
Using Portable Stimulus to Verify an ARMv8
Sub-System SoC Integration

1

Mike Baird, Willamette HDL
Aileen Honess, Breker Verification Systems

Agenda
• Brief Introduction to PSS – Aileen & Mike
• PSS modeling concepts – Mike
• Overview of key PSS constructs – Mike
• ARMv8 integration verification - Aileen

2

Why Waste Your Life
Writing and Debugging Tests?

3

Test development drives debug
Complex directed test cases are
hard to get right

Silicon
Complex diagnostic patterns with no link to
verification, limited visibility

SoC
Time-consuming, manual C tests targeting multi-
core platforms with many corner-cases

UVM
Laborious concurrent sequence, scoreboard and
coverage authoring, limited reuse Design

32%

Verification:
Other 13%Verification:

Test Development
30%

Project Resource Deployment
Verification:

Debug
25%

Accellera Portable Stimulus Standard
• Abstract, specification-driven

testing
• Designed to be portable across:

– Verification process phases
– Verification platforms
– Engineering groups

• The real win:
– Eliminate UVM painful coding
– Create intricate SDV corner cases
– Automate silicon diagnostics

• PSS 1.0 powerful…
but the tools make the difference!

4

Proposed Portable Stimulus Specification (Courtesy: Accellera Systems Initiative)

Accellera Sponsored Portable Stimulus Working Group

PSS Concept: Flight Booking Example

5

Traditional

Contact lots
of airlines for
lots of flights

Authoring lots
of tests

Is a bit like

Modern

Describe
intent

Set
constraints

Options
synthesized

PSS Language Flavors

• Two "flavors" or different syntax for PSS
– Domain Specific Language (DSL) syntax

• SystemVerilog like syntax
– C++ using a C++ class library that is semantically equivalent to the DSL

• Today
– PSS language explained using DSL
– ARMv8 verification using C++

6

Test Scenarios and the Scenario Space
• Test scenario (or scenario)

– High-level documentation of a use case
• "Tells" a story

– "Capture an image, manipulate it with a photo
processor and save it to memory"

– "Capture audio and transmit it out the modem"
– Performed to ensure end-to-end functionality

• Looks at the system as a whole – not just individual parts
• Test scenarios are derived from "user stories"
• The scenario space encompasses the possible test scenarios or use

cases for a particular system

7

CPUCPUCPUCPU
Memory

GPU

Display
Controller

Audio
Camera

Controller

DMA Modem

SoC

PSS Scenario Model
• PSS language is used to model the the scenario space of a system

– AKA a PSS scenario model
• Tools can "process" the PSS language scenario model and represent it in

a graph-based scenario model
– Tool solves for one or multiple test scenarios from this model

• Test case(s) are generated for a target test environment
• It can be useful to think of a PSS scenario model as an "abstract" layer or

model or on top of an underlying test layer or model
– Underlying layer:

• UVM tests/model
• "C" based tests/model

8

CPUCPUCPUCPU
Memory

GPU

Display
Controller

Audio
Camera

Controller

DMA Modem

SoC

What then is a PSS Scenario Model?

• PSS models the scenario space in terms of
– Resources

• What is available to accomplish scenarios
• CPU, DMA, Encrypt/decrypt, Graphics processor, camera etc.

– Actions
• Behaviors of a scenario
• Encrypt/decrypt, transmit/receive, image capture, dma transfer etc.

– Data and control flows
• Information flow in the scenario
• Buffers, streams, states etc.

9

Paradigm Shift
• Coming from a UVM or Software Driven Verification (SDV) environment

to PSS requires a paradigm shift (a must have "aha!" moment)
– You will struggle mightily until you make this shift

• Must move from a "testbench viewpoint" to a "test intent viewpoint"

10

Memory AES

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

WB
if

MII
if Eth

mac

WISH-
BONE
bus

slave
mem

hdl_top

slave
mem

DMA

hvl_top

test

wb_sys_env

wishbone_
master_agent

wb_env

wb_reg_env

mon_ap

wb_reg_agent

Memory
SB

mii_env mii_agent

MII SB

virt_seq

AES

"Testbench Viewpoint"
• Think in terms of what the testbench must do to cause a desired

behavior in the system (DUT)
– Look at the pieces of the system as boxes with some kinds of interfaces that are

exercised to cause DUT behaviors
– Write code that executes on VIP/Processor that uses the DUT interface to

exercise and observe DUT behaviors
• UVM sequences, C functions

– Initialize IPs
– Cause DMAs, encrypt/decrypt, ethernet transfers etc.
– Do all the interfaces operations
– Get results
– "Scoreboard" DUT behaviors

11

WB
if

MII
if Eth

mac

WISH-
BONE
bus

slave
mem

hdl_top

slave
mem

DMA

hvl_top

test

wb_sys_env

wishbone_
master_agent

wb_env

wb_reg_env

mon_ap

wb_reg_agent

Memory
SB

mii_env mii_agent

MII SB

virt_seq

AES

Testbench Example
• Focusing just on the DMA IP in the wb_subsys example...
• Write sequences/functions

– DMA initialization
• Write/read memory mapped registers to initialize the DMA

– DMA transfer
• Initialize buffer(s)
• Start transfer
• Verify transfer

• Write a test (and another and another...)
– Code is written with a specific execution platform in mind

• Sequences for a UVM VIP interface agent
• C code for a processor

– Explicit calls to sequences/functions that execute on the VIP agent/processor
– Written from the point of view "What do I need to do to the DMA IP?"

12

WB
if

MII
if Eth

mac

WISH-
BONE
bus

slave
mem

hdl_top

slave
mem

DMA

hvl_top

test

wb_sys_env

wishbone_
master_agent

wb_env

wb_reg_env

mon_ap

wb_reg_agent

Memory
SB

mii_env mii_agent

MII SB

virt_seq

AES

Test Intent Viewpoint
• Think in terms of what the system does

– What does it do?
– What are its behaviors?
– What inputs does it require?

• Write a PSS model that captures the test intent
– Not the test implementation – we are not writing tests in PSS

• Model (scenario model) of the test intent
– Describes what the system must do to prove it has been verified

• Is as abstract as possible to make tests re-targetable
– Describes the system in terms of resources, requirements and behaviors
– Partial description

• E.g. what the requirements are, not how they are met
– Let the PSS tool infer the "how they are met"

13

Memory AES

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

Test Intent Example - Capture

• Focusing just on the DMA IP in the wb_subsys example...
• Capture the behaviors, resources and requirements

– DMA initialization
• Perform the DMA configuration

– DMA transfer
• Perform DMA
• Require a DMA channel as a resource
• Require source and destination memory blocks

– PSS written from the point of view: "What does this DMA IP do?

14

Memory AES

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

Test generation for target
testbench environment

Capture
PSS Model

Tool inference
and Visualization

Compose
scenario

Test Intent Example - Inference
• Tool infers a source for required resources

– DMA initialization
• VIP/Processor that executes the DMA

configuration

– DMA transfer
• What DMA channel is used
• What provides the source block

– Other IP in the system - Ethernet MAC, AES etc.
– VIP/processor

• What infers the DMA transfer to happen
– Other IP in the system - Ethernet MAC, AES etc.
– VIP/processor

15

Memory AES

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

Test generation for target
testbench environment

Capture
PSS Model

Tool inference
and Visualization

Compose
scenario

PSS Overview - Constructs

• component
• Flow objects: buffer, stream, state
• action
• resource
• Pools of flow objects

and resources

16

component

action

buffer

pool

pool

pool

component

actionstream

state

input

input

input
output

output

output
action

component

pool

resource

lock/sharelock/share

PSS Model

17

Memory AES
DMA

SoC

Ethernet
MAC

SPI
ControllerCPUCPU

component –
functional units of
the system

dma_xfer_a

action – abstract
representation of a
component's behavior

MII
Operations

rx_pkt_a

eth_pkt

pool

pool of flow objects

stream flow object

component – "something" (VIP,
processor etc.) outside the system
providing system requirements

pool

DMA
Channel

pool of resources

resource – available
computational resources
(DMA channels here)

action does a lock of
a resource

Components
• Abstract representation of the functional

units of a system
– HW IPs
– HW Cores
– Testbench VIP
– The DMA, AES, GPX etc. in the SoC diagram would be components in a PSS model

• Components are containers
– Instances of other components
– Actions
– Resources

18

Memory AES DMA

SoC

Ethernet
MAC

SPI
ControllerCPUCPU

component

Example:
component dma_c{ ... };

component component_name{}

Component Instances

• Components may contain instances of other
components
– Creates a hierarchical structure
– The top or root component

• pss_top

19

Memory AES DMA

SoC

Ethernet
MAC

SPI
ControllerCPUCPU

Example:
pss_top {
...
dma_c dma{};

...
}

component_type instance_name;
pss_top

dma

Modeling Behaviors - Actions
• Actions

– Defined in a component
– Abstract representation of component behavior

• Transmit a packet, DMA transfer, capture video etc.
• Compound actions

– "Call" other actions
• May be scheduled in any order but are sequentially by default

– Various operators covered later for more complex scheduling of actions

• Atomic actions
– "Call" test code that is one of

• C code that would run on a target processor
• SV code that runs on SV or UVM VIP
• Other target languages

20

component

action

Defining Atomic Actions

• Atomic actions contain test code in a block referred to as an exec block
– body exec block contains either of

• Literal C or SV code (we will use this type for now)
• Imported or exported function calls (we will illustrate later)

– There are other exec block types available but not covered here

21

action action_name {
exec body C """
// target language code

""";
} Example:

component dma_c {
action dma_xfr_a {
exec body C """
printf("\n *** dma_xfr_a action ***\n\n");
""";

}
...

}

dma

dma_xfer_a

Action Inputs and Outputs
• An action is an abstract representation of component behavior
• Actions may require inputs

– A DMA transfer requires data to move
– An encrypt requires data and a key to encrypt

• Actions may generate outputs
– A DMA transfer generates data that was moved
– An encrypt generates encrypted data

• The input of an action could be the output of another action
– This is a key abstraction of PSS (matching inputs and outputs)
– The properties of the inputs must be agreed upon by all involved actions

• Size, format or direction of data
• Location in memory of data

22

Flow Objects

• Flow objects are the abstract representation of the input and output
information of an action

• PSS has 3 flow object types
– Buffer

• Represents persistent data

– Stream
• Represents transient data

– State
• Represents state information

23

Buffers

• Represent persistent data (data storage) that can be written and read
– Data once generated is always available
– Typically represent data or control buffers in memories

• Schedule dependency
– A buffer must be written (generated) before it is read

24

buffer

buffer name { body_item, ... }

Example:
buffer mem_buff {
rand bit[31:0] addr;
rand bit[15:0] size;

}

mem_buff

Action Inputs and Outputs

• Actions may define the inputs they require
• Actions may generate outputs

25

input flow_object_type input_name;

output flow_object_type output_name;

Example:
component dma_c {
action dma_xfer_a {
input mem_buff buff_in;
output mem_buff buff_out;
...

}
...

}

dma

action
flow_object

action
flow_object

dma_xfer_a
mem_buffmem_buff buff_in buff_out

input_name

input_name

Streams
• Streams represent transient information

– Typically represents data flow, message or control exchange
• Typically models the transmission of data or control

• Schedule dependency
– Streams are exchanged between actions that are concurrent

• Examples
– "Transmit" of an ethernet packet from an Ethernet MAC to Ethernet VIP
– "Receive" of a packet by a modem from VIP

26

stream

stream name { body_item, ... }

Example:
stream eth_packet {
rand bit [15:0] payload_len;
rand bit [47:0] dest_MAC_addr;
rand bit [47:0] srce_MAC_addr;

}

eth_packet

Stream Action inputs/outputs Example
• Transmit packet action of MAC has a stream output
• Receive packet action of MII Operations has a stream input

27

Example:
stream eth_packet {

rand bit [15:0] payload_len;
rand bit [47:0] dest_MAC_addr;
rand bit [47:0] srce_MAC_addr;

}

component mac_c {
action tx_pkt_a {

output eth_packet pkt_out; // output ethernet packet
...

}
...

}

component mii_ops_c {
action rcv_tx_eth_pkt_a {

input eth_packet pkt_in; // input ethernet packet
...

} ... }

MAC

tx_pkt_a

pkt_out

mii_ops

rcv_eth_pkt_a

pkt_ineth_packet

actions must
execute in parallel

Flow Object Pools

• Flow object pools are collections of flow objects (buffer, stream,
state)

• Actions use a pool to exchange flow objects
– An action's inputs and outputs are references to a flow object pool

28

pool flow_object_type_name pool_name;

Example:
pool mem_buff mem_buff_p; // pool of mem_buff

pool eth_packet eth_pkt_p; // pool of ethernet packets

mem_buff_p

eth_pkt_p

Flow Object Pool Binding
• Every flow object resides in some pool
• Every action of an instance of a component

– Outputs objects to or inputs objects from a specific pool
• Pool bind directives determine which pool is accessible to each action

in each component instance
• Two forms of binding

– Default binding – associate a pool by object type
• bind pool to any action's input or output of the object type

– Explicit binding – associate a pool with a specific action's input or output of the
object type (not discussed here)

29

// bind pool to any action's input or output of pool_name type
bind pool_name {*};

Flow Object Pool Binding Example

• Pool binding: mem_buff pool to any action with a mem_buff input or
output

30

Example:

component pss_top {
pool mem_buff mem_buff_p; // pool of mem_buff
// bind pool to any action's input/output of type mem_buff
bind mem_buff_p {*};
...

}

component dma_c {
action dma_xfer_a {

input mem_buff buff_in;
output mem_buff buff_out;
...

}
...

}

mem_buff_p
action inputs and
outputs are bound
to mem_buff_p

Resource Objects (Resources)

• Resource objects represent available computational resources that may
be associated with actions
– I.e. resources describe what is available in the execution environment to

accomplish a scenario

• Resources relate to the underlying model IPs, buses etc.
– In the diagram below we might list DMA channels, CPU, GPX, Ethernet MAC, USB

device, Encrypt/decrypt engine and the camera as resources

31

Example:
component dma_c {
resource dma_chan_r {} // DMA channel resource
...

}

resource resource_name { body_item, ... }
Memory AES DMA

SoC

Ethernet
MAC

SPI
ControllerCPUCPU

Resource Pools
• Resource object pools are collections of objects of a resource type
• Pool size (total number of resources)

– Default size is 1, may be set to any size

• Resources may be claimed by actions
– lock

• An action claims an available resource
• This action has exclusive use of the resource throughout its execution

32

pool type_name name;
pool[size] type_name name;

Example:
component dma_c {
resource dma_chan_r {} // DMA channel resource
pool[4] dma_chan_r dma_chan_p; // pool of DMA channels, size 4
...

}

dma_chan_p

0 1 2 3

Resource Pool Binding

• Every resource object resides in some pool
• Every action of an instance of a component can be assigned a resource

of a certain pool
• Like flow object pools, bind directives determine which pool is

accessible to each action in each component instance
• Same types of binding (default and explicit)

33

bind pool_name {*};
bind pool_name *; // equivalent syntax

Example:
component dma_c {
resource dma_chan_r {} // DMA channel resource
pool[4] dma_chan_r dma_chan_p; // pool of DMA channels, size 4
bind dma_chan_p {*}; // bind pool to anything that uses a dma_chan_r
...

}

dma_chan_p

0 1 2 3

Constraints
• Actions and flow objects may have constraints applied

– Defines legal combinations of data and control resources
– Key abstraction in PSS, limits the possible scenario solution space

• A valid PSS scenario is one that satisfies ALL constraints

34

Example:
component dma_c {
...
dma_xfr_a {
input mem_buff buff_in; // source of DMA
output mem_buff buff_out; // dest of DMA
lock dma_chan_r dma_chan; // lock a DMA channel
constraint buff_in.size < 4096; // constrain size of DMA xfer
// constrain output buffer to same size as input buffer
constraint buff_out.size == buff_in.size;
...

} }

constraint constraint_expression;
constraint constraint_name { constraint_expression; ... }

Provider (source) of
mem_buff must meet
these constraints

Packages

• PSS package is similar to a package in SV or a namespace in C++
• Package

– Defines a namespace (or scope)
– A namespace for declarations

• Data flow types, resource types, enumerations etc.

35

package package_name { body_item, ... }

Example:
package data_flow_pkg {
stream eth_packet {...}
buffer mem_buff {...}

}

data_flow_pkg
package data_flow_pkg {
enum dir_e {Rx = 0, Tx};
enum buff_type_e {MEM_BLOCK = 0, ETH_PKT}

// Ethernet Packet definition
stream eth_packet {
rand dir_e dir;
rand bit[15:0] payload_len;

};
// memory buffer definition
buffer mem_buff {
rand buff_type_e buff_type;
rand bit[31:0] addr;
rand bit[15:0] size;

}
// resources
resource wb_bus {};

}

Memory

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

wb_ops_c

component wb_ops_c{
import data_flow_pkg; // import data_flow_pkg items

// receive action
action wb_receive_a {
input mem_buff buff_in;
exec body {
pss_info("wb_receive_a","*** WB operations send action i *** \n\n");

}
}

// send action
action wb_send_a {
output mem_buff buff_out;
exec body {
pss_info("wb_send_a","\n *** WB operatins send action *** \n\n");

}
}

}

Simple printouts for test realization

Memory

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

mac_c
component mac_c {
import data_flow_pkg::*; // import data_flow_pkg items

// action to receive an ethernet packet
action rx_pkt_a {
input eth_packet pkt_in; // input eth packet
output mem_buff buff_out; // output wb mem buffer
// Lock the Wishbone bus so transmit doesn't starve
lock wb_bus wb_bus_l;
// constrain eth_packet direction to receive only
constraint pkt_dir_con {pkt_in.dir == Rx; }
// constrain mem_buff type
constraint buff_type_con {buff_out.buff_type == ETH_PKT; }
exec body {
pss_info("rx_pkt_a","\n *** MAC rx_pkt action *** \n\n");

}
}

Memory

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

mac_c (cont.)
// action to transmit an ethernet packet
action tx_pkt_a {

input mem_buff buff_in; // input mem buffer
output eth_packet pkt_out; // output eth packet
// Lock the Wishbone bus so transmit doesn't starve
lock wb_bus wb_bus_l;
// constrain eth_packet direction to send only
constraint pkt_dir_con {pkt_out.dir == Tx; }
// constrain mem_buff type
constraint buff_dir_con {buff_in.buff_type == ETH_PKT; }
exec body {

pss_info("tx_pkt_a","\n *** MAC tx_pkt action *** \n\n");
} }

// action configure MAC
action config_mac_a {

lock wb_bus wb_bus_l; // lock wishbone bus
exec body {

pss_info("config_mac_a","\n *** MAC config action *** \n\n");
}

}
}

Memory

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

mii_ops

component mii_ops_c {
import data_flow_pkg;
// send action
action mii_send_a {
output eth_packet pkt_out; // output ethernet packet
// constrain eth_packet direction to be to the MAC
constraint pkt_dir_con{pkt_out.dir == Rx};
exec body {
pss_info("mii_send_a", "\n *** MII VIP send action *** \n\n");}

}
// receive action

action mii_receive_a {
input eth_packet pkt_in; // input ethernet packet
// constrain eth_packet direction to be from the MAC (MAC transmit)
constraint pkt_dir_con{ pkt_in.dir == Tx}; exec body {

pss_info("mii_ receive _a","\n *** MII VIP receive action *** \n\n");
}

}
}

Memory

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

pss_top

component pss_top {
import data_flow_pkg::*; // import data_flow_pkg items
// component instantiations
mac_c mac;
dma_c dma;
mii_vip_c mii_vip;
wb_vip_c wb_vip;

// pools
pool eth_packet eth_pkt_pool; // pool of ethernet packets
pool mem_buff mem_buff_pool; // pool of ethernet packets
pool [1] wb_bus wb_bus_pool;

// binds
bind eth_pkt_pool *; // bind eth_pkt_pool to *
bind mem_buff_pool *; // bind mem_buff_pool to *
bind wb_bus_pool *; // bind wb_bus_pool to *

// entry action
action entry_a {
mac_c::rx_pkt_a rx_pkt;
mac_c::tx_pkt_a tx_pkt;
activity {
schedule {
rx_pkt;
tx_pkt;

}
}

}
}

"Compound" action: Schedules
other actions in an activity
block

Memory

MII
Operations

DMA

wb_subsys

Ethernet
MAC

Wishbone
Operations

wb_subsys Visualization

42

dma_chan_p

0 1 2 3

tx_pkt_a

rx_pkt_a

eth_pkt_p

eth_packet

mii_send_a

pkt_out

mii_receive_a

pkt_in
wb_bus_p

0

mem_buff_p
wb_receive_a

wb_send_a
dma_xfer_a

config_dma_a
config_mac_apkt_out

pkt_in

buff_out

buff_out
buff_in

buff_in

buff_out

wb_bus_l

wb_bus_l

wb_bus_l
wb_bus_l

dma_chan_l

mem_buff

Test Realization

• We have scenarios that do correct actions
– However if we asked Trek5 to generate tests from our scenarios the tests

would only do print statements as written!

• Need to describe behavior in our action exec blocks that
implement tests in the targeted test environment
– The MAC tx_pkt_a action needs to "do" the transmit of a packet

• We want to take advantage of existing APIs, sequences etc. in our
target test environment
– Be it C code on a embedded processor or a sequence in a UVM

testbench

PSS Test Realization

• PSS provides the ability to interact with foreign-language code
– Help compute stimulus or expected values during stimulus generation
– Calls to API or libraries that correspond to behavior in leaf-level actions

• PSS Procedural Interface (PI)
– Defines mechanisms by which the PSS model can interact with other

languages such as C/C++ and/or SystemVerilog
• Import or export functions
• Used to reference external foreign-language functions or classes

• However, PSS does not specify beyond "you can can import or
export what you want"
– Result is different "solutions" across different vendors for integration

with their tool and "talking" with C or SystemVerilog

HSI
• Breker has defined a Hardware Software Interface (HSI) for use in

exec blocks
– Provides a standardized way of accessing registers, memories and VIP
– Provides a translation layer that hides underlying details

• For accessing registers and memories
– Defines a "register model" very similar to the UVM register model

• Similar API methods for writing, reading, setting, updating registers and memories
• Provides a translation layer for register and memory accesses

• For communication with VIP etc.
– Defines TLM style transactions and ports with TLM methods (get, put etc.)

• HSI code gets realized in target language (C , SV etc.)

HSI Example – Uart Register Block
class uart_block : public hsi::reg_block {
public:
uart_block(
const pss::scope& name, hsi::reg_addr base, const std::string& tb_path)
: hsi::reg_block (this),
map("map", base), cfg_port("cfg_port", tb_path + "_cfg"),
drv_port("drv_port", tb_path + "_drv"), chk_port("chk_port",
tb_path + "_chk")

{
map.add_reg (UART_RX, 0x00); // R
...
map.add_reg (UART_LSR, 0x05); // R
...
}
reg_uart_DATA UART_RX { "UART_RX" };
...
reg_uart_LSR UART_LSR { "UART_LSR" };
hsi::reg_map map;
hsi::put_port <uart_cfg_tlm> cfg_port;
hsi::put_port <uart_drv_tlm> drv_port;
hsi::check_port <uart_chk_tlm> chk_port;

};
code in examples/wb_subsys_v2a

adding and
mapping
registers

TLM Ports

HSI Example – Uart Configuration Action
class UartCfg : public pss::action {
...
void config(uart_block& blk) {

hsi::status_e status;
...
// config uart
blk.UART_LCR.DIVISOR_ACCESS.set(0);
blk.UART_LCR.PARITY_ENABLE.set(1);
...
blk.UART_LCR.update(status);

// config uart VIP to match DUT configuration
uart_cfg_tlm cfg_tlm {"cfg_tlm"};
cfg_tlm.parity_enable.set (blk.UART_LCR.PARITY_ENABLE.get());
cfg_tlm.parity_even.set (blk.UART_LCR.PARITY_EVEN.get());
cfg_tlm.char_size.set (blk.UART_LCR.CHAR_SIZE.get());
blk.cfg_port.put(cfg_tlm); }

void body() {
config(*sys.uarts.at(0)); // config uart0
config(*sys.uarts.at(1)); // config uart1

}

code in examples/wb_subsys_v2a

Writing
configuration
registers in the
UART

Create a TLM
transaction

Send transaction
to VIP

Do the UART
configuration

Executable Specification Test Case Synthesis

48

SD
Sys

DC
PP

CamScenario
Model

Visual
Construction Apps

Advanced modeling,
Apps for common
challenges

Abstract, scenario test-case
synthesis, for all stages of the
verification process, from a
single, comprehensible,
executable intent
specification

Synthesize

Stimulus Checks Coverage Debug

Verification Space
Analysis and
Optimized Test
Generation

Analyze

UVM
Testbench

DUT

SoC
Testbench

DUT

Silicon
Testbench

DUT

Optimize
Platform Specific
Test Optimization

Results
We will focus on the SDV flow

SDV Portable Stimulus Deployment Example

49

• Broad, comprehensive test sets synthesized to
exercise corner-cases, hard to write by hand

• Memory management, hardware software
interface, “trickboxing” for full automation

• Debug visualization of concurrent, synchronized
transaction and SW tests with backdoor access Tr ekS oC

Cache-Coherent Switching Fabric

CPU CPU CPU CPU

L1 L1 L1 L1

L2

CPU CPU CPU CPU

L1 L1 L1 L1

L2

…

L3 Cache / Snoop Filter

Memory
Controller

Memory
Controller Offload

Compiler

test.ctest.ctest.c

TrekBox

test.ctest.ctest.tbx

PCIE Ethernet

PCIE
VIP

Ethernet
VIP

Scenario
Model

ARM Platform Verification Issues

50

This infrastructure verification process needs a large number of tests to check, for example:
• Cache coherency, Stress testing of sub-system components, SoC functional testing, etc.

ARMv8 Application
Easy verification of ARM installations

51

~1.6 x 1058 possible test
paths under goal "test top"

Automated test generation for
a broad range of ARMv8
integration issues, including in-
depth SoC cache coherency.

• Auto-generation of broad, inclusive test sets, otherwise requiring man-months of manual authoring
• Find and wring out complex, SoC corner cases hard to envisage manually
• Complete ARMv8 integration verification for SoC simulation, emulation and post silicon

Hierarchical graph nodes

Top Level ARMv8 Graph Structure

52

Yellow Octagons are hierarchical
modules that can be expanded

Purple Diamonds are select goals
(randomized decision points)

Blue rectangles are
sequence goals

expanded
module boundary

Tool Traverses Scenario Model graph to generate tests

ARMv8 Verification Metrics

• Cache State Transitions
• Cache Line Sharing Cases
• Snoop / Probe Sources
• Load/Store Operation Size
• Load/Store Sources
• False Sharing Cases

• Crossing Cache Line Boundaries
• Capacity Eviction Cases
• Multiple Memory Regions
• Memory Ordering Tests
• Concurrent Scenarios
• Interrupt/Exception Sources

53

Cache State Transitions
• There can only be up to five states in global context
• Need to follow a specific sequence of transitions to reach each state

54

source: http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2011/ch8_cl

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2011/ch8_cl

Cache State Transitions

55

N Transition Scenarios

Concurrent Scenario Test Case

N Transition Sequences

Schedule Memory
Interleave & Pack
Resolve Dependencies

• "One Address, Many Data"
• Start with end state, work backwards to find transition scenario

Cache State Transition Graph

56

Cache Line Sharing Cases
• Need to consider all possible cache line sharing cases across caches

– How many caches are sharing the cache line
– Which caches are involved
– Is the shared line clean or modified

57

source: Qin et al., http://www.cise.ufl.edu/tr/DOC/REP-2012-537.pdf

http://www.cise.ufl.edu/tr/DOC/REP-2012-537.pdf

Cache Line Sharing Cases

58

How many agents to involve
in snoop writes

How many agents to involve
in snoop reads

snoop write driven by cpu vs.
external VIP

snoop read driven by cpu vs.
external VIP

random pre-delay before
read/write operations

Snoop/Probe Sources
• Snoops/Probes query a cache to see if it contains a cache line

– Cache may respond by writing back / returning dirty data

• Need to consider multiple Snoop / Probe sources
– Another core on the same cluster
– A core from a another cluster
– A core from another chip
– A coherency master (e.g. PCIe)

59

Snoop/Probe Sources

60

select agent category to use

Load/Store Operation Sizes
• Must consider 1 Byte, 2 Byte, 4 Byte, 8 Byte operations for Loads and Stores

to caches
– Can do many small operations concurrently
– Opportunities for false sharing (more on this later)

• Must also consider block operations
– Do a sequential Load or Store operations to a block of addresses (e.g. 3233 bytes)
– Causes fetch buffers, write buffers, branch prediction etc to fill up
– Different type of testing than with single, small operations
– Some operations require blocks that are multiples of cache-line size

61

Load/Store Operation Sizes

62

singe instruction address

random sized address block

multiple of cacheline size

ARMv8 Load/Store Instructions
• All variants of Load/Store operations including

– Acquire/Release
– Exclusive
– Pair Operations (16 byte)
– All valid sizes of the above

63

ARMv8 Load/Store Instructions

64

read instructions

invalidate instructions

write instructions

tlbi instructions

Multiple Memory Regions
• A memory region is a range of addresses at a specific location in the

memory map

• Randomize memory addresses across multiple memory regions with
different properties
– Different cache-ability properties
– Different memory controllers
– Different physical memory types

• Memory regions configured in configure/platform.trekcfg

65

Memory Ordering Tests
• CPU0

– writes data A
– (memory barrier)
– write flag B

• CPU1
– wait for flag B
– read data A

• CPU1 must get data value A from CPU0

66

Memory Ordering Tests
• Every dependency that crosses processors tests memory ordering

– Producer writes data
– Producer updates state (with memory barrier)
– Consumer waiting for state
– Consume uses data

• Tested on every producer/consumer dependency
• See Test Map view

67

Processor A

copy to
(write)

Processor B

check
(read)

check
(read)

check
(read)

Dekker Algorithm
• Assume initial state A=0 , B=0

• The Dekker Algorithm States
core 0: ST A, 1; LD B
core 1: ST B, 1; LD A
error iff (A == 0 && B == 0)

• This is a test for a weakly ordered memory system
– Such a system must preserve the property that a LD may not reorder ahead of a

previous ST from the same agent

68

Dekker Scaled to Multiple Processors
Core 0 Core 1 Core 2 Core 3

ST A ST B ST C ST D

LD B LD C LD D LD A

69

 Error if all loads see initial value

 Dekker randomized for all memories, operation sizes, load/store sources

Load/Store Sources

70

copy data from source to destination

compute checksum on data

random copy and
check of data

random checks on
read-only data

Summary
• PSS provides a powerful method to raise the abstraction for multiple

verification flows
• PSS combined with the right tooling allows for powerful verification

solutions with the minimal of user coding effort
• ARMv8 integrations are one area where PSS can discover a range of

issues

71

	Using Portable Stimulus to Verify an ARMv8 Sub-System SoC Integration
	Agenda
	Why Waste Your Life �Writing and Debugging Tests?
	Accellera Portable Stimulus Standard
	PSS Concept: Flight Booking Example
	PSS Language Flavors
	Test Scenarios and the Scenario Space
	PSS Scenario Model
	What then is a PSS Scenario Model?
	Paradigm Shift
	"Testbench Viewpoint"
	Testbench Example
	Test Intent Viewpoint
	Test Intent Example - Capture
	Test Intent Example - Inference
	PSS Overview - Constructs
	PSS Model
	Components
	Component Instances
	Modeling Behaviors - Actions
	Defining Atomic Actions
	Action Inputs and Outputs
	Flow Objects
	Buffers
	Action Inputs and Outputs
	Streams
	Stream Action inputs/outputs Example
	Flow Object Pools
	Flow Object Pool Binding
	Flow Object Pool Binding Example
	Resource Objects (Resources)
	Resource Pools
	Resource Pool Binding
	Constraints
	Packages
	data_flow_pkg
	wb_ops_c
	mac_c
	mac_c (cont.)
	mii_ops
	pss_top
	wb_subsys Visualization
	Test Realization
	PSS Test Realization
	HSI
	HSI Example – Uart Register Block
	HSI Example – Uart Configuration Action
	Executable Specification Test Case Synthesis
	SDV Portable Stimulus Deployment Example
	ARM Platform Verification Issues
	ARMv8 Application�Easy verification of ARM installations
	Top Level ARMv8 Graph Structure
	ARMv8 Verification Metrics
	Cache State Transitions
	Cache State Transitions
	Cache State Transition Graph
	Cache Line Sharing Cases
	Cache Line Sharing Cases
	Snoop/Probe Sources
	Snoop/Probe Sources
	Load/Store Operation Sizes
	Load/Store Operation Sizes
	ARMv8 Load/Store Instructions
	ARMv8 Load/Store Instructions
	Multiple Memory Regions
	Memory Ordering Tests
	Memory Ordering Tests
	Dekker Algorithm
	Dekker Scaled to Multiple Processors
	Load/Store Sources
	Summary

