMRs (cross-modul

is more generalendmodule

abstracting the communication with an APl embodiedan
abstract base class. Not only a class object andula
instance can be bridged, but also two modules dsm lae
bridged. One recent project uses this techniquenrtbody the
API of a module-based testbench-top (test harne$syhich
there were several varieties including multiplecBldevels to
chip level harnesses. This API was then passedseries of
testcases (scenarios), which could be implemenitbereas
top-level modules or classes.

An example of this technique is shown below. A oied
based memory with a set of backdoor tasks existshén
statically elaborated world. The API for thesektasan be
exported and connected to any other component, &eother
module (as shown) or another class (not shown). |

components are independent, with only a single epléin
‘harness’) where everything is tied together.

The package that holds the abstract base classsesing the
APl is shown below:

package mem_access_pkKg;
virtual class mem_access;
pure virtual function bit [7:0]
backdoor_read(bit [31:0] addr);
pure virtual function void
backdoor_write(bit[31:0] a, bit[7:0] d);
endclass
endpackage
The module based memory model, ‘ddr’, implementktaor
memory access functions. The module-based versidhe
functions may be called using hierarchical refeeencThe
class-based version may be used by any compongartditess
of hierarchy, once a handle to the API object hasnb
obtained.

module ddr;
bit [7:0] mem_array[bit[31:0]];
/I backdoor memory access functions
function bit [7:0] backdoor_read(
bit [31:0] addr);
return mem_array[addr];
endfunction
function void backdoor_write(
bit [7:0] d, bit[31:0] addr);
mem_array[addr] = d;
endfunction

/I implement class-based version
import mem_access_pkg::*;
class my_mem_access extends mem_access;
function bit[7:0] backdoor_read(
bit[31:0] addr);
return ddr.backdoor_read(addr);
endfunction
/I NB:arguments swapped for illustration
function void backdoor_write(
bit [31:0] a, bit [7:0] d);
ddr.backdoor_write(d,a);
endfunction
endclass

/I definition of object, with accessor
my_mem_access _obj;
function mem_access get_mem_access();
if (_obj==null) _obj=new;
return _obj;
endfunction

11

Al

The module below shows how the class-based APllendle
backdoor access functions to be used, without kedgd of
the hierarchical relationship between the two meslul Only
the package holding the abstract base class ige€equ

module sister_module;
import mem_access_pkg::*;
mem_access ma_handle;
function void put_mem_access(mem_access a);
ma_handle = a;
endfunction

initial
begin
wait (ma_handle != null);
ma_handle.backdoor_write(100, 8'h2b);
$display (“read=%x",
ma_handle.backdoor_read(100));

end

The top level testbench module ties everything ttogreand is
the only place where the hierarchical relationstfipsddr and
u_oth) are used.

module harness;
ddr u_ddr();
sister_module u_oth();

initial

begin

/I this triggers u_oth to do mem accesses
u_oth.put_mem_access(u_ddr.get_mem_access);
#10;

/I again, but with hierarchical reference

/I to functions in u_ddr
u_ddr.backdoor_write(8'h45, 100);
$display (“read=%x",

u_ddr.backdoor_read(100));

end

endmodule
Without the use of packages to store the abstrase lelass,
this technique becomes hard to implement. Oneusanan
include file for the class, including it in eaclagé that requires
it. However, this runs into the type compatibilpyoblems
described previously.

Alternatives to this approach include using hardetb XMRs
from the class to module in question. Not onlythg not
reusable due to the hard-coded XMRs, this is nendegal
when the class is defined in a package or progtaokiscope.

D. BINDS, PACKAGES, AND WHITE-BOX TESTING. The
combination of the SV bind construct along with &clkage
implementing a global symbol-table allows verificatcode to
be deeply embedded in a DUT with no hard-codedatidical
references. A module or interface with the veafion code,
be it assertions, a monitor, or coverage colleisttwound to the
DUT module in question. Access to the resultshef monitor
or coverage collector is normally problematic, riegg
hierarchical references through the DUT modulednihy to
reach the target.

By using packages, each monitor can define an ARl a

register it in a global symbol table implementedha package.
The end-user of the monitor/coverage result carsacthe API

through the package. The symbol table acts asg@lobrx and
avoids the need for hierarchical references.

E. FoorR MAN’s INHERITANCE. Packages containing variables
and tasks/functions can be compared to classesdaith and
methods. However support for inheritance of paekag not
as flexible as that in classes. A so-called poans
inheritance mechanism is possible, allowing for tista
(compile-time) polymorphism but not the dynamic
polymorphism that classes can implement. A wrapaekage
can be created which redefines some of the furgtionthe
underlying package, provided the prototypes aretidal. In
the extreme case where all functions are redefmedmplete
substitute package can be made, with a different
implementation of all functions provided by the kage.

It is interesting to note that VHDL, a non objecicoted
language, is capable of this by strictly separathrg package
implementation from its declaration. Modules framdinary
Verilog can be said to have the same capability.

F. Mixep Use oFVHDL AND SV PAckaGES. Mixed language
simulation is sometimes a necessary evil. The duation

that we see most often is an SV testbench verifgingHDL

design. Often, a rich set of records, types andtfans on the
VHDL side is defined in packages. Unfortunatelgitiner SV
nor VHDL LRMs specify how these definitions canrhapped
across the language boundary, even though mosagadgtems
have exact parallels in SV. Tool specific impletagions,

often as simple as adding an additional compile-fiwitch, are
available.

V. CONCLUSION

We have given an overview of the SystemVerilog paek
construct, from its motivation to the charactecstihat make it
an important feature of the language.

Practical issues that arose when using packageslimprojects
were described. Suggestions to avoid or overctresetissues
were made. We further discussed how packages lasdes
could be used together to implement interestingtaats.

REFERENCES

[1] “IEEE Standard for SystemVerilog — Unified Hardware
Design, Specification, and Verification Languadg&EE
Std 1800-2005, 2005.

[2] “IEEE Standard for SystemVerilog — Unified Hardware
Design, Specification, and Verification Languag&EE
Std 1800-2009, 2009.

[3] “IEEE Standard Verilog Hardware Description Langeidg
IEEE Std 1364-2001, 2001.

[4] D. Rich, J. Bromley. “Abstract BFMs Outshine Virtua
Interfaces for Advanced SystemVerilog Testbenches”.
DVCon 2008.

[5] “XMR in Testbench-to-DUT or Top-Module Tasks.”
$VCS_HOME/doc/UserGuide/pdf/VCSLCAFeatures,poll 79.
Version C-2009.06. June 2009.

[6] Xilinx library code.

$XILINX/vhdl/src/simprims/simprim_Vcomponents.viahd

$XILINX/vlog/src/glbl.v. Release v11.1i. Apr. 2009.

