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Abstract— 

 Modern day functional verification has become a very complex task with increasing design complexities and 

consumes almost 53% of the project time on an average as per recent studies [1]. Coupled with faster turnaround times, 

it becomes critical to create robust verification environments that are maintainable and reusable across different 

versions and configurations of IPs thus reducing the overall development life cycle. This paper describes how Software 

design patterns can be used for creation of a robust verification environment for a configurable multi-layer protocol. 

We have tried use these patterns to solve certain problems that we faced during the testbench development for a 

configurable MIPI DSI IP. Several design patterns are described along with the specific problem that they are used to 

solve. 
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I.  INTRODUCTION  

 Design patterns are a set of well-established techniques being used since long in the software world for code 

reusability, extensibility and maintenance. The hugely popular book “Design Patterns” [2] written by the authors 

who came to be known as ‘Gang of Four’(GoF) have given each of the patterns their definitive names and explained 

in detail their applications. System Verilog borrows heavily from software languages like C++ and Java and hence 

lends itself well for the application of design patterns. It is not a good design practice to solve every problem from 

first principles, instead, we should try to reuse the standard proven solution, if any, for a specific problem. 

Verification engineers do not do a good job of recording experience in testbench design for others to re-use. Design 

patterns help us solve this problem to a certain extent. UVM library code base already makes use of patterns like 

factory, observer etc., but creating any complex testbench involves extensive coding apart from making use of the 

UVM library. This makes the testbench development vulnerable to the expertise of the coder in making it robust 

and reusable. At any given point of time, a team may contain resources with various levels of coding expertise and 

may result in a testbench that is unstructured and hence neither flexible nor reusable. It bodes us well to incorporate 

the lessons learnt by decades of software design into functional verification and come up with a set of standard 

implementation procedures for commonly occurring scenarios thus making the testbench code more readable, 

reusable and maintainable. 

Usage of a few design patterns was demonstrated in System Verilog [3] and an attempt has been made in [4] to 

use one of the design patterns called 'visitor', which adds new operation to an existing class without modifying it. 

Reference [5] explains a set of generic scenarios where design patterns are used. However, this paper attempts a 

comprehensive application of multiple design patterns in creation of a flexible testbench for a configurable multi-

layer protocol IP.  

II. VERIFICATION ENVIRONMENT DESCRIPTION 

The Display Serial Interface (DSI) Specification [6] defines a high-speed serial interface between a peripheral, 

such as an active-matrix display module, and a host processor/display controller in a mobile device. By 

standardizing this interface, components may be developed that provide higher performance, lower power, less 

EMI and fewer pins than current devices, while maintaining compatibility across products from multiple vendors. 

DSI supports 2 different PHY layers called DPHY & CPHY the features of which keep changing across various 

versions. 

 DSI IP developed at NVIDIA is highly configurable and is developed to be able to support different PHY layers 

and various protocol specification versions.  
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A testbench was developed for single Protocol-PHY layer configuration (DSiv2.0-CPHYv1.2) and then it had 

to be made flexible to so that it can be extended to support DPHY. The testbench was then made adaptable enough 

to support any new Protocol-PHY layer configurations or any new versions of MIPI DSI spec with minimal changes 

to the existing code base.  Following table lists a few differences between various configurations of DSI IP: - 

                                            Table-1 List of various configurations and modes 

 

     Typically, to accommodate the changes specific to each of the configurations, all aspects of verification 

environment like sequences, transactions, constraints, scoreboard and functional coverage should be updated in the 

existing testbench and the resultant code becomes unstructured and difficult to maintain. The proposed approach 

tries to make this process more structured. These techniques can be applied to a basic testbench with minimal 

configurations as well in order to make it readable and extensible. 

       

      Following sections highlight a few instances where design patterns are used in the testbench and how these 

techniques are better compared to standard approach taken for the specific scenarios. 

 

III. CODING CONSTRAINTS FOR VARIOUS CONFIGURATIONS AND MODES 

Each of the PHY layers, versions and modes supported in the testbench needs to have a different set of 

constraints to be able to appropriately generate the stimulus. The example we take here is that of a simplified version 

of a base sequence, the variables of which need to be constrained differently specific to different PHY Layers, 

modes & versions for the corresponding stimulus generation. Below we try to explain the general approach taken 

for this scenario and how using a specific design pattern made the code more readable, structured and reusable. 

Standard Approach      

 A derived sequence is created from the existing sequence and a new constraint is added to it or an existing 

constraint in base sequence is overridden. This derived sequence is then overridden throughout the test bench using 

set_type_override function. The main drawback with this approach is debugging becomes increasingly difficult as 

number of such overrides increases. Also, to cover the various combinations of the modes/PHY layers/versions a 

huge number of derived sequences are needed, and this leads to what is called ‘class explosion’ in software world. 

Protocol layer differences 

                 Feature               CPHY                       DPHY 

Data unit 16-bits 8-bits 

Packet structures Different for ESCAPE(ESC)/Low 

Power (LP) and HIGH SPEED 

(HS) mode operations 

 Same for both ESCAPE (ESC)/    

 Low Power (LP) and HIGH 

SPEED(HS) mode operations 

Packet Header width 32-bits for ESC mode, 

48-bits for HS mode 

32-bits for both HS and ESC modes 

Error detection and correction in 

Packet header 

12-bit SSDC, 12-bit checksum and 

Packet Header replication for HS 

mode. 

8-bit ECC for ESC mode 

8-bit ECC for both HS and ESC 

modes 

Number of lanes 2 5 

LP mode substitution for blanking 

packets  

Supports during HBP/HFP Supports at the end of HS packets 

transmission  

Non-word aligned Host packets No limitation Supports up to  packets 

EoTp Not applicable Applicable 

EoT Sync error Not applicable Applicable 

   
                                                                    Version differences 

                 Feature               DSI V1.1                       DSIV1.2 

Direction HS RX not supported HS RX Supported 

ALP mode Not supported Supported 

Sync Symbol Sync Types Not supported Supported 
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A class explosion occurs when adding new functionality to existing class structure leads to huge class hierarchy. 

This is a very clumsy, unstructured approach to tackle this problem. 

Proposed Approach: Use Decorator Pattern  

 “The Decorator design pattern attaches additional responsibilities to an object dynamically. Decorators 

provide a flexible alternative to sub classing for extending functionality” – Head first design patterns [7]. 

This is a structural pattern which provides us a mechanism to modify a class object by allowing us to add 

behavior to it without affecting the other objects of the class type. This technique makes the base class code future 

proof to a certain extent. The main advantage of this technique over inheritance is that the behavior can be added 

to only specific objects of the class dynamically. Using this pattern, we can add the constraints specific to each 

mode as a ‘layer’ over the existing constraints. In a way, we are ‘decorat’ing the existing base class with additional 

functionality appropriately as per our needs. Given below are the components of this pattern as per [7]: 

1) Base sequence class: - This is the base sequence that contains the variables on which various constraints are 

applied through the test case over the course of simulation. Figure 1 below contains to the code specific to this 

class. 

 

                                                        Figure 1. Base sequence class 

2) Base Decorator class: - This class is a wrapper class over the base sequence class and sets up the infrastructure 

to be used by the ‘concrete decorator’ classes (shown in Figure 3). Figure 2 below refers contains the code specific 

to this class. 
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                                                Figure 2. Base Decorator class 

3) Concrete decorator class: - This class encapsulates the constraints specific to each of the modes/versions etc. 

Figure 3 below has code for multiple concrete decorator classes. 
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                                                   Figure 3. Concrete decorator classes 

    Each of the ‘concrete decorator’ classes present in Figure 3 are wrapped around the base sequence. The 

constraints present in this ‘concrete decorator’ class then get applied to the variables present in the base sequence. 

In effect, the constraints present in the ‘concrete decorator’ class are layered over the constraints present in the base 

sequence. One powerful feature of this technique is that any number of the ‘concrete decorator’ classes can be 

active at time over the course of the simulation. Thus, we can achieve huge number of combinations of constraints 

specific to all the configurations without needing to have a derived class for each combination. 

Figure 1 has code for base sequence (dsi_base_seq) in our example scenario. It is wrapped around by the base 

decorator class which is an abstract class (base_seq_decorator) as shown in Figure 2. Each of the ‘concrete 

decorator’ classes denoting a different configuration/version are shown in Figure 3.  All these classes are used in 

the test case (as shown is Figure 4) to generate constraint random stimulus. 

Figure 4 below shows a ‘concrete decorator’ class, cphy_mode1_decorator, which encapsulates the constraints 

for a specific mode of CPHY layer, being applied onto the variables in the base sequence. It is then followed by a 

dphy_mode1_decorator being applied for another instance of the base sequence. As already mentioned above 

multiple ‘concrete decorator’ classes can be active at a time in the course of a simulation. ‘MULTIPLE LAYER 

CONSTRAINTS’ section of Figure 4 shows the layering of 2 specific decorators onto the base sequence variables. 

Thus, we could achieve the stimulus for CPHY specific cases on v1.1 with minimal effort. 
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                                             Figure 4. Test case with decorator pattern used 

Figure 5 below gives the UML diagram specific to decorator pattern: - 
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                                              Figure 5. Decorator pattern UML diagram 

 

IV. ACCOMODATING PACKET STRUCTURE DIFFERENCES  

One of the common scenarios that we observe in verification is that the packet structure keeps changing across 

different versions of the specification or across different PHY layers. For DSI protocol, the HS Mode packet 

structure is different between CPHY and DPHY layers. CPHY has a 12-bit CRC calculated over its Header contents 

for error detection, while DPHY has an ECC calculated over its header for the same. The fields in the Packet are 

also different along with their packing behavior. CPHY packet has Sync Symbol Detection Code (SSDC) embedded 

in its header while DPHY doesn’t have such requirement. Figure 6 & 7 below shows the differences in the Packet 

structure of both CPHY and DPHY.  We have tried to explain below how this scenario is tackled generally and 

how a specific design pattern can be used for this problem to make the code more structured. 
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                                                               Figure 6.  DPHY Long Packet structure 

 

                                                               Figure 7. CPHY Long Packet structure 

Standard Approach      

 This scenario is generally handled either by modifying the existing packet transaction to add/remove new fields 

and conditionally add ECC/CRC check for the Header contents or by creating a derived packet transaction class 

with all the added functionality. This is a clumsy approach as it either involves modifying the existing code base or 

creating a huge number of derived classes as the verification environment keeps expanding to support new versions.  

Proposed Approach : Use Strategy pattern 

 Strategy pattern is defined as below as per [2]:                                                                   

    “Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets the 

algorithm vary independently from clients that use it.” 

   Typically packet transaction classes implement two types of behaviors, ‘pack/unpack’ to convert from/to bit-

level representations and ‘check behavior’ to check for the errors which would be typically ECC or CRC. These 

behaviors differ between CPHY and DPHY. The idea is to encapsulate these behaviors and then use the appropriate 

behavior interchangeably depending on the specific situation. This not only makes code more readable but also 

more extensible. A changed packet structure for a newer version of specification or a newer PHY layer can easily 

be encapsulated by adding its own logic as the newer ‘pack behavior’ or ‘check behavior’. 

For this approach we use an OOP concept called ‘composition’ which makes use of the ‘interface class’ that 

has been introduced into the system verilog standard from IEEE 1800-2012. Composition is typically used in 

software world as an alternative to inheritance. In composition, the required functionality is achieved by assembling 

the behaviors from various objects. Objects that are ‘composed’ should have well-defined interfaces, for which, we 

make use of the ‘interface classes’. We define an interface class for each of the behaviors that the Packet transaction 

class should model i.e., ‘Pack behavior’, ‘Unpack behavior’ & ‘Check behavior’. These functions must be provided 

when an interface class is implemented. Figure 8 shows the code for the interface classes encapsulating each of the 

behaviors. 

 

                                                  Figure 8. Interface class definitions 
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Figure 9 below shows the code for the specific behavior implementation of each of the interface classes. 

 

                                                          Figure 9. Interface class implementations  

Figure 10 below shows the code for the base packet class and the DPHY and CPHY packet classes which are 

composed depending on their specific behaviors 
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                   Figure 10. DPHY & CPHY packets composed from their specific behaviors 

As an when a new packet structure needs to be added or supported the ‘behaviors’ specific to those packet 

structures can be implemented and ‘composed’ into a newer packet. Figure 11 below shows code for the newer 

version of the specification has ‘packing behavior’ specific to CPHY but the ‘checking behavior’ specific to DPHY 

and using this pattern we can ‘compose’ the packet appropriately. This would not be possible with inheritance as 

‘multiple inheritance’ is not supported in system Verilog. 
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                                              Figure 11 Packet structure for new packet                          

 

The UML diagram for the Packet transaction class explained above is given in Figure 12 below. 

  

                                             Figure 12: UML diagram for Strategy pattern 

                                                                                             

V. ADDING NEW CODE TO THE EXISTING CLASS STRUCTURE  

     As the size of the testbench grows and as we need to support the newer configurations and versions of the 

specification, we may need to add new print messages or perform certain configuration checks deep within the 

class hierarchy to aid in debugging. The DSI testbench made use of various third-party VIPs which had to be 

configured into multiple configurations depending on the mode that is being verified. As the number of 

configurations and versions to be supported increased we had to check the configuration of various IPs in 

various modes. Also, we had to add print messages to aid us in debug. We explained below as to how this is 

accomplished generally and how using visitor pattern accomplishes this in a better way.  

Standard Approach      

A standard way is to add the required code by modifying each of the classes in the verification environment that 

needs the new functionality to be added to them. This may require us to modify the third-party VIPs that are 
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generally used by multiple teams within the company and hence is hugely inefficient. This also violates one of the 

most important solid design principles called the ‘open closed principle’, which mentions that “Software entities 

(classes, functions etc. should be open for extension but closed for modification. Another way to achieve this would 

be to create a derived class for each of the classes that we wanted to modify and then override the derived class 

with the base class throughout the testbench. This is a very inefficient approach as it make debug very difficult. 

Also, some of the VIPs we used were the vendor VIPs and hence it was not even possible to add the code as they 

are encrypted.  

Proposed Approach : Use Visitor pattern 

 Reference [2] defines Visitor pattern as below:  

        “Represent an operation to be performed on the elements of an object structure. Visitor lets you define a 

new operation without changing the classes of the elements on which it operates.”               

This pattern is suitable to an environment with a well-defined class structure, which, a UVM based environment 

is. Typically, implementation of Visitor pattern should be planned beforehand to make sure that all the classes in 

testbench are compliant with the visitor flow. But from UVM 1.2, UVM library provides all the necessary 

infrastructure needed to implement this pattern. Any class that is extended indirectly or directly from the 

‘uvm_component’ class will be able to handle the ‘visitor’ access. 

Below are the 2 main components of the visitor infrastructure provided by the UVM library: 

1) uvm_visitor: - This is an abstract class which needs to be extended and then is added with the new 

functionality that we want to add to the specific component that we wish to modify. This extended class is called a 

‘concrete visitor’ class. This uvm_visitor class also contains the pre-processing hook function ‘begin_v’ and post-

processing hook function ‘end_v’ which can be implemented in the ‘concrete visitor’ class to be able to initialize 

or observe any activity in the classes that would be ‘visited’. 

2) uvm_visitor_adapter: - This is an abstract class that wraps around the components that need to be ‘visited’ to 

be added with the new functionality that we implement in concrete visitor class. A variety of adapter classes like 

uvm_top_down_vistor_adatper (top-down), uvm_bottom_up_visitor_adapter (bottom-up) , uvm_by_level_adapter 

(level-by-level) are defined in the UVM library to traverse the class structure in a particular way. UVM library also 

provides an abstract class uvm_structure_proxy that provides all the sub elements in the structure of a certain 

element. uvm_component_proxy is a specialized class of this abstract class that provides all the subcomponents of 

a specific uvm_component.  

Adding display messages to aid in debug 

       When our existing CPHY testbench had to be extended to support DPHY layer, we had a requirement to 

print the transactions that are being pushed into a queue in the scoreboard and had to keep tract of size of the queue. 

Given below in Figure 13, is the code for the ‘visitor’ class that encapsulates the functionality that we wish to add 

which in our case is the ability to print transactions. 
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                                       Figure 13. Visitor class with the scoreboard ‘print’ messages added 

Given below in Figure 14, is the code for adapter class that wraps the scoreboard and applies the functionality 

that is implemented in visitor class. 

 

                                     Figure 14. Adapter class that traverses the specified components 

Given below in figure 16 is the code that needs to be added to the run phase of the environment class so that the 

print statements present in the visitor class are added conditionally to the scoreboard.  

 

                               Figure 15. Environment class with the ‘visitor’ traversal logic added 
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Checking the configurations info. for various components    

     As the testbench is expanded to support multiple PHY layers and versions, the components in the test bench 

(VIPs etc.) are configured in various modes. It becomes important to check if the configuration is properly set as 

per the newly added modes before proceeding further into simulation. Given below in Figure 16, is the code for the 

‘visitor’ class that encapsulates the functionality where we try to check the configuration information of various 

components  at the beginning of the simulations. This can be extended to periodic check depending on the debug 

needs. 

 

                                 Figure 16. Visitor class encapsulating the ‘cfg check’ functionality 

Given in Figure 17 below, is the code for the uvm_top_down_adapter_class that wraps the environment. Using 

uvm_component_proxy instantiation we can traverse all the components that are subcomponents of the environment 

class and perform operations on each of them. In this case we are printing the configuration object, cfg, of each 

component and if the component is VIP agent, we are performing some additional check. 

 

                                   Figure 17. Top down adapter to traverse all components in the hierarchy 

Below code in Figure 18 needs to be added in the run phase of the environment class so that the required 

functionality is achieved. 
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              Figure 18. Environment class that has all its subcomponents traversed by visitor logic 

Figure 19 below gives the UML diagram for the both the above scenarios implemented in visitor pattern. 

 

                                                       Figure 19. UML diagram for visitor pattern 

 

VI. DYNAMICALLY SHIFTING BETWEEN MULTIPLE MODES  

      DSI is a highly configurable IP. As we keep extending the testbench to support multiple modes of operation 

the test case coding becomes complex as we need to test the design for dynamic shifting between multiple 

modes. A few such modes supported are High speed mode (HS), Low power Mode (LP) &Ultra Low power 
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state (ULPS). To be able to test this behavior DUT must be configured to operate in each of these modes and 

the VIPs used in the testbench also need to be configured correspondingly. This must be done multiple times 

throughout the test case. A standard way generally followed to achieve this is explained below along with the 

specific design pattern to achieve this better way. 

Standard Approach      

      Each time we need to change the mode, the state of the DUT and the testbench (comprising a bunch of 

configuration registers and config objects) needs to be updated. This may be done by specifically modifying the 

config objects each time as we shift dynamically from one mode to the next. This is a tedious approach as it involves 

code duplication and may be buggy if not done carefully. 

Proposed Approach : Use Memento pattern 

Memento is a behavioral design pattern and is suitable when we want to save the state of an object so that it can 

be restored later. As the complexity of the test case increases, we may need to save certain ‘check points’ (referring 

to specific modes in our case) of the state of the DUT and test bench so that we can revisit them later to be able to 

shift the modes dynamically with minimal effort. 

This pattern consists of 3 main components: - 

1) Memento: - This is the class that encapsulates the content that needs to be stored so that it can be restored 

later dynamically. 

2) Originator:-  This class creates the object of the memento class and then saves its present state. It  also 

makes use of the previously used memento states to be restored later if required.  

3) Caretaker:-  This class keeps track of all the saved states in the originator and can request for a specific 

state that needs to be restored. 

 

Given below in Figure 20, is the Memento class that encapsulates the ‘configuration’ instance(cfg) that needs to be 

stored: - 

 

                                        Figure 20. Memento class containing the ‘content’ to be saved 

Given below in Figure 21 is the originator class which instantiates a memento class and saves the configuration 

information of the current mode. 
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                                Figure 21. Originator class that saves/retrieves the present state  

Given below in Figure 22 is the caretaker class that keeps track of all configurations of all modes and then requests 

the specific value when needed. 

 

                              Figure 22. Caretaker class storing and retrieving multiple states 

Given in the Figure 23 below is the test case class code where we try to dynamically shift between multiple modes.  



 

18 

 

 

                                     Figure 23. Test case that dynamically shifts modes using memento pattern  

Given below is the UML diagram for the Memento pattern in Figure 24: - 

 

                     Figure 24. UML diagram for Memento pattern 
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VII. MODELING TESTBENCH TIMEOUT   

      As we keep adding support for newer PHY layers and versions, we will keep extending older code to add 

new functionality. But if some functionalities are already present in the existing code base, we may not need to 

duplicate it in the newly added code. One such functionality is interface timeout. We need only one instance of 

the timeout logic per each test. As the code base increases it becomes difficult to track various instances of the 

timeout logic in the code and this makes the debug process as bit difficult. 

Proposed Approach : Use singleton pattern 

      Singleton pattern suggests that we make sure that all components of the testbench access a single instance 

of a class that encapsulates the timeout logic. uvm_event_pool is one such example where single pattern is used in 

UVM library. This pattern ensures that a class has only one instance and provides a global point of access to it. A 

singleton class should have its constructor method defines as protected. The single object that is created of the 

singleton class is accessed through a static method called get_timeout_instance() as shown in below figure 25 

below.  

 

                                Figure 25. Timeout singleton class 
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Figure 25 shows the ‘timeout’ functionality for each mode being encapsulated in a singleton class. Only a single 

instance of this class can be created, and the same instance needs to be used by any component using it. This aids 

in debug as it prevents multiple instances being created for the same functionality.   

Figure 26 shows the testcase where the singleton timeout class is instantiated, and the timeout value is set.  

 

                                Figure 26. Test case instantiating timeout singleton class 

Figure 27 below gives the UML diagram for the singleton pattern. 

 

                                Figure 27. UML diagram for singleton pattern  

VIII. CONCLUSION 

This paper tries to cover a few of the various design patterns that are being widely used in software world. These 

are optimized, proven & re-usable solutions to commonly occurring problems in OOPs based coding environments 

and have evolved over time. Since we try to solve these problems with well-defined patterns that are accompanied 

with class UML diagrams, the code becomes more readable and extensible. As the complexity of testbenches keeps 

increasing, such standard well-defined coding practices are needed to solve complex scenarios so that the solutions 

are scalable for future enhancements. Using these techniques in our testbench helped us in achieving considerable 

reduction in testbench development time when we had to extend our basic existing testbench, that was coded for a 

single configuration, to support multiple versions and PHY layers. The test bench was also more readable as each 

of these patterns was documented with clear UML diagrams hence making it easy for newer team members to 

understand the testbench. Using these techniques almost cut 20-30% development time that we had to spend on 

extending the basic testbench supporting one PHY layer for various configurations, by limiting the number of files 

to that we had to modify to very less number.   
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IX. FUTURE WORK 

Reference [2] defines many design patterns out of which we have tried to make use of a few in our testbench. 

There are many other patterns like ‘iterator pattern’ and ‘chain of responsibility’ that can find use in complex 

scoreboarding etc. Each of the design patterns can be further explored to be used efficiently in complex modeling 

that is needed for in today’s complicated testbenches. 
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