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Time to market is one of the most important factors in determining the success of any product. This can only be 
possible if we have a bug-free product, on time.  If a quality-based-product is released within a specified time 
frame, it is guaranteed to win the market. There is a huge amount of verification effort and design-cycle time 
that go into realizing these quality products of which the complexity and size are ever increasing. The 
verification effort needs to be augmented with the pre-silicon validation to iron-out long simulation time related 
issues and the same platform also acts as demonstrable platform to customers. Therefore realizing such a 
complex system requires modeling, verification, debug and analysis at various levels of abstraction with varying 
levels of precision. The advanced verification methodologies e.g. UVM and HVLs enable us to design 
testbenches which are automated and re-usable on various abstraction levels. With such higher complexity, the 
simulation throughput becomes a bottleneck. It is believed that significant portion of the development cycles are 
spent in functional verification. Improving simulation throughput with hardware-acceleration (synthesizable 
testbenches) or in-circuit emulation are two approaches, but they would result in losing the benefits of a 
coverage-driven constrained random verification environment, as well as discarding the earlier setup for the 
hardware software co-verification. Thus, an integrated solution that provides acceleration, configurability and 
reuse is required. This enables us to leverage the best of both worlds namely hardware providing the required 
speed and software providing the desired flexibility and ease-of-use of the advanced features of the HVL and the 
methodologies e.g. UVM. 
 
In this paper, we describe how this can be achieved through the creation of a reusable transaction-level 
verification environment in HVL (System Verilog/System C/C++) for the system-level verification using 
hardware acceleration platform (Emulator). This environment is capable of working at different levels of 
abstraction. It can also be heuristically and optimally partitioned between the hardware and software such that 
the communication between the hardware and the software portions is in-terms of “infrequent and information-
rich” data. In industry, we call this methodology as Transaction Based Acceleration (TBA), where one can 
accelerate UVM based test benches to run many times faster than on the simulation platform. This is achieved 
by partitioning the testbench in to software testbench (typically stimulus generation and checking part) and the 
hardware testbench (typically BFMs which interact with the DUT on signal base activity). Software testbench is 
simulated in software simulator on the conventional server whereas Hardware testbench along with DUT runs 
on the hardware box. The hardware testbench runs much faster than the software testbench. In order to achieve 
more speed, we need to make “infrequent and information-rich” data communication between the Software 
testbench and the Hardware testbench. Significant portion of our testbench should be on the hardware side, 
resulting in the software side as a lean and thin testbench. In certain applications, we can make both software 
and hardware portions run in parallel to further enhance the performance gain on the hardware acceleration 
platform (Emulator) over the software simulators. TBA enables us to leverage the best of both worlds namely 
hardware providing the required speed and software providing the desired flexibility and ease-of-use of the 
advanced features of the HVL and the methodologies e.g. UVM. 
 

In this paper, we present our case study in which, we have taken UVM based testbench and partitioned the same 
into   hardware and software testbench portions. We will explain about the mechanism of hardware–software 
interactions, how to access hardware memory from software, few things to keep in mind to make testbench 
reusable between simulation environment and TBA and we will share the performance improvements observed 
in testbench acceleration. We will also explain some of techniques employed, such as transaction bundling, 
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information rich and infrequent transactions, score boarding strategies and other useful debugging techniques 
which help in enhancing the overall performance gain, productivity and faster verification closure 

I. INTRODUCTION  

Nowadays, when the current designs complexities are increasing exponentially, we need a very strong 
verification environment which guarantees ensuring the full functional coverage and random scenarios. The 
advanced methodologies recommend the constraint driven random verification environment to achieve this. But 
the usage of high level of constraints causes higher simulation times for system level verification, and this has a 
big impact on overall design cycle time. 

II. NEED FOR SIMULATION ACCELERATION 

A. Inadequate Simulation Throughput  
It is believed that almost 60%-70% of design-cycle-efforts are spent in functional verification and debugging 

in a project, hence it is very important to make the verification phase of the design-cycle more efficient and faster. 
To minimize the time spent on verification, we always look for a better verification environment, better tools and 
more advanced compute farm which altogether can help the company in enhancing the speed of simulation 
process. But no matter how fast our compute farms are, the software simulators suffer their native feature of being 
sequential. The software simulators fake concurrency and always run sequentially, forcing a lot of the 
synchronization required in the testbench-design on every tick to advance the simulation time. This very nature of 
simulators, being sequential, requires us to look/adopt some other/better methodology in order to overcome the 
simulation throughput bottlenecks in the functional verification phase. 

B. Reusable HVL Testbenches  
Some of the approaches to accelerate the simulation speed include:  
• In-circuit emulation: It requires a target board on which the entire design is mapped. However, there 

are structural differences between the actual netlist and the mapped netlist, and this may lead to 
masking of some critical design issues. It may also not be available early enough in the design cycle; 
moreover the available solutions are very expensive in nature.  

• Synthesizable Testbench (STB) Approach: The design of such a testbench can be time consuming and 
can be difficult to debug. In addition, these testbenches cannot take advantage of advanced testbench 
techniques like constraint random verification and functional coverage.  

There is a need to accelerate HVL simulation testbenches as they are robust, proven and based on advanced 
methodologies e.g. UVM/OVM. Challenge involved here is to ensure maximum reuse between the simulation 
and acceleration platforms in verification phase. 

III. DESIGN AND SIMULATION TESTBENCH OVERVIEW  

Our design is a DMA engine which has 5 shell master ports, 1 AXI master ports, 1 AXI slave port. In the 
design, the initial programming is done using AXI slave   port. Then the DUT reads through one of its master 
ports and writes through another master port. The data transfer commands have a format called as command 
descriptor buffer (CDB) which can be chained together to form a chain. Each of the commands can be of simple 
elements or scatter gather elements. Data sizes can vary from few bytes to bug chunks. Once a CDB transfer is 
complete, a completion interrupt is triggered by the DUT. 



 

Figure 1:  Simulation Acceleration Timing Profile 

 

 

IV. SETTING UP THE TRANSACTION-BASED ACCELERATION FRAMEWORK  

A. Planning Simulation Acceleration approach  
Transaction-based acceleration (TBA) offers the required boost in the simulation throughput without 

compromising on any of the feature of advanced verification methodology. It allows the reuse of almost all the 
components of the simulation platform testbench with no or minimal modification. With a careful and 
methodological planning of verification environment, TBA approach can provide a significant level of 
simulation throughput improvement. Once the methodology is established, the initial testbench can be easily and 
quickly brought up.  
In order to use TBA effectively, these two basic rules must be followed.  

• Maximize overall performance by optimally partitioning the testbench between SW and HW  
• Maximize simulation testbench reuse to save development time and effort 

 



 

Figure 2: Simulation Acceleration Timing Profile 

B. Two Top Modules (sw_top and hw_top) Architecture 
As the conventional single top testbench architecture is not suited for TBA, the first step is to rearrange and 

create dual HVL (SW) and HDL (HW) top level module hierarchies. The HDL side must be synthesizable and 
should contain essentially all clock synchronous code, namely the RTL DUT, clock and reset generators and the 
BFM code for driving and sampling DUT interface signals. The HVL side should contain all other (untimed) 
testbench code including the various transaction-level testbench generation and analysis components and 
proxies for the HDL transactors.  

In the acceleration testbench architecture, the sw_top runs in the simulator while the hw_top runs in the 
hardware box at actual speed. These two tops synchronize by way of exchanging the messages. Therefore, 
messages between the sw_top and the hw_top should be at the highest applicable level of abstraction. 
Maximizing the performance of the testbench by minimizing the time spent in the testbench would also offer the 
best results. 

 
 



 
 

Figure 3: Acceleration friendly testbench 

The architecture should incorporate the following principles:  

• The most active part of the testbench (BFM/monitors) should run in the hardware at actual speed.  
• The testbench that resides on the SW side should be abstracted to higher-level data items or user 

transaction-level API to make it run significantly faster  
• Testbench profiling should be done to improve the simulation performance.  
• The BFMs/monitors are the only testbench components requiring clocks. When running on the 

accelerator, all clocks can be generated inside the HW side partition, avoiding synchronization with the 
SW side on every clock edge.  

• BFMs/monitors can provide or gather “transaction data” over multiple clock cycles. During these 
periods the HW side can run without interruption.  

• Transactions are stored in a buffer on the HW side and transactions are fetched only when the buffer 
level falls below a threshold to decouple SW and HW interactions on cycle by cycle basis.  

C. Partitioning  testbench between timed and untimed  

UVM based Simulation testbenches have transactors like drivers, monitors which are coded in classes to get 
advantages of OOPs but classes are not synthesizable types hence we need to partition the testbench in such a 
way that transactions are generated from software world and then it is given to hardware transactor which 
actually has the timing information with which the transaction should be applied to the bus and once transaction 
is complete then information comes back to software world. 

One thing we need to make sure is that no simulation time is consumed in HVL/software side.There are 2 
approaches by which we can partition the testbench in software and hardware.  

1) Partitioning  testbench between timed and untimed  



In this approach we will implement methods in interface and those methods are exported /being made visible 
to software world, Software transactor calls methods of hardware transactor, in this way, all the time consuming 
methods are inside hardware 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Partitioning with SCEMI interface  

In this mechanism transaction is send from software to hardware using SCEMI pipes and once transaction is 
received in the hardware side then transaction is applied to the bus, Hardware portion of transaction is made 
using interface or modules so that it can be synthesized. SCEMI pipes also have software and hardware portions 

 

Figure 4: Scemi interface 

 
 
 
 

class axi_master_driver extends uvm_driver 
#(axi_transfer); 
`uvm_component_utils(axi_master_driver) 
virtual interface axi_if axi_vif; 
// run phase          
virtual task run_phase(uvm_phase phase); 
   super.run_phase(phase); 
   fork 
      get_and_drive_vif(); 
   join 
endtask : run_phase 
//***************************************
******************************** 
// This task will collect the item and drive it to 
interface  
//***************************************
******************************** 
axi_transfer_pkd_t put_data; 
virtual task get_and_drive_vif(); 
      
      axi_vif.wait_for_reset(); 
   forever 
   begin 
       //get next item 
       seq_item_port.get_next_item(req); 
       if(req.direction == RD ) put_data.direction 
=0; 
       if(req.direction == WR ) put_data.direction 
=1;   
       put_data.addr = req.addr; 
       put_data.data  = req.data; 
       axi_vif.drive_data(put_data);     

interface axi_if (input clk,input reset); 
  logic [31:0] axi_addr; 
  logic [31:0] axi_data_out; 
  …. 
always @(posedge clk or posedge reset) 
  begin 
  … 
  end 
  end 
 
// pragmas to register the below task with sw 
 
task wait_for_reset(); 
if(reset) 
 @(negedge reset); 
endtask 
 
  task drive_data(inout axi_transfer_pkd_t 
transfer_pkd_data); 
    reset_seq(); 
   @ (posedge clk); 
   ….  
    … 
   endtask 
endinterface    



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Data exchange between hw and sw  
1) Data exchange using Virtual interface  

This approach is easy to implement and needs minimal changes to testbench, but in this mechanism data transfer 
size is fixed all the times which makes it inappropriate for the communication where transfer size varies as in 
that case to be able to use virtual interface data transfer size has to be maximum in all the transfers, because of 
which bandwidth is spent even when it is not needed  

In this mechanism we have to follow below steps while sharing data between hardware and software  

• Create a packed structure which has all relevant fields required between hardware and 
software 

• Convert transaction object to packed structure in software BFM  

class axi_master_driver extends uvm_driver 
#(axi_transfer); 
uvm_accel_input_pipe_proxy #(axi_transfer) 
axi_ip; // output to hw bfm  
 uvm_accel_output_pipe_proxy #(axi_transfer) 
axi_op; // input to hw bfm 
virtual function void build_phase(uvm_phase 
phase); 
        super.build_phase(phase); 
        hw_hdl_path = 
"tb_top.hw_top.u_axi_master_if";  
    uvm_config_db#(string)::set(this,"axi_ip", 
"hdl_path", {hw_hdl_path,".inbox_driver"}); 
.. 
endfunction 
virtual task get_item_n_drive(); 
   pack_data_t pack_data; 
   forever 
   begin 
       //get next item 
       seq_item_port.get_next_item(item); 
       //pack and put it in scemin interface  
       axi_ip.put(item); 
       if(item.Dir == RD) 
       begin 
           //wait for read data 
             rcv_read_data();  
             seq_item_port.item_done(item); 
       end 
       else 
          seq_item_port.item_done(); 
   end 
endtask : get_item_n_drive 

 

interface axi_master_interface( input            clk, 
output  [4:0]    AxiCmdType 
                               … 
                              ); 
 
…. 
scemi_input_pipe  #(4, 1,50000) inbox_driver (); 
scemi_output_pipe #(4, 1,50000) outbox_driver 
(); 
always @(posedge clk or negedge reset) 
begin 
    if(~reset) 
    begin 
      …. 
    end 
    else 
    begin 
       
inbox_driver.receive(1,msg_no,i_pipe_data,eom)
; 
AxiCmdType       <= i_pipe_data[4:0]; 
endrtask 
endinterface 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Data exchange using SCEMI Pipes  

SCEMI pipes are like fifos which has ends both in software and hardware works, SCEMI is Acellera standard 
and vendors have created wrapper around SCEMI standard to make it more user friendly  

In SCEMI variable length of data can be send per transaction that makes it useful for the protocols where data 
sizes can vary. In using SCEMI data is serialized and de-serialized using UVM pack and unpack functions. 

• hardware side need to extract the serialized data and drive the interface  ,data was serialized 
by UVM packer 

• when serial data is received then UVM unpacker is used to create transaction 

typedef struct packed { 
                        bit [31:0] axi_addr; 
                        bit [31:0] axi_data; 
                        bit         direction; //        
                      } axi_transfer_pkd_t;   
 
 
 
class axi_master_driver extends uvm_driver 
#(axi_transfer); 
….. 
// This task will collect the item and drive it to 
interface  
axi_transfer_pkd_t put_data; 
virtual task get_and_drive_vif(); 
      
      axi_vif.wait_for_reset(); 
   forever 
   begin 
       //get next item 
       seq_item_port.get_next_item(req); 
       if(req.direction == RD ) put_data.direction 
=0; 
       if(req.direction == WR ) 
put_data.direction =1;   
       put_data.axi_addr = req.axi_addr; 
       put_data.axi_data = req.axi_data; 
       axi_vif.drive_data(put_data);     

interface axi_if (input clk,input reset); 
  logic [31:0] axi_addr; 
  logic [31:0] axi_data_out; 
  …. 
always @(posedge clk or posedge reset) 
  begin 
  … 
  end 
  end 
 
task wait_for_reset(); 
if(reset) 
 @(negedge reset); 
endtask 
 
  task drive_data(inout axi_transfer_pkd_t 
transfer_pkd_data); 
    reset_seq(); 
   @ (posedge clk); 
   ….  
    … 
   endtask 
endinterface    



 

Figure5: Acceleration friendly testbench 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. MEMORY ACCESS BETWEEN HW AND SW 

It’s very common to access memory which is in on hardware box, few example of the same are 

class ShellSeqDataPkt extends uvm_sequence_item; 
    rand  ShellCommand_e                           CmdType;      // 2 bit           
    rand  bit  [(SHELL_CMD_LENGTH - 1) : 0]      CmdLength;      //16         
    …. 
    rand  bit  [(SHELL_DATA_WIDTH -1) : 0]       ShellOutBoundData []; 
    rand  bit  [(SHELL_DATA_WIDTH -1) : 0]       ShellInBoundData  []; 
    rand  bit  [(SHELL_DATA_WIDTH -1) : 0]       ShellInBoundExpectedData  []; 
    `uvm_object_utils_begin(ShellSeqDataPkt) 
     …. 
     `uvm_field_array_int(ShellOutBoundData,UVM_ALL_ON + UVM_NOPACK ) 
        `uvm_field_array_int(ShellInBoundExpectedData,UVM_ALL_ON + UVM_NOPACK ) 
  `uvm_object_utils_end 
   function void do_pack (uvm_packer packer); 
      foreach(ShellOutBoundData[i])  
       begin 
        packer.pack_field(ShellOutBoundData[i],128); 
       end  
      foreach(ShellInBoundData[i])  
       begin 
        packer.pack_field(ShellInBoundData[i],128); 
       end  
    endfunction 
    function void do_unpack (uvm_packer packer); 
      bit [15:0] no_of_xfer; 
      no_of_xfer = ((CmdLength + CmdLocalAddr[3:0] + 15)/16); 
      if (CmdType==POSTED_WRITE || CmdType==NON_POSTED_WRITE) ShellOutBoundData = new 
[no_of_xfer]; //size was automatically unpacked 
      else ShellOutBoundData = new [0]; 
      if (CmdType==READ) ShellInBoundData = new [no_of_xfer]; //size was automatically unpacked 
      else ShellInBoundData = new [0]; 
         ShellInBoundData[i] = packer.unpack_field(128); 
       ….. 
    endfunction 



• Poking command structure in Slave HW BFM memory  
• Peeking data in slave memory for scoreboarding 
• Poking data in slave memory for expected read data movement 

Care must be taken while accessing DUT memory as this involves communication between hardware and 
software world. For performance reasons, we should always try to combine access together. Sometimes we have 
to combine multiple packets together to achieve the same, but this yields better performance throughput. 

There are multiple steps involved while transferring memory contents from hardware to software. Below are the 
steps involved for transferring data from DUT memory to software memory. 

• Create an  XlSvMemoryTransactor object pointing to the memory instantiation in the hardware side. 
• Pass handles to the components that require the back door memory access. 
• Implement methods in the memory module to poke/peek the data into memory 
• Write to  DUT memory using load method at a given address. 
• Read DUT memory buffer at the given address using unload method 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  class dma_env extends uvm_env; 
    `uvm_component_utils(dma_env) 
    ... 
    XlSvMemoryTransactor XlSvMemoryTransactor_obj[*]; 
    dma_scoreboard       scoreboard; 
    ... 
    function void build_phase(uvm_phase phase); 
       super.build_phase(phase); 
       ...  
       XlSvMemoryTransactor_obj[0] = 
new("hw_top.u_axi4_slave.memoryTransactor");//AXI_RGN 
       XlSvMemoryTransactor_obj[1] = 
new("hw_top.u_shell_slave_driver_bfm_0");   //PCE0_RGN 
       scoreboard                  = 
dma_scoreboard::type_id::create("scoreboard",this); 
       ... 
    endfunction : build_phase    
 
    virtual function void connect_phase(uvm_phase phase); 
        super.connect_phase(phase); 
        scoreboard.XlSvMemoryTransactor_obj[0] = 
XlSvMemoryTransactor_obj[0]; 
        scoreboard.XlSvMemoryTransactor_obj[1] = 
XlSvMemoryTransactor_obj[1]; 
        ... 
    endfunction : connect_phase 
    ... 
endclass 
 
class dma_scoreboard extends uvm_component ; 
      `uvm_component_utils(dma_scoreboard) 
    XlSvMemoryTransactor XlSvMemoryTransactor_obj[*]; 
    ... 
    task GetData(int mem_handle, int addr, int len,ref int dout[]); 
       int unsigned   data_to_unload[]; 
 
       dout = new[len]; 
       XlSvMemoryTransactor_obj[mem_handle].unload(addr, len, 
dout); 
    endtask 
    ... 
endclass 
 

    module shell_slave_bfm ( 
  Clock, 
  Reset, 
… 
export "DPI-C" function 
XlMemoryTransactorLoad; 
    function void XlMemoryTransactorLoad( 
            input bit [ADDR_WIDTH-1:0] address, 
            input bit 
[BACK_DOOR_PAYLOAD_WIDTH-1:0] 
payload, 
            int unsigned numWords ); 
        for( int i=0; i<numWords; i++ ) 
            begin 
            mem_hw[address+i] 
                = payload[ ((i+1)*DATA_WIDTH)-1 -: 
DATA_WIDTH ]; 
            i = i+1; 
            if(i != numWords) 
                mem_hw[addressReg+i] 
                = payload[ ((i+1)*DATA_WIDTH)-1 -: 
DATA_WIDTH ]; 
            end 
    endfunction 
 
export "DPI-C" function 
XlMemoryTransactorBulkRead; 
    function void XlMemoryTransactorBulkRead( 
               input bit [ADDR_WIDTH-1:0] address, 
            input bit [ADDR_WIDTH:0] numWords 
); 
          reg [BACK_DOOR_PAYLOAD_WIDTH-
1:0] payload; 
        for( int i=0; i<numWords; i++) begin 
            payload[ 
(((i%PAYLOAD_WORDS)+1)*DATA_WIDTH)
-1 -: DATA_WIDTH ] 
                = mem_hw[address+i]; 
            
XlMemoryTransactorReturnReadData(payload ); 
         end 
    endfunction 
… 
endmofule 



VI. SCOREBOARDING STRATEGIES 

In simulation environments, scoreboarding would be done as soon as a packet has been processed by DUT. 
Doing so in TBA environment causes lot of context switching between HW and SW and lowers simulation 
throughput. Choosing the scoreboarding strategy greatly decides the simulation throughput. We have described 
few score boarding strategies implemented in our TBA environments.  
 

A. HW scoreboarding 
In this approach, we do scoreboarding on HW side (in Emulator) itself. As soon as a packet is processed by 
DUT (typically DUT returns completion response), scoreboarding logic in BFM (in Emulator) can start 
comparing the actual data with expected data. In this approach, there is no data transfer from HW side to SW 
side. Since the scoreboarding logic runs on hardware, it will consume some clock cycles. For ex: if we have a  
loop of 100 iterations, we might need 1 cycle to do the scoreboarding for each iteration. While scoreboarding is 
happening for previously completed packet, DUT can process next packet. Hence, emulator would NOT pause 
until scoreboarding finishes, which is the case in SW scoreboarding. Hence, this approach gives best throughput.  
 

B.  SW scoreboarding 
 

In this approach, as soon as DUT completes processing a packet, response would be sent to SW side. To 
avoid frequent context switching, we can choose to buffer the responses on HW side and push them to SW in 
bunches. Note that buffering them on HW side has a penalty of occupying hardware resources. Hence, a 
reasonable trade off should be made between throughput vs hardware resources.  
 

One more point we need to consider is creating lighter completion packets before sending them to SW side. 
Typically a packet consists of lot of fields, and all of them may not be necessary for scoreboarding logic. So, in 
such case, we can create a lighter packet, which holds only valid fields required for scoreboard. This saves 
memory requirements on both HW and SW sides.  
 
C. Illustration of above techniques with AXI4 example.  
 

Assume, we are verifying memory controller and DDR memory (Usually in GBs). First, I will randomly 
pick up 2 regions of each 8MB size in entire DDR address space. I always issue all write transfers to write 
region and read transfers to read region.  
 

Let’s look at read transaction scoreboarding in HW side. Before start of simulation, I will poke known data 
in to read region (8MB size). Instead of choosing random data for read region, we can use start_pattaren[7:0] 
and increment_pattern[7:0] to initialize. This allows us to compute expected data easily. Now, we can issue RD 
transfers with the address randomly chosen in this entire 8MB region. As soon as RD response beats available in 
HW side, we can compute expected data as follows and check against the received data.  

 
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 1𝑠𝑡 𝑏𝑦𝑡𝑒 = (𝑎𝑥𝑖4𝑝𝑘𝑡. 𝑎𝑑𝑑𝑟 −  𝑟𝑒𝑔𝑖𝑜𝑛_𝑠𝑡𝑎𝑟𝑡_𝑎𝑑𝑑𝑟) ∗ 𝑖𝑛𝑐𝑟_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[7: 0]  +  𝑠𝑡𝑎𝑟𝑡_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[7: 0]  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 2𝑛𝑑 𝑏𝑦𝑡𝑒 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 1𝑠𝑡 𝑏𝑦𝑡𝑒 + 𝑖𝑛𝑐𝑟_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[7: 0] 

Let’s look at scoreboarding of WR transfers on SW side. Usually, axi4 packet contains data array whose size 
is equal to number of beats in that WR transfer. Hence, transferring data as it is from SW to HW requires more 
context switches and bigger buffer on HW side. So, instead of random data, we can have start_pattern[7:0] and 
increment_pattern[7:0] in axi4 WR packet. Now, this lighter packet can be sent to HW side. Once WR 
completion has been received in HW side, BFM in HW side can create lighter packet holding only ID, ADDR, 
start_pattern and increment_pattern fields. Now, this lighter packet can be pushed to SW side and pushed in to 
some FIFO. Instead of scoreboarding as soon as WR is finished, we can choose to wait until entire 8MB WR 
region is exhaustively written. Then all 8 MB data from DDR can be peeked and pushed to SW side. We can 
compute expected data for this 8MB of WR data by processing all packets in FIFO. This way we can minimize 
data transfer between SW and HW size and achieve better throughput.  
 



D. One way optimization  
While testbench is running on SW side (scoreboarding or stimulus generation), emulator would be paused, 

hence throughout would be low. We can make both testbench (in SW) and DUT (in HW) run simultaneously to 
achieve better throughput by streaming out completion packets from emulator. In this approach, emulator 
doesn’t pause to send out completion packets. Software has to capture that streamed out data and do 
scoreboarding. 

VII. DEBUG TECHNIQUES 

A verification engineer spends more than 50% of time debugging the simulation failures. It’s very important 
to adopt proper and efficient debugging techniques. A test can fail because of multiple reasons like a bug in 
design, bug in test bench, environment issues, and wrong configuration etc. log files and waveforms are the 
tools which help the verification engineer in root causing the failure.  

Sometimes it is required to change the environment and rerun the test to arrive at the conclusion. Waveform 
dumping for big simulation costs lot of time. In the accelerated test bench where the part of DUT and test bench 
is in the box/hardware, the waveform dump has to be transferred from the hardware side (buffer in the box) to 
the software side. The buffer size is limited and has to be emptied to the software side (host machine) to 
accommodate next samples. 

All the above facts slow down the debugging process in the accelerated test benches. Following are few 
techniques which improves the debugging efficiency. 

• Recording SW and HW side activities and replaying from certain time instead of zero simulation time. 
• Dumping selective signal in the waveform. 
• Dumping the duration of interest only. 

One can specify relevant duration (say t1 to t2) to save the HW states and capture the input vectors instead 
of capturing the input vectors at every time interval. This captured database can be replayed after enabling the 
monitors using set-register calls and can be used to capture the waveforms. While replaying it uses the captured 
stimulus.  

 
 

Figure 6: Testebnch backup-replay 
 

In other mode, all transactions from the box/HW are saved to the host. It can be replayed without 
attaching the box/HW. And after a point of relevance the HW can be restored and test can be run as normal from 
that point onwards. 

 
Figure 7: Hardware backup-replay 

Example: 



Consider a scenario where there is an issue in the test sequence after a long time of simulation (t2 in the 
figure below). Fixing the stimulus and rerunning takes a long time.  

 
Figure 8: Simulation time without replay 

So, in this case capture HW side activity in the host. Change the stimulus, compile the testbench/stimulus and 
rerun till the time where the change is going to take effect (little earlier t1). Till this point emulator is not 
needed. The time taken to run till time point will be very less as the there is no context switching between HW 
side and SW side. 
Now attach the emulator and run father simulation to see the effect of the change.  

 
Figure 9: Simulation time with replay 

VIII. HOW TO TUNE PERFORMANCE TO ACHIEVE MAXIMUM THROUGHPUT 

As discussed earlier, Performance depends on several factors like  

• Time spent in software versus time spent in hardware 
• Memory access 
• RTL being ported to box completely or there are some behavioral constructs  

To find out all the factors affecting performance, there are a couple of profiling reports available. Below are the 
several steps to find out the root-cause of the performance throughput drop. 

• Maximum compile time frequency versus actual frequency achieved  

 

 

 

 

 

Above profile report clearly tells that though Box can run upto 1316KHz but it could only run at 259.51KHz. 
Since we are getting very less throughput, we need to find out where bigger portion of time is consumed 

• Time spent in software world versus hardware world 
 

 

 

========================================================================= 
Performance and Design Profile 
------------------------------------------------------------------------- 
--- Maximum HW operating speed (fclk freq): 1316.00 KHz 
--- Clocking Mode: Default (2X). 
 
--- HW executed 425111880 evals(or sim-steps) + (38135135 behav cycles) in 1785.08 sec (1781.73 
CPU sec) 
--- Acceleration speed achieved: 259.51 KHz (259510.76 evals/sec) 

--- Profile: (%) 
     73.47     SW-SIM (Elapsed: 1311.45 sec; CPU: 1308.99 sec) 
     19.74     HW-EMU (Elapsed: 352.31 sec; CPU: 351.65 sec) 
      6.80     HW-MEM (Elapsed: 121.31 sec; CPU: 121.08 sec) 
 
 --- SW-SIM : TB, TBCalls, DPICalls, VPI/VHPI/PLI/E/SystemC. 
 --- HW-EMU : HW evaluations and Synchronization Latency. 
 --- HW-MEM : Memory Access (read/write) from/to HW. 



The above profile suggests that the time spent on software is too high as compared to time spent on the 
hardware. This is something which needs to further analyzed since to get better throughput, time spent on 
hardware should be as much as possible. This profile tells that very less time spent on memory interactions. 

• Synchronizations between hardware and software  
 

 

 

 

 

 

 

The above profile suggests that there are 587 times interaction between hardware and software. This needs to 
be looked at and reduced if possible, since every interaction consumes some amount of CPU time. 

IX. RESULTS AND CONCLUSIONS 

 
We developed the acceleration environment reusing a significant amount of components/functionality from the 
corresponding simulation platform. The results are very encouraging. 

 
Below table shows the throughput numbers in the simulation and acceleration environment of the same design. 

 

Data Transfer Size 

Simulation 
wall clock 

time  

Emulator 
wall clock 

time  
Speed Up  
(X factor) 

1KB- 64KB*100*8 25888sec 118 sec 219 
64KB-256KB*100*8 46694sec 174 sec 268 

512KB-1MB *100*8 43637sec             111sec 393 
 

The testbench acceleration environment has boosted the simulation speed up-to 300 times faster against that of 
the core level pure software simulation. The huge throughput gain has enabled us to run longer simulation 
cycles which might not be possible on the pure simulation platform at all. 

 
Our conclusion is that TBA methodology has great potential in enhancing the verification productivity and 
thereby quality. The TBA methodology should be deployed for the designs which need long cycle runs and it 
should complement the simulation platform for such long tests. 

 
Our recommendation is to follow the above suggested guidelines while designing the simulation platform 
testbench to make it acceleration friendly. This would facilitate the same testbench being able to run on the 
simulation as well as the acceleration platform. The long tests, gate level simulations and the power-aware 
simulations are some of the obvious candidates to target on the acceleration which would yield the best results 
in throughput gain. 

 

--- Synchronizations due to TB/DPI/SVA/SysTask calls: 682. 
 
--- Total number of TB/DPI/SVA/SysTask calls: 694. 
 
------------------------------------------------------------------------- 
 TBCALL statistics: 694 tb-calls 
------------------------------------------------------------------------- 
       587 tb_top.hw_top.u_dcr_if.drive_data    (Type = tb_export:pio) 
              Profile: Total time =~ 0.37 sec (634.97 usec/call, input-args=0.31%, exec=99.48%, 
output-args=0.20%) 
              Loc: (/home/cheetah/team/sunkumar/cheetah/mss_mp/sim/bfm/hw_bfm/dcr_if/dcr_if.sv, 
44) 
……. 
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