
Using SystemVerilog Interfaces and Structs for RTL 

Design 
 

Tom Symons 

Hardware Advanced Development 

Oracle Labs. 

Austin, Texas. U. S. of A. 

tom.symons@oracle.com 

 

Nihar Shah 

Hardware Advanced Development 

Oracle Labs. 

Austin, Texas. U. S. of A. 

nihar.shah@oracle.com

 
Abstract— System verilog interfaces and structs have many 

useful benefits in RTL design, but they have not been readily 

adopted due to limited support by the EDA vendors.  We used 

SystemVerilog interfaces and structs in our recent project, and 

we have recently taped out a chip with some modest usage of 

these in RTL.  This paper discusses the benefits of SystemVerilog 

interfaces and structs in RTL, the tools we used and the issues we 

faced, and how we worked around those issues.  Furthermore, we 

propose improvements to the toolset and standards that will 

improve the adoption of these beneficial constructs. 
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I. INTRODUCTION 

SystemVerilog interfaces have proven to be indispensible 
for verification.  However, their use for RTL design has been 
limited at best.   Structs are equally useful and are less 
problematic, but still are not commonly used in RTL design. 
The primary reason interfaces and structs are not used more in 
RTL design is because there are still some tools that have 
limited support for them.  But support for SystemVerilog 
constructs in RTL has been steadily increasing, and it is 
becoming more common to hear of successful tool flows 
utilizing SystemVerilog design constructs.   But you still must 
verify your flow across your toolset and develop a usage 
methodology that maps to the tools and common design needs.  
This paper describes a tool set and methodology that supports 
using interfaces and structs in RTL design. 

II. BENEFITS OF INTERFACES AND STRUCTS IN RTL 

DESIGN 

Interfaces are useful in RTL design for the following 
reasons: 

1. They can dramatically collapse the size of netlist files.  A 
modest SOC can easily have 2500 signals just in one 
netlist file, translating to roughly 3x2500=7500 lines (one 
line for wire declaration, one to connect to source module 
and one to connect to destination module).  If the average 
interface has 10 signal names, then about 250 interfaces 
are required and need only 3x250=750 lines in the netlist 
file.  That’s a saving of 6750 (92%) lines of code.  In our 
SOC design, 25% of all lines were used for just 
interconnection. 

2. Having a group of signals bundled into an interface can 
also ease debug considerably, particularly for users who 
have to debug sections of the code they do not deal with 
everyday.  The grouping of signals into an interface 
eliminates the confusion of which signals belong to which 
bus and allows the user to drag the entire interface into a 
wave viewer and see all the signals nicely grouped 
together. 

3. Using the same interface throughout the design is a great 
way to ensure that all designers use the same signal names 
for all signals in a given protocol.   This also makes it easy 
to reuse any assertions or functional coverage defined for 
the bus. 

4. Adding/removing/renaming a signal in an interface need 
only be done in the interface and the two endpoints.  There 
is no need to update all the connections up and down the 
module hierarchy between the two endpoints.  This can 
save some tedious, error prone work when signals traverse 
many module boundaries, as well as eliminating a 
potentially huge number of lines of netlisting code across 
all those modules. 

5. Interfaces are a great place for assertions that check for the 
validity the interface signals.  This ensures that the 
assertions are always used on each instance of the 
interface and helps avoid duplication of those assertions. 

6. Interface provide an encapsulation for user-defined debug 
aids.  Additional signals can be added to an interface such 
as path name or transaction count which can be viewed in 
a waveform to enhance debug.  

Writing, reading and debugging signals may seem like a 
trivial task.  But as chips get larger and larger, the number of 
signals to manage escalates dramatically.  Managing each 
signal explicitly just does not scale well into these large 
designs.   The advantages of interfaces may not seem apparent 
when just a few interfaces are used, but when a large number 
of interfaces are used throughout a large chip, the advantage 
becomes very obvious.  Raising the level of abstraction of 
design is the only way to wrap our brains around larger and 
larger designs, and reducing the lines of code required is a key 
aspect of raising the level of abstraction and improving design 
productivity.  SV interfaces and structs can help do this by 



collapsing large blocks of extremely tedious and error-prone 
code into a much more compact representation. 

Netlisting tools can help by creating the connections, and 
by providing compact code to read.  But they are expanded 
when seen by all standard tools, and so debug must be done on 
the expanded versions.  Interfaces allow the compact notation 
to be continued even when debugging, without requiring the 
complication of two separate versions of the source for the user 
to maintain. 

III. DESIGN ISSUES 

A. Interfaces on Synthesis Boundaries 

One of the biggest problems faced with interfaces were 
when they were used on synthesis boundaries, where one 
module receiving an interface through a port is synthesized 
independently of the module containing the interface, as shown 
in Figure 1. 

 
 

If module A and/or B are synthesized independently of the 
Top module, then problems arise when module A or B do not 
use all the signals in the interface, as is often the case.  This 
may occur because the receiving modules use a modport that 
selects only a subset of the interface’s signals.  The modport 
also determines signal direction.  The result of the modport 
selections are not known to the Top module, so the synthesizer 
will simply include all signals, but module A and B will only 
include their selected signals.  When the synthesized 
components are later connected, there will be a mismatch for 
signals and drive direction.  

The solution to the problem gives us our first 
recommendation:   

Recommendation 1: Specify the modport at source and 
destination. 

When connecting interfaces across synthesis boundaries, 
you must specify the modport in the connections on that 
boundary as well as in the receiving module, as shown in 
Figure 2. 

 
 

 

Unfortunately, referencing a modport in a netlist like this 
causes problems in other tools that have not accounted for this 
usage.  For this reason, we recommend that you only use them 
on physical design boundaries, rather than making them a 
standard usage on all interface instances.  But we will also 
discuss how to get around these induced tool issues later in the 
paper. 

A similar issue occurs when parameterizing interfaces on a 
synthesis boundary.  This is really the same problem as 
parameterizing modules on a synthesis boundary.  In both 
cases, the synthesizer doesn’t know what values will be 
selected when it synthesizes the instanced module.  In our 
flow, we simply disallow parameterized modules on a 
synthesis boundary.  And if we really need one, we just put a 
wrapper around the module so that it is not longer on the 
synthesis boundary. But Design Compiler does handle this 
issue if you tell it directly what the parameter values will be. 

If an interface with a different parameter value cannot be 
avoided, then we have our second recommendation: 

Recommendation 2: Duplicate interfaces when specialization 
required on synthesis boundary. 

If interface specialization is required on a synthesis 
boundary, then duplicate the interface and make the 
necessary change in the new copy.  We just changed the 
default values for the parameters in our new copy. 

This is rather a brute force solution, but the only one we 
came up with.  This normally introduces a problem for 
verification, but we have a tidy solution for that, which is 
explained in the Verification section.  We also would move the 
common body of the interface to an include file, then include 
that in each specialization of the interface.  That kept the 
maintenance hassle to a minimum. 

A third problem occurred with interfaces on synthesis 
boundaries.  This came about when a module used only a 
subset of the signals on a modport.  We initially used just full 
master, slave and monitor modports.  But some modules didn’t 
use the clock or reset from the interface, or they didn’t use a 
few of the signals or the full width of some busses.  So the 
solution here is to make liberal use of modports. 

Recommendation 3: Add new modports as needed.   

Add a new modport when one module will not use all the 
signals in an existing modport.  There is no downside to 
having many modports.  

A slightly more cumbersome problem occurs when you only 
want to use a slice of the signals in one vector.  This occurred 

module A(X_if xif.mportA); 

… 

endmodule 

 

module Top(); 

   X_if U_if(); 

   A U_A( .xif(U_if.mportA) ); 

endmodule 

 

Top 
Intf X 

Module 
A 

Module 
B 

Figure 1: Interface on synthesis boundary 

Figure 2: Specify modports in netlists as well as input ports. 



frequently with an address bus, where the master drove the full 
address, but the slave devices only used a handful of the 
address LSB’s and an external fabric did the MSB decode.  
SystemVerilog has a handy solution for this problem, called 
modport expressions. Unfortunately, even our simulator does 
not support modport expressions, so for now you cannot define 
a modport that only uses a slice of a vector.  So our solution 
here is to break such vectors up into two pieces such as 
addr_msb and addr_lsb.  Then create a modport for the master 
with both vectors, and create a modport for the slaves using 
just addr_lsb. 

Recommendation 4: Break signal vectors into common 
pieces. 

When a module requires only a slice of one vector, break 
the vector into two or more pieces and create modports 
with the appropriate selection of pieces.   

For example: 

 

 

Figure 3: Modport with signal slice 

Note that all of the recommendations in this section 
(recommendations 1 thru 4) are only required for interfaces 
used on synthesis boundaries.  The synthesizer will evaporate 
any unused signals when it knows which signals both sides are 
using. 

B. Clock Source 

We had some difficulties when the clock corresponding to 
the interface was not available where the interface was 
instantiated.  You must instantiate an interface above the 
modules that receive it, as shown in Figure 1.  You cannot 
instantiate the interface in one module and then have it output 
from that module to be connected to the receiving module.  So 
if the clock is only available in one or both of the receiving 
modules, how do you connect that up? 

The typical interface defines a clock and reset as ports to 
the interface, and all other signals are defined as signals 
internal to the interface.  But if the clock or reset signals are not 
available where the interface is instantiated, then this usage 
breaks down.   Even if the RTL logic does not need to receive 
the clock from the interface, the interface still needs to have a 
clock and reset for verification purposes.  You could just add a 

few ports to your modules and pass the signals up, but this 
solution is often not acceptable. 

So the solution here is fairly simple.  Just remove the 
clock/reset signals from the interface port and make them 
internal signals just like all the others.  We also used our 
simulation-only ifdef to make these signals evaporate for 
synthesis. 

Recommendation 5: Move clock and reset signals where most 
easily driven. 

Move clock and reset signals off the interface ports when 
they are only accessible in the source or destination module 
using the interface. 

An alternative option here is to have the clock and reset signals 
defined both as ports and as internal interface signals.  Then 
just define all the modports required to select the appropriate 
set of signals or use a parameter driven generate block to select 
the desired clock input.  This eliminates the need to possibly 
have multiple interfaces defined for the same bus.  We did not 
try this option in our project, but it seems worth considering. 

C. Interface Definition 

We found that we tended to occasionally put too many 
signals into a single interface.  This just made more work to 
deal with the unused signals on synthesis boundaries, and also 
made the design intent a little less clear than desired.   

Recommendation 6: Avoid putting too much into a single 
interface.   

Use multiple interfaces when large sets of signals are often 
unused in one instance. 

D. Structs 

Some of our designers found structs to be very useful.  We 
particularly found them handy for creating a module of 
control/status registers.  We would typically create a single 
struct for each register in a unit.  Then create a single struct that 
contained all the other structs.  This made for very readable and 
debuggable code.  See figure 4 for an example of the structs 
package. 

 

logic [31:0] addr; 

logic [7:0] addr_lsb = addr[7:0]; 

 

modport master ( 

  output addr; 

  … 

); 

 

modport slave ( 

  input addr_lsb; 

  … 

); 



 

Figure 4: Structs Package 

We then placed the entire struct as a single output port on 
the register module as shown in figure 5. We also used the full 
struct as an input port on any module needing access to the 
registers.  Some designers did not like the full set of registers 
as an input to their module, so they just peeled off individual 
registers from the struct and fed them in on their own ports.  
We could have grouped sets of signals with unions, but no one 
felt this was necessary. 

 
Figure 5: Register Module with struct output 

We didn’t have any problems with structs, except when 
unused signals in the struct crossed a synthesis boundary.  It 
that case we just had to peel off only what we needed.   

IV. TOOL ISSUES 

A. Interface Synthesis 

We used Design Compiler (DC) from Synopsys for 
synthesis.  The main problems we ran into were due to unused 
signals that cut across synthesis boundaries, as discussed in the 
previous sections.  Most of those problems where handled by 
how we coded the interfaces and their connections. 

But we also had a similar issue when we used an abstract 
model.  In Figure 1, consider module A as an abstract model 
that is synthesized separately.  Then the Top module is 
synthesized with module A referenced as an abstract model.  
But then the abstract model has had its interface expanded into 
many ports, which need to be mapped to the as yet unexpanded 
interface in Top.  DC needs a little help with this.  All you need 
to do is include the following line in your DC setup when 
synthesizing Top: 

set hdlin_enable_elaborate_ref_linking   true 

We also ran into problems because interface signals are 
referenced as ‘intf.signal’.  DC does not like the period 
notation in the signal name, so we replaced all period 
separators with underscores by adding the following line to our 
DC setup file: 

change_name –rules verilog –hier 

We also discovered another solution to the problem that 
occurs if you pass in a parameterized interface on a synthesis 
boundary.  The enclosing module knows the parameters passed 
to the interface, but the receiving module does not know the 
parameter values for the interface. So when the two modules 
are synthesized separately, they will have different size signals 
and will cause an error when mated back together. 

This problem can be solved relatively easily by creating a 
dummy wrapper module that instantiates the interface and 
receiving module.  The interface instance should be 
parameterized as it is in the real enclosing module.  Then, 
when you synthesize the receiving module, analyze and 
elaborate the wrapper module as well, then remove the wrapper 
with remove_design.  The wrapper is thus only used to tell DC  
the parameter values of the interface that is used by the 
receiving module.  You can find more details on this solution 
in reference 4. 

B. Struct  Synthesis 

When we used structs or typedefs in module ports,  
synthesis failed because the package defining these types had 
not yet been imported.  This was no problem for simulation, 
but required that we move the import statement outside the 
module for synthesis. 

Recommendation 7: Declare package import statements 
outside module definition. 

If structs defined in the package are used as ports on the 
module, then import that package above the module 
definition. This is also true for typedefs used as module 
ports.  See example in figure 5: Register Module with struct 
output. 

And you’ll also need to make sure DC uses the proper 
SystemVerilog parser with the following DC setup option: 

set hdlin_sverilog_std 2009 

C. UPF Synthesis 

We had one problem with interfaces when synthesizing our 
power requirements defined with a UPF definition.  This 
problem occurred because DC required us to replace 
‘intf.signal’ with ‘intf_signal’, as described previously. But this 

import regs_pkg::*; 

module regfile( 

  input clk, 

  … 

  output unitA_regs_t regs 

); 

 

always @(posedge clk) begin 

  … 

  regs.regA.count <= regs.regA.count + 1; 

  regs.regB.data    <= data; 

end 

 

endmodule 

package regs_pkg; 

 

  typedef struct packed { 

    logic [31:24] rsvd; 

    logic [23:16] id; 

    logic [15:0] count; 

  } regA_t; 

 

  typedef struct packed { 

    logic [31:0] data; 

  } regB_t; 

 

  typedef struct packed { 

    regA_t regA; 

    regB_t regB; 

  } unitA_regs_t; 

 

endpackage 



then caused a mismatch with the period notation used in the 
UPF file.  We resolved this problem by maintaining two 
separate versions of the UPF file – one with periods and the 
second with the periods replaced by underscores.  We believe 
we can avoid this duplication by reading in the UPF file before 
the change_name directive is applied.  However, we did not get 
an opportunity to try this out before our tapeout. 

D. Simulation 

The only problems we had with simulation were with our 
UPF power simulations.  We used VCS and MVSIM from 
Synopsys for power simulations.  We ran into three separate 
issues, but were able to work around all of them and filed bugs 
with Synopsys for all three.  As of this writing, these bugs still 
exist in the most recent release of VCS. 

The first problem occurred when we tried to specify 
isolation policies for a module that had an interface port.  
MVSIM could not handle the interface reference in the UPF 
file, so we had to specify explicit isolation policies for all 
signals in the interface.  Having MVSIM automatically expand 
the interface is not only convenient, but also helps us avoid a 
missed signal if we were to ever add a signal to an interface.  
With the automatic insertion of isolation buffers for the 
interface, we had to remember to add them whenever we added 
a new signal.  While this is not a serious problem, it does 
require another pre-tapeout audit. 

The second problem occurred when we isolated an 
interface output that was fanned out from an interface input, 
then tried to simulate with the isolation turned off.  This 
uncovered a bug in MVSIM that caused the output signal to not 
be driven correctly.  We had to simply add an intermediate 
signal between the interface input and interface output, as 
shown below in figure 6.  

 

 

 

Note that the problem only occurs when the input signal is 
fanned out to multiple output signals.  So the example above 
actually works, but will fail if there are multiple copies of 
out_if. 

The final simulation problem with MVSIM was due to the 
source modport references in our netlists, which were required 
to handle interfaces on synthesis boundaries as discussed 
previously.  Unfortunately, MVSIM could not understand this 
use of modports.  Our only solution here was to ifdef the netlist 
connections, such that we did our power simulations without 
the modport reference and did our synthesis with them.  This 

was an unpleasant work-around, but our only option at the 
time.   

E. DFT 

We had problems with our MBist tool when it ran across 
SV interfaces.  We used Tessent MemoryBist from Mentor.  
We had two basic problems.  First, the original code parsers 
could not handle SystemVerilog interfaces at all.  So we 
updated to the newer HDLE parser, which was able to parse 
SV interfaces.   

However, like MVSIM, the HDLE parser could not 
understand our use of source modport references in the netlist.  
It would give a confusing error, indicating there were ‘too 
many connections’ when we instantiated a module with an SV 
interface port. To work around this, we used Mentor pragmas 
around the definition of the interface port in the module, and 
around the connection to that interface port in the netlist.  The 
tool would interpret the pragmas as identifying non-
synthesizable code, and so ignored it.  For example: 

 

NTEGRATION WITH VIP 

V. DEBUG AIDS 

Once we had interfaces in our RTL, we found several 
handy uses for them to aid with debug. 

As already mentioned, dragging an entire interface into a 
wave viewer was a very handy option.  Not only was it a quick 
way to get all the signals from one bus into the wave viewer, 
but we were guaranteed to get all the correct signals for the 
bus, with no stragglers.  We also defined some simple TCL 
scripts for our wave viewer that we used to display the signals 
in the desired order and format.  For our larger busses, this was 
a real time saver.  We’d like to see a feature in our waveform 
viewers that would map a TCL script or other formatting 
definition to each interface type.  Then the formatting would be 
automatically applied whenever the corresponding interface is 
displayed.  But for now, we just call the scripts manually. 

With interfaces we can also display more than just the 
proper signals on a bus.  We added additional signals to the 
interface that were assembled from other signals.  This was 
very useful to help decode the current state of the bus.  One 
very useful example was to have a signal that represented the 
number of outstanding transactions on the bus.  Having many 
transactions outstanding on a bus can make it difficult to 
associate an address phase with a data phase, so a few simple 
debug signals can make this process much easier.  Each time 
we pulled in an interface, we got all the supporting signals 
automatically.  All our DV signals were placed under an `ifdef 
that evaporated them for synthesis. 

We also added a simple instance identifier to our interfaces 
by adding the following code: 

module foo(in_if aif, out_if bif); 

 

// this works 

  assign 

    enable = aif.enable, 

    bif.enable = enable; 

 

// this does not work 

  assign bif.enable = aif.enable; 

endmodule 

 

unitX U_dut( 

  .clk(clk), 

//mbist_etassemble translate_off 

    .xif(U_if.mportA), 

// mbist_etassemble translate_on 

  … 

Figure 6: Use intermediate signals for MVSIM 

Figure 7: MBist pragma 



 

You could then look at the value of this variable to determine 

where the interface was instanced, regardless of where you 

accessed the interface.  This was useful because the wave 

viewers we used would only display where the interface was 

referenced from, which was often not where it was instanced.  

This is just an anomaly of interfaces.  If you pull in an 

interface from some module that receives it as a port, then the 

instance shown will be the path to that module.  But if an 

interface was routed through many levels in your design, you 

often want to know if two interfaces actually represent the 

same set of signals.  By looking at the instance_path we 

defined, we could easily determine if they were. This was a 

very nice feature compared to using just wires, as you could 

easily determine that the busses at two points in the design 

were on the same wires and be guaranteed that there could be 

no wiring errors - because interfaces are not ‘wired’, they are 

passed as entire objects.   

Having an instance reference to the interfaces is a great 

timesaver because there is no longer a need to look at two sets 

of wires from two points in the design and try to determine if 

they were the same bus or not.  We would like wave viewers 

to automatically provide this capability. 

VI. INTEGRATION WITH VIP 

The VIP must be able to use the RTL interfaces to drive 
and sample signals.  However, a problem arises when the RTL 
interface is parameterized, which makes it difficult to use by 
the VIP.  Several publications can be found detailing why 
parameterized interfaces do not work well with VIP and 
ultimately it’s best to avoid them altogether.  One could impose 
a restriction to avoid using parameterized interfaces in RTL, 
however that is a high price to pay since parameterized 
interfaces are essential in RTL.  There is another solution 
which we describe in this section.  We can create a separate 
unparameterized interface for the VIP which we will embed 
inside the parameterized RTL interface.   The embedded 
interface is shared with the VIP using the UVM resource 
database.  The following sections will describe how to 
integrate the DV interface while minimizing the complexity of 
the connections to the testbench.   

A. Constructing the DV interface 

The first step is to create a separate interface construct for 
use by the VIP as shown in figure 8.  This will be known as the 
“DV interface”.   

 
 

 

 

The DV interface is not parameterized, and starts with the 

concept of the “maximum footprint” interface discussed in [2].  

This means all bus widths are set to the maximum allowable, 

and the VIP uses bit slices of these buses.   

 

Interface bus signals are often excluded from the port list and 

instead declared as logic types inside the interface itself.  

However, declaring the interface signals as ports into the 

interface as shown in Figure 8 gives two benefits: 

 

1.  Flexibility to allow connection to RTL which does not use 

a SystemVerilog interface using a verilog “bind” and hence 

minimizing cross module references for that case.  

 

2.  Compactness of using the “.*” implicit port connect 

notation when embedded in the RTL interface.   

 

The ports must be bi-directional to allow connection to either 

a slave or master driver.  The suffix “_dv” is used for bus 

signal names to differentiate them from the RTL signal names 

for reasons which will be apparent in the next section. 

 

B. Constructing the RTL Interface 

A simple RTL interface is shown in figure 9: 

`define MAX_WIDTH 64 

interface dv_intf ( 

  input clk,  

  input rst_n, 

  inout valid_dv, 

  inout [`MAX_WIDTH-1:0] data_dv, 

  inout ack_dv 

); 

  clocking mcb @(posedge clk); 

    default input #(10ps) output #(10ps); 

    output data_dv; 

    output valid_dv; 

    input  ack_dv; 

  endclocking 

  modport master_mp (clocking mcb); 

 

  clocking scb @(posedge clk); 

    default input #(10ps) output #(10ps); 

    input  data_dv; 

    input  valid_dv; 

    output ack_dv; 

  endclocking 

  modport slave_mp (clocking scb); 

   

  clocking wcb @(posedge clk); 

    default input #(10ps) output #(10ps); 

    input  data_dv; 

    input  valid_dv; 

    input  ack_dv; 

  endclocking 

  modport monitor_mp (clocking wcb); 

endinterface 

logic [1023:0] instance_path; 

initial instance_path = $sformatf(“%m”); 

Figure 8: Simple DV interface 



 

        

The RTL interface is completed with an embedded DV 
interface as shown in Figure 10.  The DV interface is hidden 
from synthesis using a compiler directive.  Typically most 
verification environments maintain such a switch so using it 
here does not come at any extra cost.   

 

 

 

The connections to the DV interface are made inside a 
generate block to manage the direction of assignment.  There 
are three possibilities that result in different signal assignments: 

1. A verification component is a master BFM actively 
driving the RTL slave bus. 

2. The RTL is a master driving a verification component 
actively responding as a slave BFM. 

3. An RTL master bus is driving another RTL slave bus, 
and VIP acts as a passive monitor. 

Two parameters are defined in the RTL interface to 
configure the assignment direction.  The default values are set 
to allow RTL driving RTL, in order to avoid configuring 
verification infrastructure in the design itself.  If the VIP is a 
master BFM, the DV_DRVR and DV_MSTR are both set to 1.  
If the VIP is a slave BFM, the DV_DRVR is set to 1 and the 
DV_MSTR is set to 0. 

Wires are required to connect the RTL logic signals to the 
DV interface ports since the logic type will not connect directly 
to the inouts.  By keeping the wire names the same as the DV 
signal names, an implicit port connection can be made using 
“.*”. 

interface rtl_intf  

#( 

    parameter BW = 32,  //BUS WIDTH 

    parameter DV_DRVR = 0,    

    parameter DV_MSTR = 0, 

) 

(input clk, input rst_n);  

… 

 

`ifdef TBBUILD 

  wire valid_dv; 

  wire [BW-1:0]data_dv; 

  wire ack_dv; 

  // instantiate DV Interface 

  dv_intf dv_if(.*);   

 

  generate 

   if (DV_DRVR == 1) begin 

     if (DV_MSTR == 1) begin 

       //DV Master Driver to slave RTL 

       assign data   = data_dv[BW-1:0]; 

       assign valid  = valid_dv; 

       assign ack_dv = ack; 

     end else begin  

       //DV Slave Driver to master RTL 

       assign data_dv  = {`MAX_WIDTH’hz,data}; 

       assign valid_dv = valid; 

       assign ack      = ack_dv; 

     end 

   end else begin 

     //RTL-to-RTL driver, DV monitor only 

     assign data_dv  = {`MAX_WIDTH’hz,data}; 

     assign valid_dv = valid; 

     assign ack_dv   = ack; 

   end 

  endgenerate 

`endif 

endinterface 

 

interface rtl_intf  

#( 

    parameter BW = 32,  //BUS WIDTH 

) 

(input clk, input rst_n);  

 

  logic  [BW-1:0] data; 

  logic  valid; 

  logic  ack; 

 

  modport master_mp ( 

    output data, 

    output valid, 

    input  ack 

  ); 

  modport slave_mp ( 

    input data, 

    input valid, 

    output  ack 

  ); 

  modport monitor_mp ( 

    input  data, 

    input  valid, 

    input  ack 

  ); 

 

… 

 

endinterface 

Figure 9: Simple RTL Interface 

Figure 10: Embedded DV interface 



Note that the modports defined in the RTL interface are not 
associated with any clocking block.  The interface modports 
are required to connect RTL to RTL, however synthesis tools 
do not support clocking blocks here.   

C. Connecting to the environment 

The DV interface must be shared with the VIP.  The first 
step in doing this is to pass the interface to the UVM resource 
database as a virtual interface construct so it is visible to the 
verification environment.  This is done inside the RTL 
interface itself: 

 

 

Considering there may be several such buses, the name 
given to the resource database must be unique yet predictable.  
This is achieved using the verilog “%m” to create a name 
string based on the hierarchical path of the DV interface.   

In the case of an RTL-to-RTL connection, the RTL 
interface is already instantiated inside the DUT, and the DV 
interface appears in the resource database without additional 
testbench code.  In the case of a DV master or slave driver, the 
RTL interface must be instantiated in the testbench and 
connected to the RTL.   

The testbench then pulls the virtual interface from the 
resource database by recreating the name string, and pushes it 
to the correct agent using the UVM config database.   

 

 

The read from the resource database follows a “#0” which 
is used to avoid the race between pushing the DV interface and 
reading it, both of which occur inside initial blocks.   

The agent can now pull the virtual interface from the config 
db as shown in Figure 13: 

 

 
 

The steps taken to simply pass a DV interface to its agent 
may at first seem excessive; however, their justification is best 
explained when one considers other simpler solutions which do 
not work as well.  Two of these are described below. 

1. The agent can pull the interface directly from the resource 
database and cut out the testbench as a middle man.  
However, this requires the agent to have knowledge of the 
RTL hierarchy which should be avoided in an OOP 
environment.  Furthermore, multiple interfaces of the same 
type create different UVM names, and the agent or 
environment must somehow manage which virtual 
interface belongs to which instance of the agent.  

2. The testbench can find the DV interface in the DUT 
hierarchy instead of in the resource database.    This would 
eliminate the need for the RTL interface to push the DV 
virtual interface to the resource database.  This solution is 
better than the first one but it has a drawback since it 
requires a hierarchical path into the RTL.  Cross-module 
references should be avoided whenever possible.  The 
solution proposed in this paper avoids the cross-module 
reference by hiding the hierarchical path inside the UVM 
name string. 

VII. THIRD PARTY IP 

One of the key impediments to the use of interfaces is their 
lack of availability from third party IP providers.  We would 
like to see an interface option available from our purchased IP. 
This could be facilitated by having a standard interface 
definition for all standard busses.  We would encourage the 
standards bodies to consider developing such standard interface 
definitions. 

But even if we did have a standard interface definition for 
commonly used busses, there is still the problem of interface 
specialization.  Any standard interface must be parameterized 
to be of general use, but this causes problems if the interface is 
used on a synthesis boundary.  And all the other problems that 
we’ve discussed that require a custom version of an interface 
would also preclude the use of a standard interface. 

What is needed is some sort of base definition for an 
interface which can be used by a receiving module, but can 
then be extended somehow to allow the necessary 
customizations but still be compatible with the standard 
interface used by IP.  Bromley and Vreugdenhil [3] provide an 
elegant solution with their proposal for ‘abstract modports’.  
The idea is that you define a standalone modport which 
provides all the definition necessary for a module receiving the 
modport, but then can be referenced in any interface which can 
later be passed into the receiving module.  Bromley and 
Vreugdenhil give the following example: 

uvm_config_db #(virtual dv_if)::get( 

this, 

"", 

"dv_vif", 

dv_vif); 

 

 

initial begin 

  #0 

  if (!uvm_resource_db  

    #(virtual dv_if)::read_by_name("interfaces", 

    $sformatf("%m.U_dut.rtl_if.dv_vif"),dv_vif)) 

      `uvm_fatal("TB ERROR","VIF not found") 

  else begin 

    uvm_config_db  

    #(virtual dv_if)::set( 

null, 

"uvm_test_top.env.dv_agt", 

"dv_vif", 

dv_vif); 

  end 

end 

 

`ifdef TBBUILD 

  import uvm_pkg::*; 

 

  initial begin 

    uvm_resource_db  

    #(virtual dv_intf)::set( 

    "interfaces", 

    $sformatf("%m.dv_vif"),dv_if); 

  end 

 

`endif 

 

Figure 12: Testbench connection 

Figure 11: Environment connection 

Figure 13: Agent connection 



 

 

Then we only need standardized abstract modports, rather 
than a standard for a complete interface.  Each user can then 
define their own interfaces, to meet their particular needs, but 
can still easily pass in their interface to standard IP.  The user 
interfaces can have many additional modports, even additional 
signals and assertions, etc., but they only need to also include 
the standard modport used on the IP to ensure that it will 
correctly connect and not leave any dangling signals that could 
cause some of tool issues we have discussed. 

VIII. PROPOSED IMPROVEMENTS 

1. Tool support for modport expressions. 

A modport expression is a defined SystemVerilog 
construct, but it is not well supported.  From section 25.5.4 
of the SystemVerilog LRM [1]: ‘A modport expression 
allows elements of arrays and structures, concatenations of 
elements, and assignment pattern expressions of elements 
declared in an interface to be included in a modport list’. 
For example: 

 

 

The example shows how you can select just part of a vector 
to be included in a modport.  This eliminates unused signals 
from being included in a modport or the need to create new 
signals to accomplish the same thing, as we described in 
recommendation 4. 

2. LRM extension for abstract modports. 

See discussion under section VII: Third Party IP. 

3. Automatic instance reference for interfaces in wave 

viewers. 

See discussion under section V: Debug Aids. 

4. Automatic mapping between interface types and 

formatting script. 

See discussion under section V: Debug Aids. 

5. Interface Navigator in Wave Viewers. 

When you debug an issue in waves, you will typically want 
to look at selected interfaces first.  If you’ve gone to the 
trouble of including interfaces in your design, it would be 
very handy if you could see a nice hierarchy of just your 
interfaces so you could quickly navigate to the ones of 
interest.  Having a few pre-defined wave sets just doesn’t 
scale well to a large design with a hundred or more key 
interfaces.  We’d like to see an option in a wave viewer’s 
hierarchy navigator that would directly highlight all the 
available interfaces, with filtering by interface type. 

6. Ability to reference a parameterized virtual interface 
without specifying the parameters.  This would make it 
easier to reuse the same RTL interface for DV purposes. 

7. Ability for an interface to reference itself, similar to the 
“this” pointer in a class.  This would allow any interface to 
push itself to the UVM resource database, without 
requiring a wrapper.  Combined with a solution for #6, this 
would eliminate the need for a separate DV interface in 
most cases. 

 

IX. WHAT YOU CAN DO TO HELP 

The main reason interfaces are not better supported by 
industry tools is because the vendors are not pressed to make 
them work.  An easy way to solve that is to include just a 
single interface in your project.  If you ever get to a point 
where you run into a blocking issue, it’s quite trivial to remove 
that single interface.  But you can submit the issue to your tool 
vendor and press them to get you a fix.  If each project did the 
same with a single interface, or other SV features with limited 
support, then the vendors would very quickly get these issues 
ironed out. 

X. CONCLUSIONS 

Support for SV interfaces and structs in RTL design has 
come a long way since interfaces were first defined by 
Accelera back in 2003.  Yes, they are 10 years old now.  We 
had some problems with them on our project, but we found 
work-arounds for all the issues and have pressed our vendors 
for better solutions going forward.  Our primary problem was 
using interfaces across synthesis boundaries.  The solution for 
that problem – referencing modports in the module connection 
– proved troublesome for some other tools.  But we were able 
to successfully tapeout our chip using a modest number of 
interfaces and structs.   We had designers that liked using them 
and some that did not.  Our verification did appreciate their 
use, and they helped considerably with debug.  The authors 
believe that more extensive use of interface and structs would 
make their benefits seem more valuable, especially as tool 
support improves. 
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interface I; 
  logic [7:0] r; 

  const int x=1; 

  bit R; 

  modport A (output .P(r[3:0]), input .Q(x), R); 

  modport B (output .P(r[7:4]), input .Q(2), R); 

endinterface 

package pkg; 

  modport Abstract ( 

    output logic [3:0] L ); 

endpackage 

 

interface AI; 

  import pkg::*; 

  logic [7:0] Vec; 

  Abstract a_mp(.L(Vec[5:2])); 

endinterface 

 

module CE3 (pkg::Abstract P(.L(v))); 

  initial v = 4'b0; 

endmodule 

Figure 14: Abstract modport example 

Figure 15: Modport expressions 
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