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ABSTRACT  
This paper will show how SystemVerilog interfaces can be used as 

objects when writing RTL.  While much has already been written 

about the interface and how it can abstract the connection between 

modules, this paper focuses solely on using the interface to increase 

abstraction within modules.    

 

Categories and Subject Descriptors  
B.5.2 [Register-Transfer-Level Implementation]: Design Aids – 

hardware description languages 

 

General Terms  
Design, Languages, Verification.  

 

 

Keywords  
Flop – Flip-flop 

OO – Object Orientation 

RTL – Register-Transfer-Level 

 

1. I(TRODUCTIO(  

The typical RTL module written in Verilog tends to contain a lot of 

incidental “boiler plate” code. Boiler plate code is generally 

undesirable as it is repetitive, uninteresting and wastes precious 

designer effort. Its presence is in part due to synthesis, as full 

expressive use of the language is restricted to the synthesizable 

subset. This often confines the designer to the narrow coding styles 

that can be reliably inferred into gates. This begs the question: why 

write something in an abstract way, when there is only one 

prescribed "way" to write it? Perhaps a more direct, declarative 

approach is needed. Take the ubiquitous “flip-flop” for example - 

each register is typically coded in the same repetitive manner, even 

though they are pervasive in digital design. 

Another reason for boiler plate code is the concurrent nature of 

HDLs. Traditional sub-programs borrowed from the software world, 

such as “tasks” and “functions”, can naturally capture and represent 

procedural code. Unfortunately, they cannot be used to capture the 

important temporal and parallel nature of RTL that is represented by 

always blocks and other concurrent structures.  

The interface construct provides some unique features which can be 

exploited to address these issues. 

 

2. BACKGROU(D O( I(TERFACES  

The interface construct introduced in the SystemVerilog standard is a 

very useful addition. As the name implies, its primary purpose is to 

simplify the wiring between various blocks in a hierarchy. In its 

simplest form, it acts as a namespace to “bundle” a set of related 

signals for use in a portlist. This paper assumes the reader is 

generally familiar with SystemVerilog and the interface construct. 

Information about interfaces is plentiful on the internet and can be 

found in the SystemVerilog LRM [1]. 

A less obvious aspect of interfaces is that they can act as “pseudo” 

modules. The interface can have a portlist, be parameterized and 

contain behavioural code, such as always blocks. Unlike a true 

module however, the interface cannot instantiate other modules - 

limiting it to a “leaf” status in the design hierarchy. The key to our 

modelling solution is that the interface permits the use of hierarchical 

reference to its internal members. While modules support this feature 

only for simulation, interfaces support this feature for both 

simulation and synthesis. 

 

 

3. BACKGROU(D O( OBJECT 

ORIE(TATIO(  

Exactly what makes a language or a construct “Object Oriented” is 

often an academic argument that is beyond the scope of this paper. It 

is generally accepted, however, that at the heart of OO is the ability 

to create a class – that familiar construct which combines data and its 

operations. Closely associated with this, is the concept of decoupling 

a class' internal implementation from its “clients” in the outside 

world via a defined interface. Most authorities on the subject will 

summarize the primary features of object-orientation to include[7]: 

• Encapsulation – The ability to contain functionality and 

data within a namespace and control its access. 

• Abstraction – The ability to abstract code to an appropriate 

level to serve the problem at hand. 

• Polymorphism – The ability to implement a class or 

interact with an object while being “type” agnostic. 

• Inheritance – The ability to create new class, by extending 

or modify an existing class. 

 



For our purposes, we'll view OO in a pragmatic light and will 

consider most important those aspects that can improve our hardware 

descriptions. While we don't expect the quality of the circuits we 

create to be better, we strive to make the process behind creating 

them better. In HDL based design, “better” code could mean more 

succinct code, less code repetition, improved readability, better 

reuse, etc.  Using examples, we'll apply explore how well interfaces 

can provide these benefits for RTL. 

 

4. USI(G I(TERFACES AS OBJECTS 

 

4.1 The Basics 

This first example is to illustrate the basic coding style that will be 

used throughout this paper.  Figure 1 shows how a simple inverter 

can be expressed with an interface. 

 

Since this example is so trivial, it is hard to see the value here. 

Nevertheless, it demonstrates some key features of the interface. 

First, it shows that the interface is a namespace.  This namespace 

acts as a user-defined type and can be instantiated much like a class. 

Secondly, the example shows how the interface can encapsulate 

concurrent behaviour.  In this case, an inverter was defined by the 

always_comb block.  Thirdly, the example demonstrates how an 

interface’s members can be accessed hierarchically.  By using the 

“dot” notation instead of ‘ports’, the construct’s interface is less 

verbose than that of a module.  This style is analogous, as least 

superficially, to using “getters” and “setters”. However, it takes more 

than “dot” notation to make a construct useful. 

 

4.2 Basic Encapsulation 

Writing RTL can require a lot of tedium.  Many common constructs 

require the declaration of intermediate wires and regs. This clutters 

the code and can often obfuscate even the simplest intent. An 

example of this could be the code required to infer a tristate driver, as 

shown in Figure 2. 

 

 

We see here that at least five lines of code are required to create the 

necessary, wires and regs for the tri-state driver. While five lines 

does not sound excessive, the wire and reg declarations are simply 

incidental and do not add any value to the module description. 

Consider the excessive clutter if the design calls for many more 

instances of the tri-state driver. 

With an interface, however, a cleaner solution is possible. Figure 3 

demonstrates how the tri-state driver can be re-coded with an 

interface: 

 

 

 
// Create interface to capture tri-state logic and 
// incidental wires 
interface tripin #(parameter type t = logic) (inout pin); 
    t in, out; 
    logic en; 
    assign in = pin; 
    assign pin = en ? out : 'z; 
endinterface 

 

interface inverter ; 
     logic a; 
     logic anot; 
     always_comb anot = ~a; 
endinterface 
 
module top ( 
    input        some_input 
   ,output logic some_output 
); 
 
inverter my_inv(); 
 
always_comb begin 
    my_inv.a       = some_input; 
    some_output = my_inv.anot; 
end 
 
endmodule 

 
Figure 1 : Basic Interface Example 

 
module tri_example (  inout io_old_school  ); 
 
reg old_school_en;   
reg old_school_out; 
wire old_school_in; 
 
assign old_school_in = io_old_school; 
assign io_old_school = old_school_en ? old_school_out : 'z; 
 
always_comb begin 
    old_school_en = <RHS>; 
    if (old_school_in) begin 
        ... 
    end 
    old_school_out = <RHS>; 
end 
 
endmodule 

 

Figure 2 : Inferred Tri-state 

Figure 3 : Tri-state coded as Interface 



 

 

The example in Figure 4 shows how the interface creates a neater 

and more structured solution. The multiple lines from the previous 

example are reduced to one meaningful line as the incidental nets are 

hidden within the interface. Also, there is a side benefit that the 

code's design intent is explicitly stated. 

While we could have just as easily captured the tri-state driver with a 

traditional module, we would still require the incidental net 

declarations.  Accessing a module via a port list and wires is far 

clumsier than the tidier access provided by the interface.  It is the 

combination of encapsulation and convenient access to its members 

that makes the interface an appealing construct. 

 

4.3 A More Useful Example 

Given that the information age is completely dependent on 

synchronous sequential logic, we will focus our attention there.  

A common way to depict logic gates and registers at the RTL level is 

the “cloud-flop” paradigm. The “cloud” represents combinatorial 

logic, and the “box” on the right represents synchronous logic, which 

is typically some variation of a D flip-flop. 

 
Figure 5 : 'Cloud' to 'Flop' depiction of Sequential Logic 

 

At this level of abstraction, we represent the flip-flop simply as a 

box. The implementation details of how it ‘flips’ and ‘flops’ are not 

particularly relevant – we simply care that it works as advertised. 

Yet, when a flip-flop is desired in Verilog, we need to “infer” one 

and are forced to repeat a piece of code similar to Figure 6. 

 

 

It could be argued that this always block exposes more low-level 

details than appropriate for the “Register Transfer” level of 

abstraction. The interesting parts of the circuit are really the clouds 

of logic between the flip-flops, as this is where the decisions are 

made. The flip-flop itself is simply a delay and storage element. 

Furthermore, the vast majority of the flip-flops in a design are 

identical in nature – typically positive-edge clocked, asynchronously 

reset to zero. The always block required to infer the flip-flop shows 

itself as 'boiler-plate' and is a good candidate for encapsulation. 

Rewritten as an interface, the D flip-flop may look like the code 

shown in Figure 7. 

 

module tri_example ( inout io_new_way ); 
 
tripin new_way (io_new_way); 
 
always_comb begin 
    new_way.en = <RHS>; 
    if (new_way.in) begin 
        ... 
    end 
    new_way.out = <RHS>; 
end 
 
endmodule 
 

 
Figure 4 : Tri-state example 

 
always @(posedge clk or negedge reset_n) 
begin 
    if (~reset_n) begin 
     q <= 0; 
    end else begin 
     q <= d; 
    end 
end 

Figure 6 : Inferred Flip-Flop 

interface dflop   #(   type t = logic // deferred type usage 
                                       ,t reset_value = '0  
                           ) 
    ( input clk,reset,en); // The ports for all our flip-flops 
 
    t q,d; // Familiar d flip-flop naming 
 
    always_ff @(posedge clk or negedge reset) begin 
        if (!reset) begin 
            q <= reset_value; 
        end else if (en) begin 
            q <= d; 
        end 
    end//always 
 
endinterface 
 
// Example : Half-rate Counter 
module dflop_usage_example ( 
                       input clk  ,input reset 
       ,input en   ,output [3:0] foo 
      ); 
 
dflop toggle (clk,reset,en); // single flip-flop 
 
dflop #(logic [3:0]) my_counter (clk,reset,en); // 4-bit counter 
 
always_comb begin 
    toggle.d = ~toggle.q; 
    my_counter.d = my_counter.q; 
    if (toggle.q) begin 
        my_counter.d = my_counter.q + 1; 
    end  
end 
 
assign foo = my_counter.q; 
 
endmodule 

 
Figure 7 : Synchronous Example 



In this example, a simple, reusable, general purpose flip-flop object 

was created with an interface. The basic benefit is that the coding 

details of the flop's always block are contained within the interface. 

The “client” of the flip-flop then need only care about providing the 

“cloud” feeding the flop's 'd' input. The current state of the flop, is 

accessed via the 'q' member of the interface. 

Arguably, this style could be called a “structural” style of RTL 

coding. Older HDLs, such as ABEL and Altera's AHDL provide 

primitive constructs not unlike the dflop interface above.  If nothing 

else, this style has the benefit of being WYSIWYG (What you see is 

what you get) . When reviewing this code, for example, it is blatantly 

clear at declaration time that “toggle” is intended to be a flip-flop.  

From an object-oriented point of view, however, the style may more 

appropriately be considered a “declarative” style of writing RTL. 

The general benefit is caring only about the “what” and not the 

“how”. This demonstrates how the interface supports abstraction, 

since it provides a way to encapsulate the “how” details of inferring 

synchronous logic, and lets us model it at an appropriate level of 

detail.  

This example also demonstrates a useful feature provided by 

interfaces – parameterization. Like a module, an interface can be 

written in a generic way and then later configured with specific 

values. Parameters in this example permitted each instance to set its 

own data type, reset value, etc. This may be considered to 

demonstrate polymorphism since the actual data type of the ‘dflop’ 

can be deferred, yet the defined operations related to that data need 

not change.  

 

4.4 Adding Properties for Abstraction 

 

The approach used to create a simple flip-flop, can be extended to do 

some more interesting things. In synchronous design and in 

particular when designing control logic, there is often the need to 

code incidental “utility” flip-flops related to the main control signals. 

For example, given an input, the designer may want to synchronize 

the signal, delay it, perform edge detection, and so on. While these 

operations are important, the details of coding them are largely 

uninteresting with respect to the main design intent. They are yet 

another example of 'boiler-plate' code found in RTL.  A typical 

example is shown in Figure 8. 

 
 

 

 

Embracing the OO paradigm, we can treat the “utility” flops as 

metadata - information derived from, or related to the primary 

concern. In this light, they can be considered as 'properties' for the 

flip-flop interface definition.  An example of adding such properties 

to the dflop interface is shown in Figure 9. 

// Example : Count falling edges of an asynchronous signal 
module example_without_interface ( 
    input clk 
   ,input reset 
   ,input async_count_en 
   ,output logic [3:0] count_out 
); 
 
// Sync and edge detect – uninteresting “utility” code 
logic async_count_en_mh1; 
logic async_count_en_mh2; 
logic sync_count_en; 
logic sync_count_en_d1; 
logic sync_count_en_falling_edge; 
 
always_ff @(posedge clk or negedge reset)  
begin 
    if (reset == 0) begin 
        async_count_en_mh1 <= 0; 
        async_count_en_mh2 <= 0; 
        sync_count_en_d1      <= 0; 
    end else begin 
        async_count_en_mh1 <= async_count_en; 
        async_count_en_mh2 <= async_count_en_mh1; 
        sync_count_en_d1     <= sync_count_en; 
    end 
end 
 
assign sync_count_en  = async_count_en_mh2; 
assign sync_count_en_falling_edge  
                   = ~sync_count_en & sync_count_en_d1; 
 
 
//  Count Edges 
logic [3:0] count; 
 
always_ff @(posedge clk or negedge reset) 
begin 
 if (reset == 0) begin 
  count <= '0; 
 end else begin 
  if (sync_count_en_falling_edge) begin 
   count <= count + 1; 
  end 
 end 
end  
 
assign count_out = count; 
   
endmodule 

 

Figure 8 : Example without Interfaces 



 

 

The following properties were added to the flop : q1, q2, q3, 

rising_edge, falling_edge, any_edge. The properties q1, q2, q3, 

represent “follower flops” or delayed versions of the main flop. The 

remaining properties indicate how the signal is switching. These are 

all automatically maintained by the interface, alleviating the need to 

manually recode these incidental details.   Rewriting the previous 

example using the improved dflop interface, the edge counting 

module is now more compact, as shown in Figure 10.   This revised 

example reduces the fifteen or so lines of “utility code” to essentially 

two concise lines.   

Another interesting part of this example is how the interface was 

configured to synchronize an input from another clock domain. The 

“user” of the flop simply enabled this feature with a parameter and 

this detail was handled by the interface. 

 

4.5 Finite State Machines with Polymorphism 

By reusing the basic dflop interface from previous examples, just 

about any synchronous structure can be built. Since the actual data 

'type' of the flip flop was deferred through parameters, any arbitrary 

data type, both standard and user defined may be used. By specifying 

a user-defined enumeration type, we automatically have abstract 

state registers for an FSM. This demonstrates the interface's basic 

support for static polymorphism. An example is shown in Figure 11. 

 

 

This approach has the added side-effect of enforcing the common 

coding style of separating the “synchronous” and “combinatorial” 

always blocks[3]. The synchronous block is hidden in the interface, 

and the combinational block is defined in the calling module. 

Since FSMs are widely used in designs, it could be useful to create a 

specialized FSM interface. Such an interface is shown in Figure 12. 

 

 

interface dflop #( 
                 type t             = logic 
                ,t reset_value = '0  
                ,async            = 0 // Expect an async input 
                ) 
                ( input clk,reset,en);  
 
t q,d;      
t mh1,mh2; // 2 stage hardening flops 
 
// "Attributes" for the flip-flop: 
t q1; // follower flip-flop, 1-clock delayed version of flop 
t q2; // We could add any number of follower flops if desired 
t q3; // Perhaps use a parameter sized array 
 
// Signal will be high when flop goes from low to high 
wire rising_edge = q & ~ q1; 
// Signal will be high when flop goes from high to low 
wire falling_edge = ~q & q1; 
// Signal will be high with any change of the flop 
wire any_edge = q ^ q1; 
 
always_ff @(posedge clk or negedge reset) begin 
    if (!reset) begin 
        q   <= reset_value; 
        q1  <= '0;  
        q2  <= '0; 
        q3  <= '0; 
        mh1 <= '0; 
        mh2 <= '0; 
    end else if (en) begin 
        mh1 <= d; 
        mh2 <= mh1; 
          q <= async ? mh2 : d; 
         q1 <= q; 
         q2 <= q1; 
         q3 <= q2; 
    end 
end//always 
 
endinterface 

Figure 9 : Interface with properties 

// Example : Count falling edges of an asynchronous signal 
module example_with_interface ( 
    input clk 
   ,input reset 
   ,input async_count_en 
   ,output logic [3:0] count_out 
); 
 
// Sync and Edge Detect - Compact code 
dflop #(.async(1)) sync_count_en (clk,reset,1'b1); 
    assign sync_count_en.d = async_count_en; 
 
// Count Edges 
dflop #(logic [3:0]) count (clk,reset,1); 
 
   always_comb begin 
    count.d = count.q; 
    if (sync_count_en.falling_edge) begin 
     count.d = count.q + 1; 
    end 
   end 
 
   assign count_out = count.q; 
   
endmodule 

module fsm_example ( 
                       input clk 
                      ,input reset 
                      ,output [1:0] state_out 
                       ) ; 
 
    typedef enum logic [1:0] { A , B , C , D} my_states; 
     
    dflop #(.t(my_states) ),.reset_value(D)) st  (clk,reset,1'b1);  
 
    always_comb begin 
 st.d = 'x; 
        case (st.q) 
            A : st.d = B; 
            B : st.d = C; 
            C : st.d = D; 
            D : st.d = A; 
        endcase 
    end 
 
    assign state_out = st.q; 
     
endmodule 

Figure 10 : Example using properties 

Figure 11 : FSM Example 



 

 

 

This version of the FSM interface adds a little “syntactic sugar” by 

renaming the 'd' and 'q' members to 'next' and 'state' as per a common 

FSM convention[3]. A specialized FSM interface would also have 

the benefit of enhanced readability and could provide a natural place 

for FSM-specific debug code and assertions. 

 

4.6 Abstracting Clock Domains  

In the synchronous examples shown so far, each interface used a 

traditional portlist to define its clock, reset and clock enable signal. 

This provides an opportunity for further improvement, as we can use 

an interface in its typical role as 'ports'.  An example is shown in 

Figure 13. 

 

 

 

 

In this example, a specialized “clock_domain” interface was created 

by bundling together a clock, a reset and a clock enable signal. 

Abstracting the clock domain in this way may be useful when 

writing a block with multiple clocks domains. It allows the design 

intent to be explicitly stated and provides a single point of control for 

code maintenance.  

// Purpose-built FSM interface 
interface FSM 
    #(type t = logic, t resets_to = '0) 
     ( input clk,reset,en); 
 
t state; 
t next_state; // FSM "state" and "next_state" convention 
 
always_ff @(posedge clk or negedge reset) begin 
    if (!reset) begin 
        state <= resets_to; 
    end else if (en) begin 
        state <= next_state; 
    end 
end//always 
 
// Assertions? 
// <Your favourite assertions here> 
 
endinterface 
 

module fsm_example2 (input clk, input reset , output logic out) ; 
 
    typedef enum logic [1:0] {A,B,C,D} my_states;     
 
    FSM #(.t(/*my_states*/logic [1:0]),.resets_to(D)) foo 
                    (clk,reset,1'b1); 
// note : Synthesis tool did not accept the ‘enum’ but 
// took the logic equivalent 
 
always_comb begin 
    case (foo.state) 
        A : foo.next_state = B; 
        B : foo.next_state = C; 
        C : foo.next_state = D; 
        D : foo.next_state = A; 
    endcase 
end 
 
assign out = foo.state == D; 
 
endmodule 

// Create a wire bundle representing a "clock domain" 
interface clock_domain (input clk,reset_in,en); 
       
    logic reset;  
    assign reset = reset_in; 
 
    modport domain (input clk, reset_in, en , reset); 
 
endinterface 
 
// dflop recoded to use interface in portlist 
interface dflop #(type t = logic,t reset_value = '0) 
                (  
   interface domain // any interface will do 
 ); 
t q,d; 
 
always_ff @(posedge domain.clk or negedge domain.reset)   
begin 
    if (!domain.reset) begin 
        q <= reset_value; 
    end else if (domain.en) begin 
        q <= d; 
    end 
end//always 
 
endinterface 
 
// Example : Synchronize a signal from another clock domain 
module example_A ( 
     input clkA 
    ,input areset_sync 
    ,input  async_in 
    ,output logic syncA 
); 
 
// Synchronize the async reset 
clock_domain async (clkA,areset_sync,1); 
 
dflop reset_meta (async.domain); 
dflop reset_sync (async.domain); 
    assign reset_meta.d = 1; 
    assign reset_sync.d = reset_meta.q; 
  
// Another domain using the synchronized reset 
 
clock_domain A (clkA,reset_sync.q,1); 
 
// Declare some discrete flops to harden async_in 
dflop harden1 (A.domain); // Compact syntax  
dflop harden2 (A.domain); 
dflop harden3 (A.domain); 
 
always_comb begin 
    harden1.d = async_in; 
    harden2.d = harden1.q; 
    harden3.d = harden2.q; 
    syncA = harden3.q; 
end 
 
endmodule 

 

Figure 12 : Specialized FSM Example 

Figure 13 : Clock Domain Example 



In addition to being a simple port bundle, the clock_domain interface 

can be extended to provide extra utility. An example could be the 

addition of an optional reset synchronizer.  The details of the reset 

synchronizer are hidden from the user, but are conveniently ready to 

use if required.  This is demonstrated in Example 14. 

 

 

 

From an OO point-of-view, this is another example of both 

abstraction and polymorphism. The clock domain was abstracted by 

modeling it as a single construct with built-in behaviour. 

Polymorphism was demonstrated since the dflop interface could 

accept any interface as it's “clock_domain”. As long as the supplied 

interface supports the 3 referenced members (clk,reset,en), the dflop 

interface is happily agnostic to other details. In this example, the 

same dflop interface accepted a modified variation of the basic 

'clock_domain' interface.  

 

4.7 Adding Assertions 

 

Encapsulation is not only useful for RTL code, but can also benefit 

the reuse of assertions.   Assertions associated with the RTL in the 

interface can be added to increase the robustness of the design. 

For example, an interface containing synchronous logic could check 

for proper synchronous input or unexpected floating input. A 

specialized interface containing synchronizers could check for 

minimal pulse widths, such as in described in [6].   Refer to Figure 

15. 

 

 

A library of well-defined reusable interfaces with built-in assertions 

could prove invaluable by automatically reusing best-practices. 

 

4.8 Code Re-factoring 

Abstracting away some of the low-level design details provides an 

increased opportunity for code re-factoring. In the previous example, 

internal details of the “dflop” interface could easily be changed while 

not breaking the main code. For example, the always_ff block could 

be recoded to use a different clock edge or a synchronous reset. 

Doing such a change would typically require manual editing or a 

sophisticated script to change every always_ff  block in the design. 

Even more extreme re-factoring is possible. An example could be 

adding “triple modular redundancy” (TMR) to the sequential 

portions of a circuit, such as in [8]. This technique is used to guard 

against “single-event-upsets” (SEU) by using redundant logic and 

voting circuits.    

 
Figure 16 : “Triple Modular Redundant” flip-flop 

 

interface synchronizer #(  
.... 
property p_stability; 
    @(posedge clk) 
    !$stable(d) |=> $stable(d) [*2]; 
endproperty : p_stability 

 
property p_no_glitch; 
    logic data; 
    @(d) 
     (1, data = !d) |=> 
    @(posedge clk) 
     (d == data); 
endproperty : p_no_glitch 
 
assert property(p_stability); 
assert property(p_no_glitch); 
 
endinterface 
 

// Example : Count falling edges of an 

// Similar to previous domain, but with an optional reset  
// syncer 
interface clock_domain #(harden_reset = 0) (input 
clk,reset_in,en); 
 
    logic [1:0] reset_mh; 
 
    always_ff @(posedge clk or negedge reset_in) 
        if (!reset_in)  
 reset_mh <= '0; 
        else 
 reset_mh <= {reset_mh,1'b1}; 
       
    logic reset;  
    assign reset = harden_reset ? reset_mh[1] : reset_in; 
 
    modport domain (input clk, reset_in, en , reset); 
 
endinterface 
 
// 
// Example : Synchronize a signal from another clock domain 
// 
module example_B ( 
     input clkB 
    ,input async_reset 
    ,input  async_in 
    ,output logic syncB 
); 
 
// Reset Syncer built-in 
clock_domain #(.harden_reset(1)) B (clkB,async_reset,1); 
 
dflop harden1 (B.domain);   
dflop harden2 (B.domain); 
dflop harden3 (B.domain); 
 
always_comb begin 
    harden1.d = async_in; 
    harden2.d = harden1.q; 
    harden3.d = harden2.q; 
    syncB     = harden3.q; 
end 
 
endmodule 
 

Figure 15 : Assertions in interface 

Figure 14 : Domain with built-in reset synchronizer 



The “dflop” interface can be modified, as in Figure 17, to infer the 

redundant logic and still be compatible with the previous examples:  

 

 

  

5. BE(EFITS OF THIS APPROACH  

The preceding examples have shown some of the interesting 

possibilities provided by the interface construct. In particular, we 

have shown that the interface can support at least three features of 

object-orientation: encapsulation, abstraction and polymorphism. In 

conjunction, these concepts can provide the following benefits: 

• More compact RTL: 

o Encapsulation hides 'incidental' logic. 

o Repetitive concurrent blocks can be 

encapsulated. 

o Derived logic encapsulated and automatically 

available. 

• More readable RTL: 

o Due to compact code. 

o Abstraction results in explicit design intent. 

• Better reuse: 

o Objects can enforce design convention and best 

practices. 

o Objects can integrate with procedural code. 

• Improved Maintenance: 

o Succinct code is inherently easier to maintain 

o Polymorphism and abstraction promote easier re-

factoring. 

 

It should be noted that the examples in this paper failed to 

demonstrate inheritance. This will be addressed in a later section. 

 

5.1 Other Possibilities 

SystemVerilog is a substantial language, so there may be many ways 

to take advantage of the approach shown in this paper.  

Aside from assertions, specialized interfaces could also be a 

convenient and natural place to contain debug code. One example 

could be the jitter emulation technique shown in [6]. This technique 

involves adding randomization code to emulate metastability in 

synchronizing flip-flops. 

We have focused almost entirely up to this point on the front-end 

part of the design process, but it may be possible to obtain benefits in 

the back-end phases as well. By adopting a meaningful naming 

convention for interface members, it is easier to apply wildcard 

constraints to a netlist. Reusing the example of a synchronizer, the 

input flop of the synchronizer could be named “async_in”. This net 

name may carry over to the netlist and be able to identify the end of a 

false path.  

 

6. USI(G THIS APPROACH 

While an entire design could be written using the approach shown in 

this paper, it is likely not practical to do so at this point in time. The 

major hurdle is tool support, namely synthesis. Advanced synthesis 

support for SystemVerilog still appears to be precarious, in the 

author’s opinion, for typical FPGA synthesis tools. While an 

exhaustive analysis was not carried out, feature support across 

vendors tends to be inconsistent, making some code non-portable.  

Nevertheless, the main examples presented in this paper were 

synthesizable with a FPGA synthesis tool from a major EDA vendor. 

Some of the simpler examples were successful even with a FPGA 

vendor supplied synthesizer. The quality of the results were checked 

simply by examining the resultant netlist in a netlist viewer. Initial 

results are encouraging and indicate this approach may be more 

practical in the future as tools improve. 

�ote: The example in Figure 12 did have to be modified for synthesis as 

noted.  This appears to be due to an oversight in the tool, and not a 
fundamental misuse of the language. 

 

Simulation support, as expected, is generally excellent, as 

SystemVerilog was adopted early for its verification features. It is 

unknown how other tools such as linters, formal tools, etc would 

treat this coding style. 

 

 

7. FUTURE E(HA(CEME(T – 

I(HERITE(CE 

There is currently no way in which an interface can be derived from 

another.  It would be useful, however, if the designer could “extend” 

an existing interface by adding or overriding properties, always 

blocks, functions, etc.  Consider the hypothetical example shown in 

Figure 18. 

 

interface dflop #( type t = logic , t reset_value = '0 ) 
    ( input clk,reset,en);  
 
t q,d;  
 
genvar i; 
 
localparam TMR = 3; 
 
t vote [0:TMR-1]; //pragma attribute vote preserve_signal true 
 
generate for (i=0;i<TMR;i++) begin : TMR_insertion 
 
always_ff @(posedge clk or negedge reset) begin 
    if (!reset) begin 
        vote[i] <= reset_value; 
    end else if (en) begin 
        vote[i] <= d; 
    end 
end//always 
 
end 
endgenerate 
 
assign q = vote[0]&vote[1]  | vote[0]& vote[2] | vote[1]&vote[2]; 
 
endinterface 

 

Figure 17 : TMR flip-flop 



 

 

In 'child1', we simply replaced the default 'behaviour' with our own 

version, letting us keep what we wanted to as-is and adjust just one 

aspect of the interface to re-purpose the code. In 'child2', we kept the 

logical behaviour, we could say, of the circuit, but changed its 

concurrent behaviour by specifying a new 'main1' always block. 

Providing such an enhancement to the language would allow more 

flexibility and reuse. Inheritance is considered by some to be the key 

differentiator between object-based design versus proper object-

oriented design.[2] 

 

8. REPLACI(G MODULES WITH           

I(TERFACES 

Given that the interface is a hierarchy element much like the 

traditional module, we could conceivably create designs based 

entirely on interfaces. In the simplest form, the interface can act as a 

practical module without a portlist. One could argue that the 

interface is essentially a module with a flexible instantiation syntax 

since a port mapping is not required. Port direction is generally not 

an issue inside the digital core of a design, and as designs get bigger, 

many modules and thousands of lines of RTL spend their entire 

existence nowhere near an IO buffer! It may be acceptable then to 

use the interface for logical design partitioning, and reserve the 

module for cases where a physical partition is likely. This is 

consistent with the synthesis tools, which tend to “dissolve” the 

interface during synthesis[4]. 

However, there is potential for a “hybrid” approach. Since an 

interface has an optional portlist, those signals within the portlist 

could identify the “hard” ports of a design. As a top level, these 

would become physical pins. Other nodes, which are essentially 

'public' members but not ports, would simply remain as internal 

nodes. If the block is used as a leaf module, then those nodes can be 

optionally connected as we have shown.  

Currently, using interfaces instead of modules for general purpose 

hierarchy is not practical. The main limitation is that interfaces 

cannot instantiate modules. Therefore, instantiating an existing piece 

of module-based IP will not work. It would be an interesting 

enhancement to the language to permit interfaces to instantiate 

modules.  Alternatively, most of the examples in this paper could be 

module-based if that construct permitted hierarchical access to its 

members. 

 

9. CO(CLUSIO( 

In traditional Verilog, there were limited ways to encapsulate and 

abstract portions of RTL code. While the traditional module provides 

encapsulation, its portlist makes for a clumsy and verbose connection 

with procedural code. With SystemVerilog, there is some hope with 

the interface construct. When used as “pseudo modules”, interfaces 

permit the designer to encapsulate common and pervasive code into 

predefined templates and use them as objects in design descriptions.  
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interface counter ( input clk,reset,en); 
 
    logic [3:0] q,d; 
 
    function void behaviour; 
        d = q + 1; 
    endfunction 
 
always_ff @(posedge clk or negedge reset) begin : main1 
    if (!reset) begin 
        q <= 0; 
    end else if (en) begin 
        behaviour(); 
        q <= d; 
    end 
end//always 
 
endinterface 
 
// 'Child' interface #1 
interface child1 extends counter; // ports inherited 
 
    // behaviour function overridden 
    function void behaviour; 
        d = q + 2; 
    endfunction 
 
    // named always block inherited 
endinterface 
 
// 'Child' interface #2 
interface child2 extends counter; // ports inherited 
 
   // named always block overridden 
   always_ff @(negedge clk) begin : main1 
       behaviour(); 
       q <= d; 
   end 
 
endinterface 

 
Figure 18 : Hypothetical Inheritance 


