
Using SystemVerilog “Interfaces”

as Object-Oriented RTL Modules

1st Author

1st author's affiliation
1st line of address
2nd line of address

Telephone #, incl. country code
1st author's email address

Geoff Barnes
Thales Systems Canada
1 Chrysalis Way, Ottawa
Ontario, Canada, K2G 6P9
+1.613.723.7000x3012

Geoffrey.barnes@ca.thalesgroup.
com

3rd Author
3rd author's affiliation
1st line of address
2nd line of address

Telephone #, incl. country code
3rd author's email address

ABSTRACT
This paper will show how SystemVerilog interfaces can be used as

objects when writing RTL. While much has already been written

about the interface and how it can abstract the connection between

modules, this paper focuses solely on using the interface to increase

abstraction within modules.

Categories and Subject Descriptors
B.5.2 [Register-Transfer-Level Implementation]: Design Aids –

hardware description languages

General Terms
Design, Languages, Verification.

Keywords
Flop – Flip-flop

OO – Object Orientation

RTL – Register-Transfer-Level

1. I(TRODUCTIO(

The typical RTL module written in Verilog tends to contain a lot of

incidental “boiler plate” code. Boiler plate code is generally

undesirable as it is repetitive, uninteresting and wastes precious

designer effort. Its presence is in part due to synthesis, as full

expressive use of the language is restricted to the synthesizable

subset. This often confines the designer to the narrow coding styles

that can be reliably inferred into gates. This begs the question: why

write something in an abstract way, when there is only one

prescribed "way" to write it? Perhaps a more direct, declarative

approach is needed. Take the ubiquitous “flip-flop” for example -

each register is typically coded in the same repetitive manner, even

though they are pervasive in digital design.

Another reason for boiler plate code is the concurrent nature of

HDLs. Traditional sub-programs borrowed from the software world,

such as “tasks” and “functions”, can naturally capture and represent

procedural code. Unfortunately, they cannot be used to capture the

important temporal and parallel nature of RTL that is represented by

always blocks and other concurrent structures.

The interface construct provides some unique features which can be

exploited to address these issues.

2. BACKGROU(D O(I(TERFACES

The interface construct introduced in the SystemVerilog standard is a

very useful addition. As the name implies, its primary purpose is to

simplify the wiring between various blocks in a hierarchy. In its

simplest form, it acts as a namespace to “bundle” a set of related

signals for use in a portlist. This paper assumes the reader is

generally familiar with SystemVerilog and the interface construct.

Information about interfaces is plentiful on the internet and can be

found in the SystemVerilog LRM [1].

A less obvious aspect of interfaces is that they can act as “pseudo”

modules. The interface can have a portlist, be parameterized and

contain behavioural code, such as always blocks. Unlike a true

module however, the interface cannot instantiate other modules -

limiting it to a “leaf” status in the design hierarchy. The key to our

modelling solution is that the interface permits the use of hierarchical

reference to its internal members. While modules support this feature

only for simulation, interfaces support this feature for both

simulation and synthesis.

3. BACKGROU(D O(OBJECT

ORIE(TATIO(

Exactly what makes a language or a construct “Object Oriented” is

often an academic argument that is beyond the scope of this paper. It

is generally accepted, however, that at the heart of OO is the ability

to create a class – that familiar construct which combines data and its

operations. Closely associated with this, is the concept of decoupling

a class' internal implementation from its “clients” in the outside

world via a defined interface. Most authorities on the subject will

summarize the primary features of object-orientation to include[7]:

• Encapsulation – The ability to contain functionality and

data within a namespace and control its access.

• Abstraction – The ability to abstract code to an appropriate

level to serve the problem at hand.

• Polymorphism – The ability to implement a class or

interact with an object while being “type” agnostic.

• Inheritance – The ability to create new class, by extending

or modify an existing class.

For our purposes, we'll view OO in a pragmatic light and will

consider most important those aspects that can improve our hardware

descriptions. While we don't expect the quality of the circuits we

create to be better, we strive to make the process behind creating

them better. In HDL based design, “better” code could mean more

succinct code, less code repetition, improved readability, better

reuse, etc. Using examples, we'll apply explore how well interfaces

can provide these benefits for RTL.

4. USI(G I(TERFACES AS OBJECTS

4.1 The Basics

This first example is to illustrate the basic coding style that will be

used throughout this paper. Figure 1 shows how a simple inverter

can be expressed with an interface.

Since this example is so trivial, it is hard to see the value here.

Nevertheless, it demonstrates some key features of the interface.

First, it shows that the interface is a namespace. This namespace

acts as a user-defined type and can be instantiated much like a class.

Secondly, the example shows how the interface can encapsulate

concurrent behaviour. In this case, an inverter was defined by the

always_comb block. Thirdly, the example demonstrates how an

interface’s members can be accessed hierarchically. By using the

“dot” notation instead of ‘ports’, the construct’s interface is less

verbose than that of a module. This style is analogous, as least

superficially, to using “getters” and “setters”. However, it takes more

than “dot” notation to make a construct useful.

4.2 Basic Encapsulation

Writing RTL can require a lot of tedium. Many common constructs

require the declaration of intermediate wires and regs. This clutters

the code and can often obfuscate even the simplest intent. An

example of this could be the code required to infer a tristate driver, as

shown in Figure 2.

We see here that at least five lines of code are required to create the

necessary, wires and regs for the tri-state driver. While five lines

does not sound excessive, the wire and reg declarations are simply

incidental and do not add any value to the module description.

Consider the excessive clutter if the design calls for many more

instances of the tri-state driver.

With an interface, however, a cleaner solution is possible. Figure 3

demonstrates how the tri-state driver can be re-coded with an

interface:

// Create interface to capture tri-state logic and
// incidental wires
interface tripin #(parameter type t = logic) (inout pin);
 t in, out;
 logic en;
 assign in = pin;
 assign pin = en ? out : 'z;
endinterface

interface inverter ;
 logic a;
 logic anot;
 always_comb anot = ~a;
endinterface

module top (
 input some_input
 ,output logic some_output
);

inverter my_inv();

always_comb begin
 my_inv.a = some_input;
 some_output = my_inv.anot;
end

endmodule

Figure 1 : Basic Interface Example

module tri_example (inout io_old_school);

reg old_school_en;
reg old_school_out;
wire old_school_in;

assign old_school_in = io_old_school;
assign io_old_school = old_school_en ? old_school_out : 'z;

always_comb begin
 old_school_en = <RHS>;
 if (old_school_in) begin
 ...
 end
 old_school_out = <RHS>;
end

endmodule

Figure 2 : Inferred Tri-state

Figure 3 : Tri-state coded as Interface

The example in Figure 4 shows how the interface creates a neater

and more structured solution. The multiple lines from the previous

example are reduced to one meaningful line as the incidental nets are

hidden within the interface. Also, there is a side benefit that the

code's design intent is explicitly stated.

While we could have just as easily captured the tri-state driver with a

traditional module, we would still require the incidental net

declarations. Accessing a module via a port list and wires is far

clumsier than the tidier access provided by the interface. It is the

combination of encapsulation and convenient access to its members

that makes the interface an appealing construct.

4.3 A More Useful Example

Given that the information age is completely dependent on

synchronous sequential logic, we will focus our attention there.

A common way to depict logic gates and registers at the RTL level is

the “cloud-flop” paradigm. The “cloud” represents combinatorial

logic, and the “box” on the right represents synchronous logic, which

is typically some variation of a D flip-flop.

Figure 5 : 'Cloud' to 'Flop' depiction of Sequential Logic

At this level of abstraction, we represent the flip-flop simply as a

box. The implementation details of how it ‘flips’ and ‘flops’ are not

particularly relevant – we simply care that it works as advertised.

Yet, when a flip-flop is desired in Verilog, we need to “infer” one

and are forced to repeat a piece of code similar to Figure 6.

It could be argued that this always block exposes more low-level

details than appropriate for the “Register Transfer” level of

abstraction. The interesting parts of the circuit are really the clouds

of logic between the flip-flops, as this is where the decisions are

made. The flip-flop itself is simply a delay and storage element.

Furthermore, the vast majority of the flip-flops in a design are

identical in nature – typically positive-edge clocked, asynchronously

reset to zero. The always block required to infer the flip-flop shows

itself as 'boiler-plate' and is a good candidate for encapsulation.

Rewritten as an interface, the D flip-flop may look like the code

shown in Figure 7.

module tri_example (inout io_new_way);

tripin new_way (io_new_way);

always_comb begin
 new_way.en = <RHS>;
 if (new_way.in) begin
 ...
 end
 new_way.out = <RHS>;
end

endmodule

Figure 4 : Tri-state example

always @(posedge clk or negedge reset_n)
begin
 if (~reset_n) begin
 q <= 0;
 end else begin
 q <= d;
 end
end

Figure 6 : Inferred Flip-Flop

interface dflop #(type t = logic // deferred type usage
 ,t reset_value = '0
)
 (input clk,reset,en); // The ports for all our flip-flops

 t q,d; // Familiar d flip-flop naming

 always_ff @(posedge clk or negedge reset) begin
 if (!reset) begin
 q <= reset_value;
 end else if (en) begin
 q <= d;
 end
 end//always

endinterface

// Example : Half-rate Counter
module dflop_usage_example (
 input clk ,input reset
 ,input en ,output [3:0] foo
);

dflop toggle (clk,reset,en); // single flip-flop

dflop #(logic [3:0]) my_counter (clk,reset,en); // 4-bit counter

always_comb begin
 toggle.d = ~toggle.q;
 my_counter.d = my_counter.q;
 if (toggle.q) begin
 my_counter.d = my_counter.q + 1;
 end
end

assign foo = my_counter.q;

endmodule

Figure 7 : Synchronous Example

In this example, a simple, reusable, general purpose flip-flop object

was created with an interface. The basic benefit is that the coding

details of the flop's always block are contained within the interface.

The “client” of the flip-flop then need only care about providing the

“cloud” feeding the flop's 'd' input. The current state of the flop, is

accessed via the 'q' member of the interface.

Arguably, this style could be called a “structural” style of RTL

coding. Older HDLs, such as ABEL and Altera's AHDL provide

primitive constructs not unlike the dflop interface above. If nothing

else, this style has the benefit of being WYSIWYG (What you see is

what you get) . When reviewing this code, for example, it is blatantly

clear at declaration time that “toggle” is intended to be a flip-flop.

From an object-oriented point of view, however, the style may more

appropriately be considered a “declarative” style of writing RTL.

The general benefit is caring only about the “what” and not the

“how”. This demonstrates how the interface supports abstraction,

since it provides a way to encapsulate the “how” details of inferring

synchronous logic, and lets us model it at an appropriate level of

detail.

This example also demonstrates a useful feature provided by

interfaces – parameterization. Like a module, an interface can be

written in a generic way and then later configured with specific

values. Parameters in this example permitted each instance to set its

own data type, reset value, etc. This may be considered to

demonstrate polymorphism since the actual data type of the ‘dflop’

can be deferred, yet the defined operations related to that data need

not change.

4.4 Adding Properties for Abstraction

The approach used to create a simple flip-flop, can be extended to do

some more interesting things. In synchronous design and in

particular when designing control logic, there is often the need to

code incidental “utility” flip-flops related to the main control signals.

For example, given an input, the designer may want to synchronize

the signal, delay it, perform edge detection, and so on. While these

operations are important, the details of coding them are largely

uninteresting with respect to the main design intent. They are yet

another example of 'boiler-plate' code found in RTL. A typical

example is shown in Figure 8.

Embracing the OO paradigm, we can treat the “utility” flops as

metadata - information derived from, or related to the primary

concern. In this light, they can be considered as 'properties' for the

flip-flop interface definition. An example of adding such properties

to the dflop interface is shown in Figure 9.

// Example : Count falling edges of an asynchronous signal
module example_without_interface (
 input clk
 ,input reset
 ,input async_count_en
 ,output logic [3:0] count_out
);

// Sync and edge detect – uninteresting “utility” code
logic async_count_en_mh1;
logic async_count_en_mh2;
logic sync_count_en;
logic sync_count_en_d1;
logic sync_count_en_falling_edge;

always_ff @(posedge clk or negedge reset)
begin
 if (reset == 0) begin
 async_count_en_mh1 <= 0;
 async_count_en_mh2 <= 0;
 sync_count_en_d1 <= 0;
 end else begin
 async_count_en_mh1 <= async_count_en;
 async_count_en_mh2 <= async_count_en_mh1;
 sync_count_en_d1 <= sync_count_en;
 end
end

assign sync_count_en = async_count_en_mh2;
assign sync_count_en_falling_edge
 = ~sync_count_en & sync_count_en_d1;

// Count Edges
logic [3:0] count;

always_ff @(posedge clk or negedge reset)
begin
 if (reset == 0) begin
 count <= '0;
 end else begin
 if (sync_count_en_falling_edge) begin
 count <= count + 1;
 end
 end
end

assign count_out = count;

endmodule

Figure 8 : Example without Interfaces

The following properties were added to the flop : q1, q2, q3,

rising_edge, falling_edge, any_edge. The properties q1, q2, q3,

represent “follower flops” or delayed versions of the main flop. The

remaining properties indicate how the signal is switching. These are

all automatically maintained by the interface, alleviating the need to

manually recode these incidental details. Rewriting the previous

example using the improved dflop interface, the edge counting

module is now more compact, as shown in Figure 10. This revised

example reduces the fifteen or so lines of “utility code” to essentially

two concise lines.

Another interesting part of this example is how the interface was

configured to synchronize an input from another clock domain. The

“user” of the flop simply enabled this feature with a parameter and

this detail was handled by the interface.

4.5 Finite State Machines with Polymorphism

By reusing the basic dflop interface from previous examples, just

about any synchronous structure can be built. Since the actual data

'type' of the flip flop was deferred through parameters, any arbitrary

data type, both standard and user defined may be used. By specifying

a user-defined enumeration type, we automatically have abstract

state registers for an FSM. This demonstrates the interface's basic

support for static polymorphism. An example is shown in Figure 11.

This approach has the added side-effect of enforcing the common

coding style of separating the “synchronous” and “combinatorial”

always blocks[3]. The synchronous block is hidden in the interface,

and the combinational block is defined in the calling module.

Since FSMs are widely used in designs, it could be useful to create a

specialized FSM interface. Such an interface is shown in Figure 12.

interface dflop #(
 type t = logic
 ,t reset_value = '0
 ,async = 0 // Expect an async input
)
 (input clk,reset,en);

t q,d;
t mh1,mh2; // 2 stage hardening flops

// "Attributes" for the flip-flop:
t q1; // follower flip-flop, 1-clock delayed version of flop
t q2; // We could add any number of follower flops if desired
t q3; // Perhaps use a parameter sized array

// Signal will be high when flop goes from low to high
wire rising_edge = q & ~ q1;
// Signal will be high when flop goes from high to low
wire falling_edge = ~q & q1;
// Signal will be high with any change of the flop
wire any_edge = q ^ q1;

always_ff @(posedge clk or negedge reset) begin
 if (!reset) begin
 q <= reset_value;
 q1 <= '0;
 q2 <= '0;
 q3 <= '0;
 mh1 <= '0;
 mh2 <= '0;
 end else if (en) begin
 mh1 <= d;
 mh2 <= mh1;
 q <= async ? mh2 : d;
 q1 <= q;
 q2 <= q1;
 q3 <= q2;
 end
end//always

endinterface

Figure 9 : Interface with properties

// Example : Count falling edges of an asynchronous signal
module example_with_interface (
 input clk
 ,input reset
 ,input async_count_en
 ,output logic [3:0] count_out
);

// Sync and Edge Detect - Compact code
dflop #(.async(1)) sync_count_en (clk,reset,1'b1);
 assign sync_count_en.d = async_count_en;

// Count Edges
dflop #(logic [3:0]) count (clk,reset,1);

 always_comb begin
 count.d = count.q;
 if (sync_count_en.falling_edge) begin
 count.d = count.q + 1;
 end
 end

 assign count_out = count.q;

endmodule

module fsm_example (
 input clk
 ,input reset
 ,output [1:0] state_out
) ;

 typedef enum logic [1:0] { A , B , C , D} my_states;

 dflop #(.t(my_states)),.reset_value(D)) st (clk,reset,1'b1);

 always_comb begin
 st.d = 'x;
 case (st.q)
 A : st.d = B;
 B : st.d = C;
 C : st.d = D;
 D : st.d = A;
 endcase
 end

 assign state_out = st.q;

endmodule

Figure 10 : Example using properties

Figure 11 : FSM Example

This version of the FSM interface adds a little “syntactic sugar” by

renaming the 'd' and 'q' members to 'next' and 'state' as per a common

FSM convention[3]. A specialized FSM interface would also have

the benefit of enhanced readability and could provide a natural place

for FSM-specific debug code and assertions.

4.6 Abstracting Clock Domains

In the synchronous examples shown so far, each interface used a

traditional portlist to define its clock, reset and clock enable signal.

This provides an opportunity for further improvement, as we can use

an interface in its typical role as 'ports'. An example is shown in

Figure 13.

In this example, a specialized “clock_domain” interface was created

by bundling together a clock, a reset and a clock enable signal.

Abstracting the clock domain in this way may be useful when

writing a block with multiple clocks domains. It allows the design

intent to be explicitly stated and provides a single point of control for

code maintenance.

// Purpose-built FSM interface
interface FSM
 #(type t = logic, t resets_to = '0)
 (input clk,reset,en);

t state;
t next_state; // FSM "state" and "next_state" convention

always_ff @(posedge clk or negedge reset) begin
 if (!reset) begin
 state <= resets_to;
 end else if (en) begin
 state <= next_state;
 end
end//always

// Assertions?
// <Your favourite assertions here>

endinterface

module fsm_example2 (input clk, input reset , output logic out) ;

 typedef enum logic [1:0] {A,B,C,D} my_states;

 FSM #(.t(/*my_states*/logic [1:0]),.resets_to(D)) foo
 (clk,reset,1'b1);
// note : Synthesis tool did not accept the ‘enum’ but
// took the logic equivalent

always_comb begin
 case (foo.state)
 A : foo.next_state = B;
 B : foo.next_state = C;
 C : foo.next_state = D;
 D : foo.next_state = A;
 endcase
end

assign out = foo.state == D;

endmodule

// Create a wire bundle representing a "clock domain"
interface clock_domain (input clk,reset_in,en);

 logic reset;
 assign reset = reset_in;

 modport domain (input clk, reset_in, en , reset);

endinterface

// dflop recoded to use interface in portlist
interface dflop #(type t = logic,t reset_value = '0)
 (
 interface domain // any interface will do
);
t q,d;

always_ff @(posedge domain.clk or negedge domain.reset)
begin
 if (!domain.reset) begin
 q <= reset_value;
 end else if (domain.en) begin
 q <= d;
 end
end//always

endinterface

// Example : Synchronize a signal from another clock domain
module example_A (
 input clkA
 ,input areset_sync
 ,input async_in
 ,output logic syncA
);

// Synchronize the async reset
clock_domain async (clkA,areset_sync,1);

dflop reset_meta (async.domain);
dflop reset_sync (async.domain);
 assign reset_meta.d = 1;
 assign reset_sync.d = reset_meta.q;

// Another domain using the synchronized reset

clock_domain A (clkA,reset_sync.q,1);

// Declare some discrete flops to harden async_in
dflop harden1 (A.domain); // Compact syntax
dflop harden2 (A.domain);
dflop harden3 (A.domain);

always_comb begin
 harden1.d = async_in;
 harden2.d = harden1.q;
 harden3.d = harden2.q;
 syncA = harden3.q;
end

endmodule

Figure 12 : Specialized FSM Example

Figure 13 : Clock Domain Example

In addition to being a simple port bundle, the clock_domain interface

can be extended to provide extra utility. An example could be the

addition of an optional reset synchronizer. The details of the reset

synchronizer are hidden from the user, but are conveniently ready to

use if required. This is demonstrated in Example 14.

From an OO point-of-view, this is another example of both

abstraction and polymorphism. The clock domain was abstracted by

modeling it as a single construct with built-in behaviour.

Polymorphism was demonstrated since the dflop interface could

accept any interface as it's “clock_domain”. As long as the supplied

interface supports the 3 referenced members (clk,reset,en), the dflop

interface is happily agnostic to other details. In this example, the

same dflop interface accepted a modified variation of the basic

'clock_domain' interface.

4.7 Adding Assertions

Encapsulation is not only useful for RTL code, but can also benefit

the reuse of assertions. Assertions associated with the RTL in the

interface can be added to increase the robustness of the design.

For example, an interface containing synchronous logic could check

for proper synchronous input or unexpected floating input. A

specialized interface containing synchronizers could check for

minimal pulse widths, such as in described in [6]. Refer to Figure

15.

A library of well-defined reusable interfaces with built-in assertions

could prove invaluable by automatically reusing best-practices.

4.8 Code Re-factoring

Abstracting away some of the low-level design details provides an

increased opportunity for code re-factoring. In the previous example,

internal details of the “dflop” interface could easily be changed while

not breaking the main code. For example, the always_ff block could

be recoded to use a different clock edge or a synchronous reset.

Doing such a change would typically require manual editing or a

sophisticated script to change every always_ff block in the design.

Even more extreme re-factoring is possible. An example could be

adding “triple modular redundancy” (TMR) to the sequential

portions of a circuit, such as in [8]. This technique is used to guard

against “single-event-upsets” (SEU) by using redundant logic and

voting circuits.

Figure 16 : “Triple Modular Redundant” flip-flop

interface synchronizer #(
....
property p_stability;
 @(posedge clk)
 !$stable(d) |=> $stable(d) [*2];
endproperty : p_stability

property p_no_glitch;
 logic data;
 @(d)
 (1, data = !d) |=>
 @(posedge clk)
 (d == data);
endproperty : p_no_glitch

assert property(p_stability);
assert property(p_no_glitch);

endinterface

// Example : Count falling edges of an

// Similar to previous domain, but with an optional reset
// syncer
interface clock_domain #(harden_reset = 0) (input
clk,reset_in,en);

 logic [1:0] reset_mh;

 always_ff @(posedge clk or negedge reset_in)
 if (!reset_in)
 reset_mh <= '0;
 else
 reset_mh <= {reset_mh,1'b1};

 logic reset;
 assign reset = harden_reset ? reset_mh[1] : reset_in;

 modport domain (input clk, reset_in, en , reset);

endinterface

//
// Example : Synchronize a signal from another clock domain
//
module example_B (
 input clkB
 ,input async_reset
 ,input async_in
 ,output logic syncB
);

// Reset Syncer built-in
clock_domain #(.harden_reset(1)) B (clkB,async_reset,1);

dflop harden1 (B.domain);
dflop harden2 (B.domain);
dflop harden3 (B.domain);

always_comb begin
 harden1.d = async_in;
 harden2.d = harden1.q;
 harden3.d = harden2.q;
 syncB = harden3.q;
end

endmodule

Figure 15 : Assertions in interface

Figure 14 : Domain with built-in reset synchronizer

The “dflop” interface can be modified, as in Figure 17, to infer the

redundant logic and still be compatible with the previous examples:

5. BE(EFITS OF THIS APPROACH

The preceding examples have shown some of the interesting

possibilities provided by the interface construct. In particular, we

have shown that the interface can support at least three features of

object-orientation: encapsulation, abstraction and polymorphism. In

conjunction, these concepts can provide the following benefits:

• More compact RTL:

o Encapsulation hides 'incidental' logic.

o Repetitive concurrent blocks can be

encapsulated.

o Derived logic encapsulated and automatically

available.

• More readable RTL:

o Due to compact code.

o Abstraction results in explicit design intent.

• Better reuse:

o Objects can enforce design convention and best

practices.

o Objects can integrate with procedural code.

• Improved Maintenance:

o Succinct code is inherently easier to maintain

o Polymorphism and abstraction promote easier re-

factoring.

It should be noted that the examples in this paper failed to

demonstrate inheritance. This will be addressed in a later section.

5.1 Other Possibilities

SystemVerilog is a substantial language, so there may be many ways

to take advantage of the approach shown in this paper.

Aside from assertions, specialized interfaces could also be a

convenient and natural place to contain debug code. One example

could be the jitter emulation technique shown in [6]. This technique

involves adding randomization code to emulate metastability in

synchronizing flip-flops.

We have focused almost entirely up to this point on the front-end

part of the design process, but it may be possible to obtain benefits in

the back-end phases as well. By adopting a meaningful naming

convention for interface members, it is easier to apply wildcard

constraints to a netlist. Reusing the example of a synchronizer, the

input flop of the synchronizer could be named “async_in”. This net

name may carry over to the netlist and be able to identify the end of a

false path.

6. USI(G THIS APPROACH

While an entire design could be written using the approach shown in

this paper, it is likely not practical to do so at this point in time. The

major hurdle is tool support, namely synthesis. Advanced synthesis

support for SystemVerilog still appears to be precarious, in the

author’s opinion, for typical FPGA synthesis tools. While an

exhaustive analysis was not carried out, feature support across

vendors tends to be inconsistent, making some code non-portable.

Nevertheless, the main examples presented in this paper were

synthesizable with a FPGA synthesis tool from a major EDA vendor.

Some of the simpler examples were successful even with a FPGA

vendor supplied synthesizer. The quality of the results were checked

simply by examining the resultant netlist in a netlist viewer. Initial

results are encouraging and indicate this approach may be more

practical in the future as tools improve.

�ote: The example in Figure 12 did have to be modified for synthesis as

noted. This appears to be due to an oversight in the tool, and not a
fundamental misuse of the language.

Simulation support, as expected, is generally excellent, as

SystemVerilog was adopted early for its verification features. It is

unknown how other tools such as linters, formal tools, etc would

treat this coding style.

7. FUTURE E(HA(CEME(T –

I(HERITE(CE

There is currently no way in which an interface can be derived from

another. It would be useful, however, if the designer could “extend”

an existing interface by adding or overriding properties, always

blocks, functions, etc. Consider the hypothetical example shown in

Figure 18.

interface dflop #(type t = logic , t reset_value = '0)
 (input clk,reset,en);

t q,d;

genvar i;

localparam TMR = 3;

t vote [0:TMR-1]; //pragma attribute vote preserve_signal true

generate for (i=0;i<TMR;i++) begin : TMR_insertion

always_ff @(posedge clk or negedge reset) begin
 if (!reset) begin
 vote[i] <= reset_value;
 end else if (en) begin
 vote[i] <= d;
 end
end//always

end
endgenerate

assign q = vote[0]&vote[1] | vote[0]& vote[2] | vote[1]&vote[2];

endinterface

Figure 17 : TMR flip-flop

In 'child1', we simply replaced the default 'behaviour' with our own

version, letting us keep what we wanted to as-is and adjust just one

aspect of the interface to re-purpose the code. In 'child2', we kept the

logical behaviour, we could say, of the circuit, but changed its

concurrent behaviour by specifying a new 'main1' always block.

Providing such an enhancement to the language would allow more

flexibility and reuse. Inheritance is considered by some to be the key

differentiator between object-based design versus proper object-

oriented design.[2]

8. REPLACI(G MODULES WITH

I(TERFACES

Given that the interface is a hierarchy element much like the

traditional module, we could conceivably create designs based

entirely on interfaces. In the simplest form, the interface can act as a

practical module without a portlist. One could argue that the

interface is essentially a module with a flexible instantiation syntax

since a port mapping is not required. Port direction is generally not

an issue inside the digital core of a design, and as designs get bigger,

many modules and thousands of lines of RTL spend their entire

existence nowhere near an IO buffer! It may be acceptable then to

use the interface for logical design partitioning, and reserve the

module for cases where a physical partition is likely. This is

consistent with the synthesis tools, which tend to “dissolve” the

interface during synthesis[4].

However, there is potential for a “hybrid” approach. Since an

interface has an optional portlist, those signals within the portlist

could identify the “hard” ports of a design. As a top level, these

would become physical pins. Other nodes, which are essentially

'public' members but not ports, would simply remain as internal

nodes. If the block is used as a leaf module, then those nodes can be

optionally connected as we have shown.

Currently, using interfaces instead of modules for general purpose

hierarchy is not practical. The main limitation is that interfaces

cannot instantiate modules. Therefore, instantiating an existing piece

of module-based IP will not work. It would be an interesting

enhancement to the language to permit interfaces to instantiate

modules. Alternatively, most of the examples in this paper could be

module-based if that construct permitted hierarchical access to its

members.

9. CO(CLUSIO(

In traditional Verilog, there were limited ways to encapsulate and

abstract portions of RTL code. While the traditional module provides

encapsulation, its portlist makes for a clumsy and verbose connection

with procedural code. With SystemVerilog, there is some hope with

the interface construct. When used as “pseudo modules”, interfaces

permit the designer to encapsulate common and pervasive code into

predefined templates and use them as objects in design descriptions.

10. ACK(OWLEDGME(TS

Thanks to Neil Johnson of XtremeEDA and to David Wellings of

Thales Systems Canada for their feedback and input.

11. REFERE(CES

[1] IEEE P1800™/D6(colored) Draft Standard for SystemVerilog:Unified
Hardware Design, Specification and Verification Language

[2] Object-Oriented Analysis and Design with Applications 2nd edition,
Grady Booch, 1994

[3] Synthesizable Finite State Machine Design Techniques Using the New
SystemVerilog 3.0 Enhancements, Cliff Cummings, SNUG 2003

[4] SystemVerilog in Use : First RTL Synthesis Experiences with Focus on
Interfaces, Peter Jensen, Thomas Kruse, Wolfgang Ecker, SNUG Europe

2004

[5] SystemVerilog : Interface Based Design, Peter Jensen, Thomas Kruse,
Martin Zambaldi

[6] Pragmatic Simulation-Based Verification of Clock Domain Crossing
Signals and Jitter using SystemVerilog Assertions, Mark Litterick, DVCON

2006

[7] Wikipedia : http://en.wikipedia.org/wiki/Object-oriented_programming

[8] Functional Triple Modular Redundancy (FTMR) VHDL Design
Methodology for Redundancy in Combinatorial and Sequential Logic, Sandi

Habinc, Gaisler Research, 2002

interface counter (input clk,reset,en);

 logic [3:0] q,d;

 function void behaviour;
 d = q + 1;
 endfunction

always_ff @(posedge clk or negedge reset) begin : main1
 if (!reset) begin
 q <= 0;
 end else if (en) begin
 behaviour();
 q <= d;
 end
end//always

endinterface

// 'Child' interface #1
interface child1 extends counter; // ports inherited

 // behaviour function overridden
 function void behaviour;
 d = q + 2;
 endfunction

 // named always block inherited
endinterface

// 'Child' interface #2
interface child2 extends counter; // ports inherited

 // named always block overridden
 always_ff @(negedge clk) begin : main1
 behaviour();
 q <= d;
 end

endinterface

Figure 18 : Hypothetical Inheritance

