
Using SystemVerilog Interfaces and Structs for RTL

Design

Tom Symons

Hardware Advanced Development

Oracle Labs.

Austin, Texas. U. S. of A.

tom.symons@oracle.com

Nihar Shah

Hardware Advanced Development

Oracle Labs.

Austin, Texas. U. S. of A.

nihar.shah@oracle.com

Abstract— System verilog interfaces and structs have many

useful benefits in RTL design, but they have not been readily

adopted due to limited support by the EDA vendors. We used

SystemVerilog interfaces and structs in our recent project, and

we have recently taped out a chip with some modest usage of

these in RTL. This paper discusses the benefits of SystemVerilog

interfaces and structs in RTL, the tools we used and the issues we

faced, and how we worked around those issues. Furthermore, we

propose improvements to the toolset and standards that will

improve the adoption of these beneficial constructs.

Keywords—SystemVerilog; interfaces; structs; RTL; hardware

design; UVM; verification

I. INTRODUCTION

SystemVerilog interfaces have proven to be indispensible
for verification. However, their use for RTL design has been
limited at best. Structs are equally useful and are less
problematic, but still are not commonly used in RTL design.
The primary reason interfaces and structs are not used more in
RTL design is because there are still some tools that have
limited support for them. But support for SystemVerilog
constructs in RTL has been steadily increasing, and it is
becoming more common to hear of successful tool flows
utilizing SystemVerilog design constructs. But you still must
verify your flow across your toolset and develop a usage
methodology that maps to the tools and common design needs.
This paper describes a tool set and methodology that supports
using interfaces and structs in RTL design.

II. BENEFITS OF INTERFACES AND STRUCTS IN RTL

DESIGN

Interfaces are useful in RTL design for the following
reasons:

1. They can dramatically collapse the size of netlist files. A
modest SOC can easily have 2500 signals just in one
netlist file, translating to roughly 3x2500=7500 lines (one
line for wire declaration, one to connect to source module
and one to connect to destination module). If the average
interface has 10 signal names, then about 250 interfaces
are required and need only 3x250=750 lines in the netlist
file. That’s a saving of 6750 (92%) lines of code. In our
SOC design, 25% of all lines were used for just
interconnection.

2. Having a group of signals bundled into an interface can
also ease debug considerably, particularly for users who
have to debug sections of the code they do not deal with
everyday. The grouping of signals into an interface
eliminates the confusion of which signals belong to which
bus and allows the user to drag the entire interface into a
wave viewer and see all the signals nicely grouped
together.

3. Using the same interface throughout the design is a great
way to ensure that all designers use the same signal names
for all signals in a given protocol. This also makes it easy
to reuse any assertions or functional coverage defined for
the bus.

4. Adding/removing/renaming a signal in an interface need
only be done in the interface and the two endpoints. There
is no need to update all the connections up and down the
module hierarchy between the two endpoints. This can
save some tedious, error prone work when signals traverse
many module boundaries, as well as eliminating a
potentially huge number of lines of netlisting code across
all those modules.

5. Interfaces are a great place for assertions that check for the
validity the interface signals. This ensures that the
assertions are always used on each instance of the
interface and helps avoid duplication of those assertions.

6. Interface provide an encapsulation for user-defined debug
aids. Additional signals can be added to an interface such
as path name or transaction count which can be viewed in
a waveform to enhance debug.

Writing, reading and debugging signals may seem like a
trivial task. But as chips get larger and larger, the number of
signals to manage escalates dramatically. Managing each
signal explicitly just does not scale well into these large
designs. The advantages of interfaces may not seem apparent
when just a few interfaces are used, but when a large number
of interfaces are used throughout a large chip, the advantage
becomes very obvious. Raising the level of abstraction of
design is the only way to wrap our brains around larger and
larger designs, and reducing the lines of code required is a key
aspect of raising the level of abstraction and improving design
productivity. SV interfaces and structs can help do this by

collapsing large blocks of extremely tedious and error-prone
code into a much more compact representation.

Netlisting tools can help by creating the connections, and
by providing compact code to read. But they are expanded
when seen by all standard tools, and so debug must be done on
the expanded versions. Interfaces allow the compact notation
to be continued even when debugging, without requiring the
complication of two separate versions of the source for the user
to maintain.

III. DESIGN ISSUES

A. Interfaces on Synthesis Boundaries

One of the biggest problems faced with interfaces were
when they were used on synthesis boundaries, where one
module receiving an interface through a port is synthesized
independently of the module containing the interface, as shown
in Figure 1.

If module A and/or B are synthesized independently of the
Top module, then problems arise when module A or B do not
use all the signals in the interface, as is often the case. This
may occur because the receiving modules use a modport that
selects only a subset of the interface’s signals. The modport
also determines signal direction. The result of the modport
selections are not known to the Top module, so the synthesizer
will simply include all signals, but module A and B will only
include their selected signals. When the synthesized
components are later connected, there will be a mismatch for
signals and drive direction.

The solution to the problem gives us our first
recommendation:

Recommendation 1: Specify the modport at source and
destination.

When connecting interfaces across synthesis boundaries,
you must specify the modport in the connections on that
boundary as well as in the receiving module, as shown in
Figure 2.

Unfortunately, referencing a modport in a netlist like this
causes problems in other tools that have not accounted for this
usage. For this reason, we recommend that you only use them
on physical design boundaries, rather than making them a
standard usage on all interface instances. But we will also
discuss how to get around these induced tool issues later in the
paper.

A similar issue occurs when parameterizing interfaces on a
synthesis boundary. This is really the same problem as
parameterizing modules on a synthesis boundary. In both
cases, the synthesizer doesn’t know what values will be
selected when it synthesizes the instanced module. In our
flow, we simply disallow parameterized modules on a
synthesis boundary. And if we really need one, we just put a
wrapper around the module so that it is not longer on the
synthesis boundary. But Design Compiler does handle this
issue if you tell it directly what the parameter values will be.

If an interface with a different parameter value cannot be
avoided, then we have our second recommendation:

Recommendation 2: Duplicate interfaces when specialization
required on synthesis boundary.

If interface specialization is required on a synthesis
boundary, then duplicate the interface and make the
necessary change in the new copy. We just changed the
default values for the parameters in our new copy.

This is rather a brute force solution, but the only one we
came up with. This normally introduces a problem for
verification, but we have a tidy solution for that, which is
explained in the Verification section. We also would move the
common body of the interface to an include file, then include
that in each specialization of the interface. That kept the
maintenance hassle to a minimum.

A third problem occurred with interfaces on synthesis
boundaries. This came about when a module used only a
subset of the signals on a modport. We initially used just full
master, slave and monitor modports. But some modules didn’t
use the clock or reset from the interface, or they didn’t use a
few of the signals or the full width of some busses. So the
solution here is to make liberal use of modports.

Recommendation 3: Add new modports as needed.

Add a new modport when one module will not use all the
signals in an existing modport. There is no downside to
having many modports.

A slightly more cumbersome problem occurs when you only
want to use a slice of the signals in one vector. This occurred

module A(X_if xif.mportA);

…

endmodule

module Top();

 X_if U_if();

 A U_A(.xif(U_if.mportA));

endmodule

Top
Intf X

Module
A

Module
B

Figure 1: Interface on synthesis boundary

Figure 2: Specify modports in netlists as well as input ports.

frequently with an address bus, where the master drove the full
address, but the slave devices only used a handful of the
address LSB’s and an external fabric did the MSB decode.
SystemVerilog has a handy solution for this problem, called
modport expressions. Unfortunately, even our simulator does
not support modport expressions, so for now you cannot define
a modport that only uses a slice of a vector. So our solution
here is to break such vectors up into two pieces such as
addr_msb and addr_lsb. Then create a modport for the master
with both vectors, and create a modport for the slaves using
just addr_lsb.

Recommendation 4: Break signal vectors into common
pieces.

When a module requires only a slice of one vector, break
the vector into two or more pieces and create modports
with the appropriate selection of pieces.

For example:

Figure 3: Modport with signal slice

Note that all of the recommendations in this section
(recommendations 1 thru 4) are only required for interfaces
used on synthesis boundaries. The synthesizer will evaporate
any unused signals when it knows which signals both sides are
using.

B. Clock Source

We had some difficulties when the clock corresponding to
the interface was not available where the interface was
instantiated. You must instantiate an interface above the
modules that receive it, as shown in Figure 1. You cannot
instantiate the interface in one module and then have it output
from that module to be connected to the receiving module. So
if the clock is only available in one or both of the receiving
modules, how do you connect that up?

The typical interface defines a clock and reset as ports to
the interface, and all other signals are defined as signals
internal to the interface. But if the clock or reset signals are not
available where the interface is instantiated, then this usage
breaks down. Even if the RTL logic does not need to receive
the clock from the interface, the interface still needs to have a
clock and reset for verification purposes. You could just add a

few ports to your modules and pass the signals up, but this
solution is often not acceptable.

So the solution here is fairly simple. Just remove the
clock/reset signals from the interface port and make them
internal signals just like all the others. We also used our
simulation-only ifdef to make these signals evaporate for
synthesis.

Recommendation 5: Move clock and reset signals where most
easily driven.

Move clock and reset signals off the interface ports when
they are only accessible in the source or destination module
using the interface.

An alternative option here is to have the clock and reset signals
defined both as ports and as internal interface signals. Then
just define all the modports required to select the appropriate
set of signals or use a parameter driven generate block to select
the desired clock input. This eliminates the need to possibly
have multiple interfaces defined for the same bus. We did not
try this option in our project, but it seems worth considering.

C. Interface Definition

We found that we tended to occasionally put too many
signals into a single interface. This just made more work to
deal with the unused signals on synthesis boundaries, and also
made the design intent a little less clear than desired.

Recommendation 6: Avoid putting too much into a single
interface.

Use multiple interfaces when large sets of signals are often
unused in one instance.

D. Structs

Some of our designers found structs to be very useful. We
particularly found them handy for creating a module of
control/status registers. We would typically create a single
struct for each register in a unit. Then create a single struct that
contained all the other structs. This made for very readable and
debuggable code. See figure 4 for an example of the structs
package.

logic [31:0] addr;

logic [7:0] addr_lsb = addr[7:0];

modport master (

 output addr;

 …

);

modport slave (

 input addr_lsb;

 …

);

Figure 4: Structs Package

We then placed the entire struct as a single output port on
the register module as shown in figure 5. We also used the full
struct as an input port on any module needing access to the
registers. Some designers did not like the full set of registers
as an input to their module, so they just peeled off individual
registers from the struct and fed them in on their own ports.
We could have grouped sets of signals with unions, but no one
felt this was necessary.

Figure 5: Register Module with struct output

We didn’t have any problems with structs, except when
unused signals in the struct crossed a synthesis boundary. It
that case we just had to peel off only what we needed.

IV. TOOL ISSUES

A. Interface Synthesis

We used Design Compiler (DC) from Synopsys for
synthesis. The main problems we ran into were due to unused
signals that cut across synthesis boundaries, as discussed in the
previous sections. Most of those problems where handled by
how we coded the interfaces and their connections.

But we also had a similar issue when we used an abstract
model. In Figure 1, consider module A as an abstract model
that is synthesized separately. Then the Top module is
synthesized with module A referenced as an abstract model.
But then the abstract model has had its interface expanded into
many ports, which need to be mapped to the as yet unexpanded
interface in Top. DC needs a little help with this. All you need
to do is include the following line in your DC setup when
synthesizing Top:

set hdlin_enable_elaborate_ref_linking true

We also ran into problems because interface signals are
referenced as ‘intf.signal’. DC does not like the period
notation in the signal name, so we replaced all period
separators with underscores by adding the following line to our
DC setup file:

change_name –rules verilog –hier

We also discovered another solution to the problem that
occurs if you pass in a parameterized interface on a synthesis
boundary. The enclosing module knows the parameters passed
to the interface, but the receiving module does not know the
parameter values for the interface. So when the two modules
are synthesized separately, they will have different size signals
and will cause an error when mated back together.

This problem can be solved relatively easily by creating a
dummy wrapper module that instantiates the interface and
receiving module. The interface instance should be
parameterized as it is in the real enclosing module. Then,
when you synthesize the receiving module, analyze and
elaborate the wrapper module as well, then remove the wrapper
with remove_design. The wrapper is thus only used to tell DC
the parameter values of the interface that is used by the
receiving module. You can find more details on this solution
in reference 4.

B. Struct Synthesis

When we used structs or typedefs in module ports,
synthesis failed because the package defining these types had
not yet been imported. This was no problem for simulation,
but required that we move the import statement outside the
module for synthesis.

Recommendation 7: Declare package import statements
outside module definition.

If structs defined in the package are used as ports on the
module, then import that package above the module
definition. This is also true for typedefs used as module
ports. See example in figure 5: Register Module with struct
output.

And you’ll also need to make sure DC uses the proper
SystemVerilog parser with the following DC setup option:

set hdlin_sverilog_std 2009

C. UPF Synthesis

We had one problem with interfaces when synthesizing our
power requirements defined with a UPF definition. This
problem occurred because DC required us to replace
‘intf.signal’ with ‘intf_signal’, as described previously. But this

import regs_pkg::*;

module regfile(

 input clk,

 …

 output unitA_regs_t regs

);

always @(posedge clk) begin

 …

 regs.regA.count <= regs.regA.count + 1;

 regs.regB.data <= data;

end

endmodule

package regs_pkg;

 typedef struct packed {

 logic [31:24] rsvd;

 logic [23:16] id;

 logic [15:0] count;

 } regA_t;

 typedef struct packed {

 logic [31:0] data;

 } regB_t;

 typedef struct packed {

 regA_t regA;

 regB_t regB;

 } unitA_regs_t;

endpackage

then caused a mismatch with the period notation used in the
UPF file. We resolved this problem by maintaining two
separate versions of the UPF file – one with periods and the
second with the periods replaced by underscores. We believe
we can avoid this duplication by reading in the UPF file before
the change_name directive is applied. However, we did not get
an opportunity to try this out before our tapeout.

D. Simulation

The only problems we had with simulation were with our
UPF power simulations. We used VCS and MVSIM from
Synopsys for power simulations. We ran into three separate
issues, but were able to work around all of them and filed bugs
with Synopsys for all three. As of this writing, these bugs still
exist in the most recent release of VCS.

The first problem occurred when we tried to specify
isolation policies for a module that had an interface port.
MVSIM could not handle the interface reference in the UPF
file, so we had to specify explicit isolation policies for all
signals in the interface. Having MVSIM automatically expand
the interface is not only convenient, but also helps us avoid a
missed signal if we were to ever add a signal to an interface.
With the automatic insertion of isolation buffers for the
interface, we had to remember to add them whenever we added
a new signal. While this is not a serious problem, it does
require another pre-tapeout audit.

The second problem occurred when we isolated an
interface output that was fanned out from an interface input,
then tried to simulate with the isolation turned off. This
uncovered a bug in MVSIM that caused the output signal to not
be driven correctly. We had to simply add an intermediate
signal between the interface input and interface output, as
shown below in figure 6.

Note that the problem only occurs when the input signal is
fanned out to multiple output signals. So the example above
actually works, but will fail if there are multiple copies of
out_if.

The final simulation problem with MVSIM was due to the
source modport references in our netlists, which were required
to handle interfaces on synthesis boundaries as discussed
previously. Unfortunately, MVSIM could not understand this
use of modports. Our only solution here was to ifdef the netlist
connections, such that we did our power simulations without
the modport reference and did our synthesis with them. This

was an unpleasant work-around, but our only option at the
time.

E. DFT

We had problems with our MBist tool when it ran across
SV interfaces. We used Tessent MemoryBist from Mentor.
We had two basic problems. First, the original code parsers
could not handle SystemVerilog interfaces at all. So we
updated to the newer HDLE parser, which was able to parse
SV interfaces.

However, like MVSIM, the HDLE parser could not
understand our use of source modport references in the netlist.
It would give a confusing error, indicating there were ‘too
many connections’ when we instantiated a module with an SV
interface port. To work around this, we used Mentor pragmas
around the definition of the interface port in the module, and
around the connection to that interface port in the netlist. The
tool would interpret the pragmas as identifying non-
synthesizable code, and so ignored it. For example:

NTEGRATION WITH VIP

V. DEBUG AIDS

Once we had interfaces in our RTL, we found several
handy uses for them to aid with debug.

As already mentioned, dragging an entire interface into a
wave viewer was a very handy option. Not only was it a quick
way to get all the signals from one bus into the wave viewer,
but we were guaranteed to get all the correct signals for the
bus, with no stragglers. We also defined some simple TCL
scripts for our wave viewer that we used to display the signals
in the desired order and format. For our larger busses, this was
a real time saver. We’d like to see a feature in our waveform
viewers that would map a TCL script or other formatting
definition to each interface type. Then the formatting would be
automatically applied whenever the corresponding interface is
displayed. But for now, we just call the scripts manually.

With interfaces we can also display more than just the
proper signals on a bus. We added additional signals to the
interface that were assembled from other signals. This was
very useful to help decode the current state of the bus. One
very useful example was to have a signal that represented the
number of outstanding transactions on the bus. Having many
transactions outstanding on a bus can make it difficult to
associate an address phase with a data phase, so a few simple
debug signals can make this process much easier. Each time
we pulled in an interface, we got all the supporting signals
automatically. All our DV signals were placed under an `ifdef
that evaporated them for synthesis.

We also added a simple instance identifier to our interfaces
by adding the following code:

module foo(in_if aif, out_if bif);

// this works

 assign

 enable = aif.enable,

 bif.enable = enable;

// this does not work

 assign bif.enable = aif.enable;

endmodule

unitX U_dut(

 .clk(clk),

//mbist_etassemble translate_off

 .xif(U_if.mportA),

// mbist_etassemble translate_on

 …

Figure 6: Use intermediate signals for MVSIM

Figure 7: MBist pragma

You could then look at the value of this variable to determine

where the interface was instanced, regardless of where you

accessed the interface. This was useful because the wave

viewers we used would only display where the interface was

referenced from, which was often not where it was instanced.

This is just an anomaly of interfaces. If you pull in an

interface from some module that receives it as a port, then the

instance shown will be the path to that module. But if an

interface was routed through many levels in your design, you

often want to know if two interfaces actually represent the

same set of signals. By looking at the instance_path we

defined, we could easily determine if they were. This was a

very nice feature compared to using just wires, as you could

easily determine that the busses at two points in the design

were on the same wires and be guaranteed that there could be

no wiring errors - because interfaces are not ‘wired’, they are

passed as entire objects.

Having an instance reference to the interfaces is a great

timesaver because there is no longer a need to look at two sets

of wires from two points in the design and try to determine if

they were the same bus or not. We would like wave viewers

to automatically provide this capability.

VI. INTEGRATION WITH VIP

The VIP must be able to use the RTL interfaces to drive
and sample signals. However, a problem arises when the RTL
interface is parameterized, which makes it difficult to use by
the VIP. Several publications can be found detailing why
parameterized interfaces do not work well with VIP and
ultimately it’s best to avoid them altogether. One could impose
a restriction to avoid using parameterized interfaces in RTL,
however that is a high price to pay since parameterized
interfaces are essential in RTL. There is another solution
which we describe in this section. We can create a separate
unparameterized interface for the VIP which we will embed
inside the parameterized RTL interface. The embedded
interface is shared with the VIP using the UVM resource
database. The following sections will describe how to
integrate the DV interface while minimizing the complexity of
the connections to the testbench.

A. Constructing the DV interface

The first step is to create a separate interface construct for
use by the VIP as shown in figure 8. This will be known as the
“DV interface”.

The DV interface is not parameterized, and starts with the

concept of the “maximum footprint” interface discussed in [2].

This means all bus widths are set to the maximum allowable,

and the VIP uses bit slices of these buses.

Interface bus signals are often excluded from the port list and

instead declared as logic types inside the interface itself.

However, declaring the interface signals as ports into the

interface as shown in Figure 8 gives two benefits:

1. Flexibility to allow connection to RTL which does not use

a SystemVerilog interface using a verilog “bind” and hence

minimizing cross module references for that case.

2. Compactness of using the “.*” implicit port connect

notation when embedded in the RTL interface.

The ports must be bi-directional to allow connection to either

a slave or master driver. The suffix “_dv” is used for bus

signal names to differentiate them from the RTL signal names

for reasons which will be apparent in the next section.

B. Constructing the RTL Interface

A simple RTL interface is shown in figure 9:

`define MAX_WIDTH 64

interface dv_intf (

 input clk,

 input rst_n,

 inout valid_dv,

 inout [`MAX_WIDTH-1:0] data_dv,

 inout ack_dv

);

 clocking mcb @(posedge clk);

 default input #(10ps) output #(10ps);

 output data_dv;

 output valid_dv;

 input ack_dv;

 endclocking

 modport master_mp (clocking mcb);

 clocking scb @(posedge clk);

 default input #(10ps) output #(10ps);

 input data_dv;

 input valid_dv;

 output ack_dv;

 endclocking

 modport slave_mp (clocking scb);

 clocking wcb @(posedge clk);

 default input #(10ps) output #(10ps);

 input data_dv;

 input valid_dv;

 input ack_dv;

 endclocking

 modport monitor_mp (clocking wcb);

endinterface

logic [1023:0] instance_path;

initial instance_path = $sformatf(“%m”);

Figure 8: Simple DV interface

The RTL interface is completed with an embedded DV
interface as shown in Figure 10. The DV interface is hidden
from synthesis using a compiler directive. Typically most
verification environments maintain such a switch so using it
here does not come at any extra cost.

The connections to the DV interface are made inside a
generate block to manage the direction of assignment. There
are three possibilities that result in different signal assignments:

1. A verification component is a master BFM actively
driving the RTL slave bus.

2. The RTL is a master driving a verification component
actively responding as a slave BFM.

3. An RTL master bus is driving another RTL slave bus,
and VIP acts as a passive monitor.

Two parameters are defined in the RTL interface to
configure the assignment direction. The default values are set
to allow RTL driving RTL, in order to avoid configuring
verification infrastructure in the design itself. If the VIP is a
master BFM, the DV_DRVR and DV_MSTR are both set to 1.
If the VIP is a slave BFM, the DV_DRVR is set to 1 and the
DV_MSTR is set to 0.

Wires are required to connect the RTL logic signals to the
DV interface ports since the logic type will not connect directly
to the inouts. By keeping the wire names the same as the DV
signal names, an implicit port connection can be made using
“.*”.

interface rtl_intf

#(

 parameter BW = 32, //BUS WIDTH

 parameter DV_DRVR = 0,

 parameter DV_MSTR = 0,

)

(input clk, input rst_n);

…

`ifdef TBBUILD

 wire valid_dv;

 wire [BW-1:0]data_dv;

 wire ack_dv;

 // instantiate DV Interface

 dv_intf dv_if(.*);

 generate

 if (DV_DRVR == 1) begin

 if (DV_MSTR == 1) begin

 //DV Master Driver to slave RTL

 assign data = data_dv[BW-1:0];

 assign valid = valid_dv;

 assign ack_dv = ack;

 end else begin

 //DV Slave Driver to master RTL

 assign data_dv = {`MAX_WIDTH’hz,data};

 assign valid_dv = valid;

 assign ack = ack_dv;

 end

 end else begin

 //RTL-to-RTL driver, DV monitor only

 assign data_dv = {`MAX_WIDTH’hz,data};

 assign valid_dv = valid;

 assign ack_dv = ack;

 end

 endgenerate

`endif

endinterface

interface rtl_intf

#(

 parameter BW = 32, //BUS WIDTH

)

(input clk, input rst_n);

 logic [BW-1:0] data;

 logic valid;

 logic ack;

 modport master_mp (

 output data,

 output valid,

 input ack

);

 modport slave_mp (

 input data,

 input valid,

 output ack

);

 modport monitor_mp (

 input data,

 input valid,

 input ack

);

…

endinterface

Figure 9: Simple RTL Interface

Figure 10: Embedded DV interface

Note that the modports defined in the RTL interface are not
associated with any clocking block. The interface modports
are required to connect RTL to RTL, however synthesis tools
do not support clocking blocks here.

C. Connecting to the environment

The DV interface must be shared with the VIP. The first
step in doing this is to pass the interface to the UVM resource
database as a virtual interface construct so it is visible to the
verification environment. This is done inside the RTL
interface itself:

Considering there may be several such buses, the name
given to the resource database must be unique yet predictable.
This is achieved using the verilog “%m” to create a name
string based on the hierarchical path of the DV interface.

In the case of an RTL-to-RTL connection, the RTL
interface is already instantiated inside the DUT, and the DV
interface appears in the resource database without additional
testbench code. In the case of a DV master or slave driver, the
RTL interface must be instantiated in the testbench and
connected to the RTL.

The testbench then pulls the virtual interface from the
resource database by recreating the name string, and pushes it
to the correct agent using the UVM config database.

The read from the resource database follows a “#0” which
is used to avoid the race between pushing the DV interface and
reading it, both of which occur inside initial blocks.

The agent can now pull the virtual interface from the config
db as shown in Figure 13:

The steps taken to simply pass a DV interface to its agent
may at first seem excessive; however, their justification is best
explained when one considers other simpler solutions which do
not work as well. Two of these are described below.

1. The agent can pull the interface directly from the resource
database and cut out the testbench as a middle man.
However, this requires the agent to have knowledge of the
RTL hierarchy which should be avoided in an OOP
environment. Furthermore, multiple interfaces of the same
type create different UVM names, and the agent or
environment must somehow manage which virtual
interface belongs to which instance of the agent.

2. The testbench can find the DV interface in the DUT
hierarchy instead of in the resource database. This would
eliminate the need for the RTL interface to push the DV
virtual interface to the resource database. This solution is
better than the first one but it has a drawback since it
requires a hierarchical path into the RTL. Cross-module
references should be avoided whenever possible. The
solution proposed in this paper avoids the cross-module
reference by hiding the hierarchical path inside the UVM
name string.

VII. THIRD PARTY IP

One of the key impediments to the use of interfaces is their
lack of availability from third party IP providers. We would
like to see an interface option available from our purchased IP.
This could be facilitated by having a standard interface
definition for all standard busses. We would encourage the
standards bodies to consider developing such standard interface
definitions.

But even if we did have a standard interface definition for
commonly used busses, there is still the problem of interface
specialization. Any standard interface must be parameterized
to be of general use, but this causes problems if the interface is
used on a synthesis boundary. And all the other problems that
we’ve discussed that require a custom version of an interface
would also preclude the use of a standard interface.

What is needed is some sort of base definition for an
interface which can be used by a receiving module, but can
then be extended somehow to allow the necessary
customizations but still be compatible with the standard
interface used by IP. Bromley and Vreugdenhil [3] provide an
elegant solution with their proposal for ‘abstract modports’.
The idea is that you define a standalone modport which
provides all the definition necessary for a module receiving the
modport, but then can be referenced in any interface which can
later be passed into the receiving module. Bromley and
Vreugdenhil give the following example:

uvm_config_db #(virtual dv_if)::get(

this,

"",

"dv_vif",

dv_vif);

initial begin

 #0

 if (!uvm_resource_db

 #(virtual dv_if)::read_by_name("interfaces",

 $sformatf("%m.U_dut.rtl_if.dv_vif"),dv_vif))

 `uvm_fatal("TB ERROR","VIF not found")

 else begin

 uvm_config_db

 #(virtual dv_if)::set(

null,

"uvm_test_top.env.dv_agt",

"dv_vif",

dv_vif);

 end

end

`ifdef TBBUILD

 import uvm_pkg::*;

 initial begin

 uvm_resource_db

 #(virtual dv_intf)::set(

 "interfaces",

 $sformatf("%m.dv_vif"),dv_if);

 end

`endif

Figure 12: Testbench connection

Figure 11: Environment connection

Figure 13: Agent connection

Then we only need standardized abstract modports, rather
than a standard for a complete interface. Each user can then
define their own interfaces, to meet their particular needs, but
can still easily pass in their interface to standard IP. The user
interfaces can have many additional modports, even additional
signals and assertions, etc., but they only need to also include
the standard modport used on the IP to ensure that it will
correctly connect and not leave any dangling signals that could
cause some of tool issues we have discussed.

VIII. PROPOSED IMPROVEMENTS

1. Tool support for modport expressions.

A modport expression is a defined SystemVerilog
construct, but it is not well supported. From section 25.5.4
of the SystemVerilog LRM [1]: ‘A modport expression
allows elements of arrays and structures, concatenations of
elements, and assignment pattern expressions of elements
declared in an interface to be included in a modport list’.
For example:

The example shows how you can select just part of a vector
to be included in a modport. This eliminates unused signals
from being included in a modport or the need to create new
signals to accomplish the same thing, as we described in
recommendation 4.

2. LRM extension for abstract modports.

See discussion under section VII: Third Party IP.

3. Automatic instance reference for interfaces in wave

viewers.

See discussion under section V: Debug Aids.

4. Automatic mapping between interface types and

formatting script.

See discussion under section V: Debug Aids.

5. Interface Navigator in Wave Viewers.

When you debug an issue in waves, you will typically want
to look at selected interfaces first. If you’ve gone to the
trouble of including interfaces in your design, it would be
very handy if you could see a nice hierarchy of just your
interfaces so you could quickly navigate to the ones of
interest. Having a few pre-defined wave sets just doesn’t
scale well to a large design with a hundred or more key
interfaces. We’d like to see an option in a wave viewer’s
hierarchy navigator that would directly highlight all the
available interfaces, with filtering by interface type.

6. Ability to reference a parameterized virtual interface
without specifying the parameters. This would make it
easier to reuse the same RTL interface for DV purposes.

7. Ability for an interface to reference itself, similar to the
“this” pointer in a class. This would allow any interface to
push itself to the UVM resource database, without
requiring a wrapper. Combined with a solution for #6, this
would eliminate the need for a separate DV interface in
most cases.

IX. WHAT YOU CAN DO TO HELP

The main reason interfaces are not better supported by
industry tools is because the vendors are not pressed to make
them work. An easy way to solve that is to include just a
single interface in your project. If you ever get to a point
where you run into a blocking issue, it’s quite trivial to remove
that single interface. But you can submit the issue to your tool
vendor and press them to get you a fix. If each project did the
same with a single interface, or other SV features with limited
support, then the vendors would very quickly get these issues
ironed out.

X. CONCLUSIONS

Support for SV interfaces and structs in RTL design has
come a long way since interfaces were first defined by
Accelera back in 2003. Yes, they are 10 years old now. We
had some problems with them on our project, but we found
work-arounds for all the issues and have pressed our vendors
for better solutions going forward. Our primary problem was
using interfaces across synthesis boundaries. The solution for
that problem – referencing modports in the module connection
– proved troublesome for some other tools. But we were able
to successfully tapeout our chip using a modest number of
interfaces and structs. We had designers that liked using them
and some that did not. Our verification did appreciate their
use, and they helped considerably with debug. The authors
believe that more extensive use of interface and structs would
make their benefits seem more valuable, especially as tool
support improves.

ACKNOWLEDGMENT

interface I;
 logic [7:0] r;

 const int x=1;

 bit R;

 modport A (output .P(r[3:0]), input .Q(x), R);

 modport B (output .P(r[7:4]), input .Q(2), R);

endinterface

package pkg;

 modport Abstract (

 output logic [3:0] L);

endpackage

interface AI;

 import pkg::*;

 logic [7:0] Vec;

 Abstract a_mp(.L(Vec[5:2]));

endinterface

module CE3 (pkg::Abstract P(.L(v)));

 initial v = 4'b0;

endmodule

Figure 14: Abstract modport example

Figure 15: Modport expressions

We’d like to thank Allan Carter, Sasi Murugesan and Adam
Tate for their diligence and persistence to resolve problems
encountered with SystemVerilog interfaces and structs in our
design process. We owe them our undying gratitude. Or at
least a round of beers.

REFERENCES

[1] IEEE (2012) "Standard for SystemVerilog- Unified Hardware Design,
Specification, and Verification Language”, IEEE Std 1800-2012.

[2] Aron Pratt, “Parameterized Interfaces and Reusable VIP”, VIP Central,
September 25, 2012

[3] Jonathan Bromley, Gordon Vreugdenhil, “Is There a Future for
SystemVerilog Interfaces”, Proceedings of DVCon 2009.

[4] Synopsys, “Building SystemVerilog Designs Using a Bottom-Up
Approach”, Solvnet, 2013.

[5] Stuart Sutherland, Don Mills, “Synthesizing SystemVerilog. Busting
the Myth that SystemVerilog is only for Verification”, SNUG Silicon
Valley 2013.

