
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Using Portable Stimulus to Verify an LTE Base-Station Switch
Adnan Hamid (adnan@brekersystems.com)

Breker Verification Systems, 1879 Lundy Avenue, Ste 126, San Jose, CA 95131
www.brekersystems.com

Scenario Model Construction
 Algorithmic graph-based portable stimulus scenario model

"blind-built" from spec before simulation available

 First generated test running within hours of initial bring-
up!
 graph-based models allow simple creation of complex test scenarios
 graph-based models allow incremental build out of scenario model
 test cases correct by construction, even with 1000's of interacting

tasks and complex Task Dispatcher programming cases

Test Complexity Scaling
 Seamless scaling of test complexity from single task to

1000's of inter-dependent tasks, and from single
CPU/Task Dispatcher/Tasker to multiple CPUs/Task
Dispatchers/Taskers across multiple clusters

Portable Stimulus
 Target specific self-checking tests generated for

simulation and emulation with different test case mechanics
 Easy to replay failing emulator cases on simulation
Waiting for silicon to generate post-silicon tests

Checking and Debug
 Task dependency graph generated from tool (Figure 2)

used to help follow test case intent

 Design errors rapidly identification and root-caused, with
common debug view across all platforms

Coverage Closure
 Path coverage and automatic coverage closure of

graph-based models provide metric for use case coverage
 cannot be measured with RTL functional coverage

Objective

LTE Base Station Switch Design

Verification Requirements Method

Results

Generate software driven verification (SDV) test cases in "C" for
an LTE Base Station Switch

 Complex design supporting many possible use models

 Particular focus on dependency management across
tasks and resources

 Create single verification model that can scale from
simple to complex tests

 Crate portable stimulus model that can generate tests for
simulation, emulation and post-silicon

 Crate self-checking test cases that are easy to debug

 Prove coverage closure on system use cases

 CPUs configure Task Dispatcher with 1000's of tasks

 Task Dispatcher schedules tasks on Taskers as
resources become available

 Each task has many possible formats with different
paths through system

 Each task many have complex dependencies on other
tasks and resources

 Task Dispatcher must manage dependencies across
tasks and resources

 Task Dispatcher must track progress and completion of
tasks to free resources

 One Task Dispatcher and multiple Taskers in each cluster

 Multiple clusters in full chip

Complexity Requirements

 Individual tasks have many possible formats and many
possible resource dependencies

 Need to test complex dependency scenarios across
tasks, task dispatchers and taskers (Figure 2).

 Need to generate complex data structures in memory

 Need to manage memory across multiple regions

 Task Dispatchers have complex configurations with
many variations

Scalability Requirements

 Scaling of generated tests from simple to complex

 Scaling of system under test from sub-system to full-chip

Portability Requirements

 Single source of tests must run on simulation, emulation,
post-silicon

 Support different test case mechanics for each platform
 e.g. back-door byte-by-byte memory checking in simulation, but

front-door checksum-based checking in post-silicon

Checking and Debug Requirements

 Automatic generation of self-checking tests

 Track progress of each task through life-cycle
 All tasks completed
 Tasks completed in dependency order

 Predict and check results in memories and registers

 Interactive debug to identify and root-cause errors
must work in simulation / emulation / post-silicon

Coverage Requirements
 Prove coverage closure on all use cases

Figure 1: LTE Base Station Switch

Figure 2: Task dependency graph generated from TrekSoC

VIP VIP

model

model

model

model

pl
at

fo
rm

sp

ec
ifi

c
co

nf
ig

ur
at

io
n

TrekSoC

TrekBox

test.ctest.ctest.c

test.tbx

event id

Scenario Model

Trekbox interface
• backdoor memory for

simulation
• semi-hosting for

emulation
• UART for post silicon

compiler

Figure 3: TrekSoC Software Driven Verification Flow

Portable Stimulus

 Common scenario model used at all stages of verification
(Figure 4)

 TrekSoC tool configured for each environment
 complexity of test to generate
 number of CPUs, Task Dispatchers and Taskers
Number and size of memory regions
Communication mechanism between test and TrekBox

Test Generation Tool

 Use Breker TrekSoC product as tool of choice for
scalable portable stimulus (Figure 3)

 algorithmic graph-based scenario models to capture
verification space

Checking and Debug

 TrekSoC generated self-checking test cases

 Interactive Test Map view to identify and root-cause
errors (Figure 5)

Failing Node

Error Message

Error Source

Figure 5: TrekSoC Test Map Debug View

Figure 4: TrekSoC Target Specific Test Case Synthesis

IP Scenario Model

SoC Scenario Model

Testbench

Testbench
SoC RTL

Photo
Processor

Fabric

MemoryMemoryMemoryCPU

Fabric

SD Card
Controller

Display
ControllerCamera

VIP VIP VIP

System
and

Power
Control

Testbench
SoC RTL

Photo
Processor

Fabric

MemoryMemory

Fabric

SD Card
Controller

Display
ControllerCamera

VIP VIP VIP

System
and

Power
Control

Su
bs

ys
te

m
So

C
IP SD Card

ControllerVIP VIP

DC

PP

Sys

Cam

SD

PP

TrekSoC

Simulation Emulation Prototyping Post Silicon

Horizontal Reuse

Ve
rt

ic
al

 R
eu

se
Tr

an
sa

ct
io

na
l

So
ft

w
ar

e
Dr

iv
en

TrekSoC

VIPVIP

Realized Benefits

For more information on this verification process, see www.brekersystems.com

Bugs Found
 Hardware, software, and environment bugs found and

fixed at each level of application

Effort & Cost Savings
 Automated generation of 1000's of tests for emulation/Si
Could not achieve this coverage with manually written tests

	Slide Number 1

