
Using Save/Restore is easy, Right?
A User’s Perspective on Deploying Save/Restore

1

Ron Thurgood, Ed Powell, Aneesh Samudrala

Introduction

2

What is Save/Restore?

Is the technology there to support a robust solution?

Where do we see benefit using this technology?

What are the technical and methodology challenges?

What results have we realized with real projects?

Save Restore

3

S

R

R

SetupTestSetup

• Save the state of a simulation, then restore that state and continue
• Save/Restore, re-seed, and run test
• Save/Restore, re-seed, change test code, and run test

Single Test Save/Restore Testing

Test1

Test2

Past Solutions

4

• IEEE 1364-1995
• Supported system tasks $save/ $restart
• PLI interface reason_save, reason_startofsave

• IEEE 1364-2005
• Replaced PLI support with VPI support

Technology History

• High resource cost for implementation
• Enablement of the technology, and deploying a robust methodology
• Complex solution that users had to manage
• Difficultly of writing the save and restart callback routines.

• Support for other external code (C,C++,Specman-E, VHDL)
• 3rd party VIP needed to support the VPI capability
• Save/Restart limitations on when the save and restore could occur

Limitations

Current Solution

5

• Process image is saved and then can be restored
• The entire memory image of the simulation process is saved

• Includes state of all models being simulated
• Includes any files being read or written

New Vendor solution

• No longer need to worry about 3rd party or external code support
• Simpler enablement of the save/restore technology
• Support for other verification languages (C,Specman-e, VHDL)

Benefits

• Saved image size is much larger than previous solution
• Compression of save image is needed

• Must still develop a methodology around save/restore capability

Drawbacks

Productivity improvements

Simulation
Throughput

• Looking to reduce time spent simulating training links and initializing design
• Looking reduce rerunning of same initialization sequence
• Focus testing on “interesting” part of the simulation

Debug

• Address the amount of time to reproduce failures (from regression failure to
user reproducing)

• Save image of simulation around the failure point, and debug from that point

Test
development

• Reduce the test development cycle
• Avoid running setup, and initialization when developing test sequences

changes

6

Simulation Throughput:
Simulation Testing Modes

7

Elaboration Init Phase Main test phase Finish Test Phase

Elaboration Init Phase Main Test Phase Finish Test Phase...

Elaboration

Init Phase Main test phase Finish Test Phase

Init Phase Main test phase Finish Test Phase

...

Runmode: 1
Each test runs through all phases

(elab, init, main test, finish test)

Runmode: 2
Single elaboration is done for
all tests of a given topology,

and an elab snapshot is
created.

Each test uses elab snapshot
of design and then steps

through rest of test phases
(init, main test, finish test)

Simulation Throughput
Save Restore: Two Stage Testing

8

Elaboration Init Phase

Main Test Finish Test

Init Phase

Init Phase
Main Test Finish Test

Main Test Finish Test

Main Test Finish Test

Main Test Finish Test

Main Test Finish Test
...

...
...

Single elaboration is
done for all tests of a

given topology, and an
elab snapshot is created.

Multiple init phase
snapshots created for

each unique
configuration. The tests
use the init snapshot and
then steps through rest

of test phases
(main test, finish test)

Simulation Throughput by testing modes

9

• 1/3 of jobs are tests
Runmode 1

• ~1/2 jobs are tests
Runmode 2

• All but two jobs are tests
Two-Stage testing

• Getting enough testing of
setup/initialization
• Focused tests on just initialization
• Defined specific initialization

modes for testing
• Added randomization of state in

the tests

Concerns

Runmode 1 E I T E I T E I T E I T E I T

Runmode 2 E I T I T I T I T I T I T I T

Two-Stage Testing E I T T T T T T T T T T T T T
1 Elab, 1-Initialization, N-Tests

Fewer test runs without snapshot

I Elab, N-initialization, N-Tests

Elaboration (E), Initialization (I), Test (T)

Improved Debug efficiency

10

Elaboration Init Phase Main test phaseE I

(15-90mins) (1-24hrs) 1 2 3 4 5 6 7

X

Main test phase6

Initial simulation run

Run from a Snapshot

Elaboration Init Phase Main test phaseE I

(15-90mins) (1-24hrs)

X
Initial simulation run

Main test phaseI X
2nd run

Main test phaseF

Run from the Snaphot for quick debug

F

Periodic snapshots taken
during the test phase and
when a simulation fails a
snapshot can be loaded and
used to do debug from that
snapshot. No longer have to
run from the beginning. High
cost on disk space to store
snapshots.

Run simulations with limited
debug and wave information,
and then when failure occurs
rerun simulation but use
failure time from initial run to
save snapshot some
specified time before failure

Test Development efficiency

11

Elaboration Init Phase Main test phase Finish Test PhaseTest
change

More
Changes

(15-90mins)
(1-24hrs)

Elaboration Init Phase Main test phase Finish Test PhaseTest
change

More
Changes

(15-90mins) (1-24hrs)

Challenges and Complexities: Test Development

Restructure tests

Clear Init/Test
separation

Post Snapshot
State randomization

Modified our test
description

Save/Restore
definitions

(init sequence, init
seed)

Dynamic Loading
(init/test code)

Save/Restore
Methodology impacts

Initialization testing

Multiple initialization
snapshots

12

Test Description

13

:Identifier dut_2stage_atomic_traffic_1_0
:Repeat 10
:Repeat_init 2
:Class (all two_stage_turnon)
:Method simulation

(
test_mode (e)
topo_dir (#THIS#/topo/dut_rsp_ip/e)
test_dir (#THIS#/test/dut_rsp_ip/e)
init_name (standard_init)
test_name (atomic_traffic_test)
compargs (#G01_0_COMPARGS#)
ecode (#ECFG_VER_1_0#)

test_ecode
(

"extend data_pkt_s {
keep global_cid_pres.reset_soft();

};"
)
memory (3G)
slots (1)
init_seed(random)
seed (random)

)
:Owner Ed Powell
:Summary Demonstrate save/restart testing

Challenges and Complexities: Environment
Job

Dependency
tracking

Snapshot
management

Seed
management

Run-time
Settings

Disk space
managment

14

• New jobs dependencies between
ELAB, INIT, and TEST jobs

• Identifying the number
of unique initialization
to create

• Naming convention
• Test jobs need to

know location of
snapshot to use

• Location to store snapshots
• Need more disk space!
• Clean up capabilities needed
• Compression needed!

• Need to change settings
after snapshot loaded.

• Test job can be run on
totally different
machine, what needs to
be updated?

• How do I adjust wave
recording (Signals, txns)?

• Need unique seed for
each init, and test job

• Need ability to
reproduce failures
(store seed
information)

Managing job signatures and init seeds

15

Elab Task
Topo X Sig 1

Elab Task
Topo X Sig 2

Init Task
Topo X Sig 1

Init Sig 1, Seed 1
Init Task

Topo X Sig 1
Init Sig 1, Seed 2

Init Task
Topo X Sig 1

Init Sig 2, Seed 1
Init Task

Topo X Sig 1
Init Sig 2, Seed 2

Init Task
Topo X Sig 2

Init Sig 1, Seed 1
Init Task

Topo X Sig 2
Init Sig 1, Seed 2

Init Task
Topo X Sig 2

Init Sig 2, Seed 1
Init Task

Topo X Sig 2
Init Sig 2, Seed 2

Test A Seed 1

Test A Seed 3

Test A Seed 2

Test A Seed 4

Test B Seed 1

Test B Seed 3

Test B Seed 2

Test B Seed 4

Test C Seed 1

Test C Seed 3

Test C Seed 2

Test C Seed 4

Test D Seed 1

Test D Seed 3

Test D Seed 2

Test D Seed 4

Necessary to manage and
track job creation, job
dependency and seed
management.

Looking at a Single topology
with:
• Multiple configuration of

topology
• Running with multiple

initialization snapshots
• Running multiple tests on

each snapshot

Results: What did we achieve?

Increased
simulation
throughput

Better focus
on interesting

testing
(avoided
duplicate
testing

Increased
user debug
productivity

Enabled large
multi-chip
topologies

Reduced
impact on

compute farm
for large multi-

chip tests

Required
investment for
robust solution

Key
technology in
meeting goals
and objectives

16

Results: Simulation Throughput
TOPOLOGY SIZE DESIGN

SIZE:
MODULE

INSTANCES

DESIGN
SIZE:

REGISTER
INSTANCES

SIMULATION
RUN-TIME

MEMORY USAGE
(GB)

TYPICAL
SIMULATION

DURATION (HRS)
(TEST PORTION)

TYPICAL % OF
DURATION

SPENT IN INIT
PHASE

Medium 100-200K 1-2M 15-20 0.75 40-50%
Large 650-

1600K
7-11M 50-60 2.5 50-60%

Extra Large 2-10M 15-45M 60-100 5-48 50-75%

17

ROI of Save/Restore

18

Disk usage from regression

TOPOLOGY SIZE

AVERAGE INIT
SNAPSHOT DISK

SIZE

AVERAGE INIT
SNAPSHOTS

CAPTURED PER DAY

TOTAL DISK SPACE
USED FOR INIT

SNAPSHOTS PER DAY
Medium 900 MB 27 22.5 GB

Large 1.6 GB 26 41.6 GB

Extra Large 3.6 GB 35 126.0 GB

19

Impact of Enabling Compression

TOPOLOGY
SIZE

COMPRESSION
SETTING

SIZE OF INIT
SNAPSHOT

(GB)

REDUCTION IN
SNAPSHOT SIZE

(%)

TIME TO SAVE
SNAPSHOT

(SEC)

TIME TO LOAD
SNAPSHOT

(SEC)
Medium None 6.5 - 16 27

1 1.2 81.5 70 51
3 1.1 83 80 50
5 1.1 83 116 49
7 1.09 83.2 242 49

Large None 12 - 30 42
1 1.9 84 125 88
3 1.8 85 151 90
5 1.8 85 205 88
7 1.7 85.8 419 88

Extra Large None 23 - 55 101
1 3.6 84 209 154

20

Conclusion

21

Full process image Save/Restore is now available

A robust Save/Restore methodology can be developed

Throughput, capacity, and debug productivity are improved

Snapshot seeds and disk space must be managed

Size and complexity of designs practical in simulation is increased

	Using Save/Restore is easy, Right?�A User’s Perspective on Deploying Save/Restore
	Introduction
	Save Restore
	Past Solutions
	Current Solution
	Productivity improvements
	Simulation Throughput:�Simulation Testing Modes
	Simulation Throughput�Save Restore: Two Stage Testing
	Simulation Throughput by testing modes
	Improved Debug efficiency
	Test Development efficiency
	Challenges and Complexities: Test Development
	Test Description
	Challenges and Complexities: Environment
	Managing job signatures and init seeds
	Results: What did we achieve?
	Results: Simulation Throughput
	ROI of Save/Restore
	Disk usage from regression
	Impact of Enabling Compression
	Conclusion

