DESIGMN ARD WVERIFICATICMN™

COMFEREMCE AMD EXHIBITION

Using Portable Stimulus to Verify an ARMvS8
Sub-System SoC Integration

Mike Baird, Willamette HDL
Aileen Honess, Breker Verification Systems

. BRQE -~ WHDR

EEEEEEEEEEEEEEE

DESIGMN ARD WVERIFICATICMN™

BVEON Agenda

* Brief Introduction to PSS — Aileen & Mike
* PSS modeling concepts — Mike
e Overview of key PSS constructs — Mike

ARMVS integration verification - Aileen

EEEEEEEEEEEEEEE

2019 Why Waste Your Life

DESIGMN ARD WVERIFICATICMN™

DVCON

e Writing and Debugging Tests?

UuvM
Laborious concurrent sequence, scoreboard and Project Resource Deployment
coverage authoring, limited reuse Verification: Design
Debug 32%

SoC 25% |
Time-consuming, manual C tests targeting multi- Verification: Verlifica:hom

. Test Development g7 ey
core platforms with many corner-cases 30%
Silicon
Complex diagnostic patterns with no link to Test development drives debug

verification, limited visibility Complex directed test cases are

hard to get right

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

vt Accellera Portable Stimulus Standard

Accellera Sponsored Portable Stimulus Working Group * Abstract, specification-driven

Scope
(Integration)

User t t H
e HW Analog sw Verification | SW Test P\?;;?'t'igg" estin g
Developer Developer Developer Engineer Engineer Enal
gineer ®

Msdenare Designed to be portable across:
etc..) Abstract Portable Stimulus Model o]
. Ute Casevertiaton - ‘éi?#ﬁéi?ﬂi’&abbsémanﬁcsj — Verification process phases

‘\ L] L] .
) - — Verification platforms

Bare Metal SW . .

System on Chip Tools (Secret Sauce) APls —_ E N gl neerin g g rou pS

(HW + SW)

-) e The real win:
Sub-System
Wﬁ] — - — Eliminate UVM painful coding
— - m m m - — Create intricate SDV corner cases
UML/SysML AMS
erification Environmen — Automate S|||C0n dlagnOSt|CS
e I M S Rl * PSS 1.0 poweerful.

atform but the tools make the difference!

Proposed Portable Stimulus Specification (Courtesy: Accellera Systems Initiative)

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

Traditiona

Cohtact lots
of airlines for
lots of flights

Is a bit like

—u —u —~u
uvm uvm uvmMm
s " “

Authoring lots
of tests

accellera

SYSTEMS INITIATIVE

GRBITZ ivevs

Home

X B = L4

Flights Hotels Packages Cars Gruises

Roundirip Omeway Multi-city

=
Activities

Discover

Modern

F m Fiying to
San Francisco, CA (SFO-San Francisco Intl) x Boston, MA (BOS-Logan Intl.) x
Departing A

Stops
Nonstep (7)
1 Stop (35)
2+ Stops (3)

Airlines included
United (19)
American Airlines (16)
Delta (6)
JetBlue Airways (3)
Alaska Airlines (1)

Departure time
Afterncon (12:00pm - 5:59pm)
Evening (6:00pm - 11:59pm)

Arrival time
Early Morning (12:00am - 4:59am)
Morning (5:00am - 11:59am)
Afterncon (12:00pm - 5:59pm)

From:
$399
$406
$4086

From:
$404
$406
$404
$399
$404

Set

Describe
intent

Options
synthesized

constraints

PSS Concept: Flight Booking Example

4:15pm - 12:58am +1 5h 43m Monsiop) = 3 4 s3m0

4115pm - 12:58am +1 5h 43m [Nonstopl = @ 4 399 M
~ JetBlue Airwavs SFI

Excel)

Detall 5ig,p, 41%pm - 12:58am +1 5h 43m s300 m
. ~ JotBlue Airwavs SFO one v
Detsit S5 artspm - 12:58am 01 5h 43m Marstop) = @ 4
BEA o Jetorn ccn_ona
VEVC psop petar %) 4115pm - 12:58am 41 Sh43m
a4 il
B - JetBlue Airvavs S P
Very € &
Detait (g 3y S0P Datai 4 el co-ct |
[one vy
Detail, |, 8:50p1

B
TROS Datsi)y, 85OP Details & baggags fees
= R - P

Detailt | 1108 Datail ;E'?j_j 8:50pm - 5:30am 1 5h 40m [Nonstop) = [4
! B placka Aiines SFO
o Very Good Fights
Datai 2 NG
Hun

430m petair VS Dt & baggage fees

Detail 11:08pm - 7:52am 41 5h 47m MNonsiop) = @ 4
5F0

Very Good Flights
@110

Datailt a:30p0

B:d0p 4:30p1 Details & baggage fees w

fery €

Detail i 2y, #30Bm - Tstgam 1 Sh48m Nonsiosl = @ 4
n

Detait C mavpn Detail
=

935 Dotail [ils & baggage fees +
| Aps :
o] 22 et 3 Eam - sssam -1 5 ssm porstep) = 3 4

o:3501
A e

SFC

Ex
10:07) Datail (g 5y %3500

Ape
Excall

G ease & baggage fees »
Excell o . Sh "
Detail Detait (3 Sig(995pm - G:31am -1 5h 56m MNonstop) = (3 4

SFO

E
Datai

-
S
g 1 | oo
: S
Detail. Detail: o

- 808

1189y Detait S 1180y Dats
N am N Am
P gey patan SN Dtails & baggag fess
N am !
Detsie T 188y petait 11:58pm - 12:15pm 115k 16m (1 stop) = @
N am a e SFO o1
air Satisfactory Flights
100n Detsin 7 1nsey - “
N Am \ Am
FairFl yoom patait FE'F) 11188 Datails & baggage faes v
\ am \ am
FarrF
oaar "7 1007 petaie ASom +1 10h d6m (1 stop) = (3 4
N Am 3 LT -80S
petsit " 007 Detait
petair "7 10071 Datails & baggage fees
FarrF
Detait Spm +111h 8m 1 stop) = @
SFO-3n5 -80S
Dtaik

& baggags fees v

nnnnnnnnnnn 202 PSS Language Flavors

COMFERENCE AMD EXHIBITION

 Two "flavors" or different syntax for PSS
— Domain Specific Language (DSL) syntax
» SystemVerilog like syntax
— C++ using a C++ class library that is semantically equivalent to the DSL
* Today

— PSS language explained using DSL
— ARMVS8 verification using C++

SYSTEMS INITIATIVE

.....222. Test Scenarios and the Scenario Space

DV

COMFERENCE AMD EXHIBITION

SoC

e Test scenario (or scenario)
cPU Memory DMA Modem

— High-level documentation of a use case I | | |
e "Tells" a story

Camera
Controller

— "Capture an image, manipulate it with a photo GPU Forifis
processor and save it to memory"

— "Capture audio and transmit it out the modem"

Display
Controller

— Performed to ensure end-to-end functionality
* Looks at the system as a whole — not just individual parts

e Test scenarios are derived from "user stories"

 The scenario space encompasses the possible test scenarios or use
cases for a particular system

SYSTEMS INITIATIVE

EEEEEEEEEE 219, PSS Scenario Model

e PSS language is used to model the the scenario space of a system
— AKA a PSS scenario model

* Tools can "process" the PSS language scenario model and represent it in
a graph-based scenario model

— Tool solves for one or multiple test scenarios from this model
» Test case(s) are generated for a target test environment

* |t can be useful to think of a PSS scenario model as an "abstract" layer or
model or on top of an underlying test layer or model

— Underlying layer:

e UVM tests/model %

* "C" based tests/model Py psio || convle

acceller?) ool q

SYSTEMS INITIATIVE

nnnnnnnnnnn 202. What then is a PSS Scenario Model?

* PSS models the scenario space in terms of
— Resources
 What is available to accomplish scenarios
* CPU, DMA, Encrypt/decrypt, Graphics processor, camera etc.
— Actions
* Behaviors of a scenario
* Encrypt/decrypt, transmit/receive, image capture, dma transfer etc.
— Data and control flows
* Information flow in the scenario
e Buffers, streams, states etc.

SYSTEMS INITIATIVE

- Paradigm Shift

DV

COMFERENCE AMD EXHIBITION

 Coming from a UVM or Software Driven Verification (SDV) environment
to PSS requires a paradigm shift (a must have "aha!" moment)

— You will struggle mightily until you make this shift
 Must move from a "testbench viewpoint" to a "test intent viewpoint"

hvl_top —
wb_subsys
test = hdl_top
- mii_agent
mii_env RN Memory AES DMA
Y if Eth

<S5
mac
wb_sys_env / %

/ DMA Ethernet
[

> BONE AES v

wb_reg env | Wb_reg_agent bus Wishbone M|
? o) Operations Operations
A

slave
wb_env || Memory mon._af WB mem
i if
wishbone _ T
dac EEI! era master_agent ?r:ae\r,:

SYSTEMS INITIATIVE

i

<l

:

sl 200L "Testbench Viewpoint"

DVL

COMFERENCE AMD HEI'I'H:IIN

e Think in terms of what the testbench must do to cause a desired
behavior in the system (DUT)

— Look at the pieces of the system as boxes with some kinds of interfaces that are
exercised to cause DUT behaviors

— Write code that executes on VIP/Processor that uses the DUT interface to
exercise and observe DUT behaviors

 UVM sequences, C functions

— Initialize IPs m/ ji
— Cause DMAs, encrypt/decrypt, ethernet transfers etc /
— Do all the interfaces operations \\ i
— Get results wh_reg_env " '|:
— "Scoreboard" DUT behaviors - i ‘|:

11

SYSTEMS INITIATIVE

I Testbench Example

COMFERENCE AMD EXHIBITION

* Focusing just on the DMA IP in the wb subsys example...

* Write sequences/functions

— DMA initialization

* Write/read memory mapped registers to initialize the DMA
— DMA transfer

* Initialize buffer(s)

e Start transfer

e Verify transfer

* Write a test (and another and another...)

test

hdl_top

Eth

wb_reg_env

wb_env

_. g _
7]
EN 30 > o
o
|§z||§%||ﬁ||§|| 3 |

— Code is written with a specific execution platform in mind
* Sequences for a UVM VIP interface agent
* Ccode for a processor

— Explicit calls to sequences/functions that execute on the VIP agent/processor

— Written from the point of view "What do | need to do to the DMA IP?"

SYSTEMS INITIATIVE

BT Test Intent Viewpoint

COMFERENCE AMD EXHIBITION

* Think in terms of what the system does
— What does it do?
— What are its behaviors?
— What inputs does it require?

* Write a PSS model that captures the test intent
— Not the test implementation — we are not writing tests in PSS

* Model (scenario model) of the test intent

wb_subsys

Memory

AES

—

DMA

Ethernet
MAC

4

Wishbone
Operations

— Describes what the system must do to prove it has been verified

* Is as abstract as possible to make tests re-targetable

— Describes the system in terms of resources, requirements and behaviors

— Partial description
e E.g. what the requirements are, not how they are met
— Let the PSS tool infer the "how they are met"

SYSTEMS INITIATIVE

Ml
Operations

13

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

Test Intent Example - Capture

* Focusing just on the DMA IP in the wb subsys examp

wb_subsys

e Capture the behaviors, resources and requirements

Memory

AES

DMA

— DMA initialization

* Perform the DMA configuration

Ethernet
MAC

—ree

— DMA transfer
e Perform DMA
* Require a DMA channel as a resource
* Require source and destination memory blocks

— PSS written from the point of view: "What does this DMA IP do?

v

Wishbone
Operations

Tool inference
and Visualization

Compose
scenario

Capture
PSS Model

) 4 > >

Test generation for target
testbench environment

SYSTEMS INITIATIVE

Ml
Operations

DESIGMN ARD WVERIFICATICMN™

2012 Test Intent Example - Inference

DVCON

COMFERENCE AMD EXHIBITION

* Tool infers a source for required resources

— DMA initialization

* VIP/Processor that executes the DMA

configuration

— DMA transfer

e What DMA channel is used

* What provides the source block
— Other IP in the system - Ethernet MAC, AES etc.

— VIP/processor

* What infers the DMA transfer to happen

— Other IP in the system - Ethernet MAC, AES etc.

— VIP/processor

Capture
PSS Model

SYSTEMS INITIATIVE

>

Compose
scenario

>

whb_subsys

Memory AES DMA

—ree

Ethernet
MAC

Tool inference
and Visualization

v L

Wishbone Mil
Operations Operations

Test generation for target
testbench environment

15

N][] PSS Overview - Constructs

DVCON

COMFERENCE AMD EXHIBITION

* component

* Flow objects: buffer, stream, state

e action
e resource

* Pools of flow objects
and resources

SYSTEMS INITIATIVE

- - o

" component .
[action] ",
:

component component !

]

[action action] |

|

]

|

]

.‘0 0”‘ :

lock/share ~" lock/share :

]

|

1

___ 16

2019

DESIGMN ARD WVERIFICATICMN™

COMFERENCE AMD EXHIBITIHON

SYSTEMS INITIATIVE

PSS Model

component —
functional units of
the system

N

d resource

action does a lock of

SoC \ \

component — "something" (VIP,

DMA, "
Memory AES [dma_xfer_a]\
N
SPI Ethernet
CPU Controller MAC /|
[rx_pkt_a

T~

“"
.
R
.
R
.
R
.
Ry

.
e
o
.*
Y
3

pool of resources

DMA
“\Channel

resource — available
computational resources
(DMA channels here)

N

action — abstract
representation of a
component's behavior

pool of flow objects

/

processor etc.) outside the system
providing system requirements

Operations

MiII

eth_pkt

stream flow object

17

SoC

e Components

DVCON

COMFERENCE AMD EXHIBITION

Memory AES DMA

S S ——

SPI Ethernet
Controller MAC

e Abstract representation of the functional
units of a system o

— HW IPs

— HW Cores

— Testbench VIP

— The DMA, AES, GPX etc. in the SoC diagram would be components in a PSS model

¢ Components are containers
— Instances of other components

— Actions

— Resources component component name{} component
Example:
component dma c{ ... };

SYSTEMS INITIATIVE

s 2002 Component Instances

SoC
o . Memor AES DMA
 Components may contain instances of other :
components : | | |
SPI Ethernet
— Creates a hierarchical structure cPu J Controller MAC

— The top or root component
* pss top

e

component type instance name;

Example: .
pss_top { - .

dma c dma{};

e o o

\

} \
N

S e e e

SYSTEMS INITIATIVE

S Modeling Behaviors - Actions

DVCON

COMFERENCE AMD EXHIBITION

* Actions
— Defined in a component
— Abstract representation of component behavior

component

[action]

* Transmit a packet, DMA transfer, capture video etc.

e Compound actions

— "Call" other actions

* May be scheduled in any order but are sequentially by default
— Various operators covered later for more complex scheduling of actions

e Atomic actions

— "Call" test code that is one of

* Ccode that would run on a target processor
e SV code that runs on SV or UVM VIP
e Other target languages

SYSTEMS INITIATIVE

20

s 010 Defining Atomic Actions

DVCON

COMFERENCE AMD EXHIBITION

e Atomic actions contain test code in a block referred to as an exec block
— body exec block contains either of

 Literal C or SV code (we will use this type for now)
* Imported or exported function calls (we will illustrate later)

— There are other exec block types available but not covered here

action action name {
exec body C """ 4 dma A
// target language code
} ; Example : dma_xfer_a
component dma c {
action dma xfr a
exec body C """ - /

printf ("\n *** dma xfr a action ***\n\n");

wivw .
4

SYSTEMS INITIATIVE

-l Action Inputs and Outputs

DVCON

COMFERENCE AMD EXHIBITION

* An action is an abstract representation of component behavior

* Actions may require inputs
— A DMA transfer requires data to move
— An encrypt requires data and a key to encrypt

* Actions may generate outputs
— A DMA transfer generates data that was moved
— An encrypt generates encrypted data
* The input of an action could be the output of another action

— This is a key abstraction of PSS (matching inputs and outputs)

— The properties of the inputs must be agreed upon by all involved actions
» Size, format or direction of data
* Location in memory of data

SYSTEMS INITIATIVE

22

oo 2012. Flow Objects

DVCON

COMFERENCE AMD EXHIBITION

* Flow objects are the abstract representation of the input and output
information of an action

e PSS has 3 flow object types
— Buffer

* Represents persistent data

— Stream

* Represents transient data
— State

e Represents state information

SYSTEMS INITIATIVE

23

el U, B U ffe I'S [buffer]

DVCOIN

COMFERENCE AMD EXHIBITION

* Represent persistent data (data storage) that can be written and read
— Data once generated is always available
— Typically represent data or control buffers in memories

* Schedule dependency

— Abuffer must be written (generated) before it is read

buffer name { body item, ... }
Example: |
buffer mem buff (b“e”LbUﬁ]

rand bit[31:0] addr;
rand bit[15:0] size;
}

SYSTEMS INITIATIVE

-l Action Inputs and Outputs

DVCON

COMFERENCE AMD EXHIBITION

e Actions may define the inputs they require

* Actions may generate outputs ction
[flow_object]———L' input_name]

input flow object type input name;

output flow object type output name; action
F —oPIEER i { input_name flow_object]

Example:
component dma c {
action dma xfer a

4 N

input mem buff buff in; dma_xfer a

output mem buff buff out; [mem_buff]<— buff in buff out —[mem_buff]
N /

dma

}

25

SYSTEMS INITIATIVE

2019

o, Streams

COMFERENCE AMD EXHIBITION

e Streams represent transient information

— Typically represents data flow, message or control exchange
* Typically models the transmission of data or control

* Schedule dependency

— Streams are exchanged between actions that are concurrent
e Examples

— "Transmit" of an ethernet packet from an Ethernet MAC to Ethernet VIP
— "Receive" of a packet by a modem from VIP

stream name { body item, ... }
Example: / eth_packet/
stream eth packet {
rand bit [15:0] payload len;

i
rand bit [47:0] dest MAC addr;
[

rand bit [47:0] srce_MACiaddr;
accellera)

SYSTEMS INITIATIVE

26

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

* Transmit packet action of MAC has a st ream output

* Receive packet action of MIl Operations has a stream input

}

component mac_c
action tx pkt a {

}

component mii ops_c {
action rcv_tx eth pkt a {

SYSTEMS INITIATIVE

Example:

stream eth packet {
rand bit [15:0] payload len;
rand bit [47:0] dest MAC addr;
rand bit [47:0] srce MAC addr;

(" MAC

tx_pkt_a
pkt_out

_

~

)

actions must
execute in parallel

input eth packet pkE;in; // input ethernet packet

output eth packet pkt out; // output ethernet packet

Stream Action inputs/outputs Example

/ eth_packet//

4 mii_ops A
(rcv_eth_pkt_a}
» pkt_in

N g

27

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFERENCE AMD EXHIBITION

Flow Object Pools

* Flow object pools are collections of flow objects (buffer, stream,
state)

e Actions use a pool to exchange flow objects

— An action's inputs and outputs are references to a flow object pool

pool flow object type name

pool name;

Example:

pool mem buff mem buff p; // pool of mem buff

pool eth packet eth pkt p;

// pool of ethernet packets

SYSTEMS INITIATIVE

28

- Flow Object Pool Binding

COMFERENCE AMD EXHIBITION

* Every flow object resides in some pool
e Every action of an instance of a component
— Outputs objects to or inputs objects from a specific pool

* Pool bind directives determine which pool is accessible to each action
in each component instance

 Two forms of binding

— Default binding — associate a pool by object type
* bind pool to any action's input or output of the object type

— Explicit binding — associate a pool with a specific action's input or output of the
object type (not discussed here)

// bind pool to any action's input or output of pool name type
bind pool name {*};

SYSTEMS INITIATIVE

29

-...22%. Flow Object Pool Binding Example

DVCON

COMFERENCE AMD EXHIBITION

* Pool binding: mem buff poolto any action withamem buff inputor

OUtpUt Example:

component pss top {
pool mem buff mem buff p; // pool of mem buff
// bind pool to any action's input/output of type mem buff
bind mem buff p {*};

action inputs and
outputs are bound
tomem buff p

[iif%em_buff:fiij

component dma c {
action dma xfer a {
input mem buff buff in;
output mem buff buff out;

SYSTEMS INITIATIVE

) Resource Objects (Resources)

DVL

COMFERENCE AMD HEI'I'H:IIN

e Resource objects represent available computational resources that may
be associated with actions

— |.e. resources describe what is available in the execution environment to
accomplish a scenario
* Resources relate to the underlying model IPs, buses etc.

— In the diagram below we might list DMA channels, CPU, GPX, Ethernet MAC, USB
device, Encrypt/decrypt engine and the camera as resources

SoC
resource resource name { body item, ... }
Memory AES DMA
Example:
component dma c {
resource dma chan r {} // DMA channel resource '
- - SPI Ethernet
CPU Controller MAC
}

31

SYSTEMS INITIATIVE

2019 Resource Pools

DVCON

COMFERENCE AMD EXHIBITION

* Resource object pools are collections of objects of a resource type

* Pool size (total number of resources)
— Default size is 1, may be set to any size

* Resources may be claimed by actions

— lock

* An action claims an available resource
* This action has exclusive use of the resource throughout its execution

pool type name name;
pool[size] type name name;

Example:
component dma c {

resource dma chan r {} // DMA channel resource

pool[4] dma chan r dma chan p; // pool of DMA channels, size 4
accellera |
SYSTEMS INITIATIVE

o G20 Resource Pool Binding

DVCON

COMFERENCE AMD EXHIBITION

* Every resource object resides in some pool

* Every action of an instance of a component can be assigned a resource
of a certain pool

* Like flow object pools, bind directives determine which pool is
accessible to each action in each component instance

e Same types of binding (default and explicit)

bind pool name {*};

bind pool name *; // equivalent syntax
Of|11]12]|3

Example:
component dma c {
resource dma chan r {} // DMA channel resource
pool[4] dma chan r dma chan p; // pool of DMA channels, size 4
bind dma chan p {*}; // bind pool to anything that uses a dma chan r
a@ } 33

SYSTEMS INITIATIVE

el 2019 Constraints

DVCON

COMFERENCE AMD EXHIBITION

e Actions and flow objects may have constraints applied
— Defines legal combinations of data and control resources
— Key abstraction in PSS, limits the possible scenario solution space

* A valid PSS scenario is one that satisfies ALL constraints

constraint constraint expression;

constraint constraint name { constraint expression; ... }
Example:
component dma_c { Provider (source) of

mem buff must meet
these constraints

dma xfr a {

input mem buff buff in; // source of
output mem buff buff out; // dest of
lock dma chan r dma chan; // lock~a DMA channel

constraint buff in.size < 4096; “// constrain size of DMA xfer
// constrain output buffer to same size as input buffer
constraint buff out.size == buff in.size;

accef!era b}

SYSTEMS INITIATIVE

34

o212, Packages

DVCOIN

COMFERENCE AMD EXHIBITION

* PSS package is similar to a package in SV or a namespace in C++
* Package

— Defines a namespace (or scope)
— A namespace for declarations

» Data flow types, resource types, enumerations etc.

package package name { body item, ... }

Example:

package data flow pkg ({
stream eth packet {...}
buffer mem buff {...1}

}

SYSTEMS INITIATIVE

35

3070 ata_Ttlow_pKg

DESIGMN ARD V\EHI.FICATION"

53&45555;3 package data flow pkg {
enum dir e {Rx = 0, Tx};

enum buff type e {MEM BLOCK = 0, ETH PKT}

// Ethernet Packet definition
stream eth packet ({

rand dir e dir;
rand bit[15:0] payload len; Memory
b

// memory buffer definition
buffer mem buff {
rand buff type e buff type;
rand bit[31:0] addr;
rand bit[15:0] size;
}
// resources
resource wb bus {};

Ethernet
MAC

accellera

-
SYSTEMS INITIATIVE

2019 W b_O p S_C wb_subsys

DESIGMN ARD WVERIFICATICMN™

DVI:D N Memory DMA

COMFERENCE AMD EXHIBITION

component wb_ops_ c/{ 1 |

import data flow pkg; // import data flow pkg items

Ethernet
MAC

a

// receive action

\ 4 A\ 4

action wb receive a { Wishb Ml
. — — . Isnpone
input mem buff buff in; Operations Operations
exec body {
pss_info ("wb receive a","*** WB operations send action i *** \n\n");

- AN

Simple printouts for test realization
// send action ///

action wb send a {
output mem buff buff out;
exec body {
pss_info ("wb send a","\n *** WB operatins send action *** \n\n");

}
}

SYSTEMS INITIATIVE

2019 m a C_C wb_subsys
DVGCON — -
CONFERENCE AMD EXHIBITION component ma c_c {

import data flow pkg::*; //importdata_flow_pkg items H
// action to receive an ethernet packet Emgft
action rx pkt a { 5

input eth packet pkt in; // input eth packet v v
output mem buff buff out; // output wb mem buffer Wishbone Ml
// Lock the Wishbone bus so transmit doesn't starve Operations | [Operations
lock wb bus wb bus 1;

// constrain eth packet direction to receive only

constraint pkt dir con {pkt in.dir == Rx; }
// constrain mem buff type
constraint buff type con {buff out.buff type == ETH PKT; }

exec body {
pss_info ("rx pkt a","\n *** MAC rx pkt action *** \n\n");

}

SYSTEMS INITIATIVE

— mac c (cont.)
%WEEﬁAﬁ]] Memory DMA
EONFERENCE AND EXHIBMON // action to transmit an ethernet packet

action tx_pkt_a { H
input mem buff buff in; // input mem buffer 1
output eth packet pkt out; // output eth packet Ethernet
// Lock the Wishbone bus so transmit doesn't starve MAC
lock wb bus wb bus 1; |
// constrain eth packet direction to send only + +
constraint pkt dir con {pkt out.dir == Tx; } Wishbone 2l
// constrain m;m_baff type - Operations Operations
constraint buff dir con {buff in.buff type == ETH PKT; }

exec body {
pss_info ("tx pkt a","\n *** MAC tx pkt action *** \n\n");
bl
// action configure MAC
action config mac a {
lock wb bus wb bus 1; // lock wishbone bus
exec body {
pss_info("config mac a","\n *** MAC config action *** \n\n");

}

SYSTEMS INITIATIVE

O p S wb_subsys

;fﬁﬁé:& Memory DMA
component mii ops_c { H
import data flow pkg;
// send action Ethernet
action mii send a { Mf:
output eth packet pkt out; // output ethernet packet
// constrain eth packet direction to be to the MAC Wm;me J|

constraint pkt dir con{pkt out.dir == Rx}; O B
exec body {
pss _info("mii send a", "\n *** MII VIP send action *** \n\n");}

}

// receive action
action mii receive a
input eth packet pkt in; // input ethernet packet
// constrain eth packet direction to be from the MAC (MAC transmit)
constraint pkt dir con{ pkt in.dir == Tx}; exec body {
pss info("mii receive a","\n *** MII VIP receive action *** \n\n");

}
}

SYSTEMS INITIATIVE

t wb_subsys

DESIGMN AMD VEHQFQA]I'SN" p S S_ O p

DVCON Memory DMA

COMFERENCE AMND EXHIBITION

component pss_top { ‘ |

import data flow pkg::*; //importdata_flow_pkg items Ethernet
// component instantiations MAC
mac c mac; ¥ ¥
dma_c dma; Wishbone Mil
mili vip ¢ mil Vvip; Operations Operations

wb_vip_c wb_vip; // entry action

action entry a {

// fl>001|t-}s1 ot eth oxe iy | of eth X et mac_c::rx_pkt_a rX_pkt;
pool eth pacxket eth PKT pool; POOT OT ENErnet packets mac c::tx pkt a tx pkt;

pool mem buff mem buff pool; //poolof ethernet packets activity |

pool [1l] wb bus wb bus pool; schedule {
kt;
// binds Ei—ikt,
bind eth pkt pool *; //bind eth_pkt_pool to * Vo '
bind mem buff pool *; //bind mem_buff_poolto * }
bind wb bus pool *; [/ bind wb_bus_pool to * \ "Compound" action: Schedules

other actionsinan activity

a@@%@%ﬁ) } ek

SYSTEMS INITIATIVE

) wb subsys Visualization

DVCON

COMFERENCE AMD EXHIBITION

dma_chan_p

dma_xfer_a dma_chan 1 e chnp_—
[wb send a]

buff_out
[mii_send_a] (wb_receive_a}
lpkt out buff_in L
(PR config_mac_a P
« = X_PKL_a config_dma_a
/ eth_packet/ L] [— — J
. buff_out/ ------------- wb_bus_IF

pkt_in

[mii_receive_a]
accellera
42

SYSTEMS INITIATIVE

o Test Realization

DESIGMN ARD WVERIFICATICMN™

e We have scenarios that do correct actions

— However if we asked Trek5 to generate tests from our scenarios the tests
would only do print statements as written!

* Need to describe behavior in our action exec blocks that
implement tests in the targeted test environment
— The MAC tx pkt a action needs to "do" the transmit of a packet

 We want to take advantage of existing APls, sequences etc. in our
target test environment

— Be it C code on a embedded processor or a sequence in a UVM
testbench

SYSTEMS INITIATIVE

PSS Test Realization

DESIGMN ARD WVERIFICATICMN™

el e -
COMFERENCE AMND EXHIBITION

* PSS provides the ability to interact with foreign-language code
— Help compute stimulus or expected values during stimulus generation
— Calls to APl or libraries that correspond to behavior in leaf-level actions

e PSS Procedural Interface (Pl)

— Defines mechanisms by which the PSS model can interact with other
languages such as C/C++ and/or SystemVerilog
* Import or export functions
* Used to reference external foreign-language functions or classes
 However, PSS does not specify beyond "you can can import or
export what you want"

— Result is different "solutions" across different vendors for integration
with their tool and "talking" with C or SystemVerilog

SYSTEMS INITIATIVE

2019 HSI

DESIGMN ARD WVERIFICATICMN™

COMFERENCE AMD EXHIBITION

* Breker has defined a Hardware Software Interface (HSI) for use in
exec blocks

— Provides a standardized way of accessing registers, memories and VIP
— Provides a translation layer that hides underlying details

* For accessing registers and memories

— Defines a "register model" very similar to the UVM register model
e Similar APl methods for writing, reading, setting, updating registers and memories
* Provides a translation layer for register and memory accesses

* For communication with VIP etc.
— Defines TLM style transactions and ports with TLM methods (get, put etc.)

* HSI code gets realized in target language (C, SV etc.)

SYSTEMS INITIATIVE

2019

o0 HSI Example — Uart Register Block

DVLCIN class uvart _block : public hsi::reg block ({
public:
uart block(
const pss::scope& name, hsi::reg addr base, const std::stringé& tb path)
hsi::reg block (this),
map ("map", base), cfg port("cfg port", tb path + " cfg"),
drv_port ("drv port", tb path + " drv"), chk port("chk port",

tb path + " chk")

map.add reg (UART RX, 0x00); // R :
- - adding and
map.add reg (UART LSR, 0x05); // R mapping
- - registers
}
reg uart DATA UART RX { "UART RX" b
reg uart LSR UART LSR { "UART LSR" };
hsi::reg map map;
hsi::put port <uart cfg tlm> cfg port; TLM Ports
hsi::put port <uart drv tlm> drv_port; —

iﬂmﬂﬁwﬂ hsi::check port <uart chk tlm> chk port;

’ .
SYSTEMS INITIATIVE code in examples/wb_subsys v2a

o HSI Example —Uart Configuration Action

DESIGMN ARD WVERIFICATICMN™

DV class UartCfg : public pss::action {

COMFERENCE AMD EXHIBITION

void config(uart blocké& blk) {
hsi::status e status;

// config uart
blk.UART_LCR.DIVISOR_ACCESS.Set(O);
blk.UART_LCR.PARITY_ENABLE.Set(1);

blk.UART LCR.update (status);

// config uart VIP to match DUT config%:ifigﬂ__—__——:::::::::::
uart cfg tlm cfg tlm {"cfg tlim"};

Writing

UART

configuration
registers in the

Create a TLM
transaction

cfg tlm.parity enable.set 7 blk.UART LCR.PARITY ENABLE.get());
cfg tlm.parity even.set (blk.UART LCR.PARITY EVEN.get ()) 7
cfg tlm.char size.set (blk.UART LCR.CHAR SIZE.get ()) 7

blk.cfg port.put(cfg tlm); } <=

void body () |
config(*sys.uarts.at(0)); // config uartO
config(*sys.uarts.at(l)); // config uartl

SYSTEMS INITIATIVE

Send transaction
to VIP

\

Do the UART
configuration

code in examples/wb_subsys v2a

....222. Executable Specification Test Case Synthesis

Visual
Construction
\/

DVCOIN

COMFEREMCE AMD EXHIBITION

Abstract, scenario test-case
synthesis, for all stages of the
verification process, from a
single, comprehensible,
executable intent
specification

SYSTEMS INITIATIVE

Scenario
ol SR avaiee
&8ss 2= |

Ctimuus>CC

L

hecks) (Covera@

)

UVM
Testbench

L

SoC
Testbench

DUT

Silicon
Testbench

DUT

)

Results

i

—_

Advanced modeling,

— Apps for common

challenges

Verification Space

— Analysis and

Optimized Test
Generation

_Platform Specific

Test Optimization

We will focus on the SDV flow

48

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

* Broad, comprehensive test sets synthesized to
exercise corner-cases, hard to write by hand

* Memory management, hardware software
interface, “trickboxing” for full automation

* Debug visualization of concurrent, synchronized
transaction and SW tests with backdoor access

SYSTEMS INITIATIVE

= i)

B

Scenario
Model

BREKER"
TrekSoC

test.tbx

v

!

— » test.c

Compiler
CPU|/CcPU| cPU || cPU CPU |/ CPU| cPU||cPU
T T | T e T | |
L2 Lf

!

Cache-Coherent Switching Fabric

‘ L3 Cache / Snoop Filter‘

!

SDV Portable Stimulus Deployment Example

!

Memory
Controller

Memory
Controller

PCIE

Ethernet

Offload

PCIE
VIP

A

Ethernet
VIP
“

49

DESIGMN ARD WVERIFICATICMN™

COMFEREMCE AMD EXHIBITION

Juno SoC e | [
an | (e ARM

This infrastructure verification process needs a large number of tests to check, for example:
* Cache coherency, Stress testing of sub-system components, SoC functional testing, etc.

a@ 50

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

~1.6 x 10°8 possible test

ARMvV8 Application
Easy verification of ARM installations

Hierarchical graph nodes

- ﬁéc .
v

M\ /

paths under goal "test top"

%@;
est_top| |
= 4
generate_application 4 generate_driver -

: — '
moesi N
e
v
a
operations

)_check_external
address...

SYSTEMS INITIATIVE

Automated test generation for
a broad range of ARMv8
integration issues, including in-
depth SoC cache coherency.

* Auto-generation of broad, inclusive test sets, otherwise requiring man-months of manual authoring
Find and wring out complex, SoC corner cases hard to envisage manually

Complete ARMv8 integration verification for SoC simulation, emulation and post silicon

51

2019

DESIGMN ARD WVERIFICATICMN™

DVEDIN Top Level ARMv8 Graph Structure

Y e P @ = # £7 A KA
armv8TrekApp
expanded Blue rectangles are
module boundary sequence goals

Yellow Octagons are hierarchical
modules that can be expanded

2
: -_____--—

Z/_ armv8TrekApp.impl /
coherency_scenario
address...

@

=
.
Purple Diamonds are select goals impl

(randomized decision points)

Tool Traverses Scenario Model graph to generate tests

52

SYSTEMS INITIATIVE

BV ARMv8 Verification Metrics
* Cache State Transitions * Crossing Cache Line Boundaries
* Cache Line Sharing Cases * Capacity Eviction Cases
* Snoop / Probe Sources Multiple Memory Regions
* Load/Store Operation Size e Memory Ordering Tests
* Load/Store Sources * Concurrent Scenarios
* False Sharing Cases * Interrupt/Exception Sources

53

IIIIIIIIIIIIIIIIIII

2019

DESIGMN ARD WVERIFICATICMN™

DVECON Cache State Transitions

 There can only be up to five states in global context
* Need to follow a specific sequence of transitions to reach each state

Reset Read Hit

INVD), WEINVD
I/_\I

Probe Write Hit

Read Miss, Bxclusive

Probe Read Hit

,! source: http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506 Spring 2011/ch8 cl
dacceliera

SYSTEMS INITIATIVE

54

http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2011/ch8_cl

2019

DESIGMN ARD WVERIFICATICMN™

DVECON Cache State Transitions

 "One Address, Many Data"

e Start with end state, work backwards to find transition scenario
N Transition Scenarios

o] VIP] e
LD

L
Bl

D

=
T
STEX

Schedule Memory
Interleave & Pack
Resolve Dependencies

a@ 55

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVEDN Cache State Transition Graph

TrekSoC: Version 4.2.9 - o x

rerage Constraints Select View Preferences Window

File Cow
BEE-Ee HE £rf 0180 =117 2eoRAhwFE AKAA

armveTrekApp

armv8TrekApp.impl

armvB8TrekApp.impl.moesiStates

]

[T [«I+]
1 descendant paths|

a@ 56

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

BV Cache Line Sharing Cases

* Need to consider all possible cache line sharing cases across caches
— How many caches are sharing the cache line
— Which caches are involved
— Is the shared line clean or modified

]SS- Ml I

(al (b

Ml

S . " oo o . PP o .
Fig. 2. {a) State space of SI protacol with 3 cores. Each global state is presented with 3 letters, e.g., IS means com 2, core 1, and core 0 are Fig. 3. State space of MSI protocol with 3 cores. For the clarity of presentation, the transitions to global modified states (IIM, IMI, MII) are

) . - e i _—)
in states I, I, and S, respectively. (b) Viewed as a composition of 3 isomorphic trees. omitted, if the transition in the opposite direction does not exist

source: Qin et al., http://www.cise.ufl.edu/tr/DOC/REP-2012-537.pdf

57

SYSTEMS INITIATIVE

http://www.cise.ufl.edu/tr/DOC/REP-2012-537.pdf

DVEOIN Cache Line Sharing Cases

CONFERENCE AMD EXHIEITION
TrekSoC: Version 4.2.9 - 0O x
File Coverage Constraints Select View Preferences Window
EB-BEe B¢ £P7 086 =11 @;@ﬁnh‘ﬁf{' AKX A
armv8TrekApp N
armv8TrekApp.impl i
- il
armv8TrekApp.imolmemActions
snoop write driven by cpu vs.
external VIP
How many agents to involve
in snoop writes
random pre-delay before

How many agents to involve . .

. read/wrlte operatlons

in snoop reads

1 'f
S
g, I 100 rf@fpdr'ven by cpu vs. j .
externa
i (] <)
L acceﬂera [3.44975e+26 descendant paths|
T - 58

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

BVEDN Snoop/Probe Sources

* Snoops/Probes query a cache to see if it contains a cache line
— Cache may respond by writing back / returning dirty data

* Need to consider multiple Snoop / Probe sources
— Another core on the same cluster
— A core from a another cluster
— A core from another chip
— A coherency master (e.g. PCle)

SYSTEMS INITIATIVE

99

2019
DVEDIN Snoop/Probe Sources

COMFEREMCE AMD EXHIBITION
TrekSoC: Version 4.2.9 - 0O x
File Coverage Constraints Select View Preferences Window
EB-Be B¢ &£ 0200 =23 1F 220 [Adin#FE- AANA
armv8TrekApp
armv8TrekApp.impl
armv8TrekApp.impl.agents
select agent category to use
memActions
accellera) |- -
Tt) Q)

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

VEON Load/Store Operation Sizes

 Must consider 1 Byte, 2 Byte, 4 Byte, 8 Byte operations for Loads and Stores
to caches
— Can do many small operations concurrently
— Opportunities for false sharing (more on this later)

* Must also consider block operations
— Do a sequential Load or Store operations to a block of addresses (e.g. 3233 bytes)
— Causes fetch buffers, write buffers, branch prediction etc to fill up
— Different type of testing than with single, small operations
— Some operations require blocks that are multiples of cache-line size

SYSTEMS INITIATIVE

61

2019

Load/Store Operation Sizes

TrekSoC: Version 4.2.9 - o x

COMFEREMCE AMD EXHIBITION

¥

File Coverage Constraints Select View Preferences Window

EE-BQ WE ©F 0R80 24 » P» A

[*]

armv8TrekApp
armv8TrekApp.impl

armv8TrekApp.impl.address
singe instruction address /

random sized address block é §
multiple of cach%

ress
}uﬁﬂd D

2 descendant paths|

s

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

BVEON ARMvS8 Load/Store Instructions

 All variants of Load/Store operations including
— Acquire/Release
— Exclusive
— Pair Operations (16 byte)
— All valid sizes of the above

63

EEEEEEEEEEEEEEE

DESIGMN ARD WVERIFICATICMN™

TrekSoC: Version 4.2.9 - 0O x

CONFERENCE AND EXHIBITION
» o A

oK ARMvVS8 Load/Store Instructions

¥

D]

File Coverage Constraints Select View Preferences Window
EB-Be B¢ £/F 0286 =11 2L 2RI

armvETrekApp

:an'rwBTrEkApp irn|
E iarmyvBTrekApp.impl.operations

tlbi instructions

invalidate instructions

read instructions

write instructions

N

AmilsT exapn

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

EEEEEEEEEEEEEEEEEEE Multiple Memory Regions

* A memory region is a range of addresses at a specific location in the
memory map

* Randomize memory addresses across multiple memory regions with
different properties

— Different cache-ability properties
— Different memory controllers
— Different physical memory types

* Memory regions configured in configure/platform.trekcfg

SYSTEMS INITIATIVE

65

DESIGMN ARD WVERIFICATICMN™

BVEON Memory Ordering Tests

 CPUO

— writes data A
— (memory barrier)
— write flag B

* CPU1

— wait for flag B
— read data A

* CPU1 must get data value A from CPUO

66

EEEEEEEEEEEEEEE

2019

DESIGMN ARD WVERIFICATICMN™

DVEDN Memory Ordering Tests

* Every dependency that crosses processors tests memory ordering
— Producer writes data
— Producer updates state (with memory barrier)
— Consumer waiting for state

Processor A Processor B

— Consume uses data

check

copy to (read)

(write)

» Tested on every producer/consumer dependency E\i

— check

* See Test Map view - (read)

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

BVETIN Dekker Algorithm

 Assume initial state A=0, B=0

 The Dekker Algorithm States
core ©: ST A, 1; LD B
core 1: ST B, 1; LD A
error iff (A == 0 && B == 0)

* This is a test for a weakly ordered memory system

— Such a system must preserve the property that a LD may not reorder ahead of a
previous ST from the same agent

SYSTEMS INITIATIVE

68

DESIGMN ARD WVERIFICATICMN™

ovonl Dekker Scaled to Multiple Processors

STA STB STC STD
LD B LD C LD D LD A

e Errorif all loads see initial value

e Dekker randomized for all memories, operation sizes, load/store sources

3@ 69

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

BV Load/Store Sources

&

F

armv8TrekApp

o random copy and
i armv8TrekApp.impl.wor check of data

TrekSoC: Version 4.2.9

File Coverage Constraints Select View Preferences Window

B-Be 9¢ £MF 052006 =23 1F 22 0@k fFfE- AAA

__

S —

read_write

read only— #= final_check | m= mem_check

: (copy data from source to destination

I
read-only data

random checks on

compute checksum on data

trek_allocate memory

<1

|65536 descendant paths|

SYSTEMS INITIATIVE

70

DESIGMN ARD WVERIFICATICMN™

RV Summary

* PSS provides a powerful method to raise the abstraction for multiple
verification flows

* PSS combined with the right tooling allows for powerful verification
solutions with the minimal of user coding effort

« ARMvS8 integrations are one area where PSS can discover a range of
Issues

71

IIIIIIIIIIIIIIIII

	Using Portable Stimulus to Verify an ARMv8 Sub-System SoC Integration
	Agenda
	Why Waste Your Life �Writing and Debugging Tests?
	Accellera Portable Stimulus Standard
	PSS Concept: Flight Booking Example
	PSS Language Flavors
	Test Scenarios and the Scenario Space
	PSS Scenario Model
	What then is a PSS Scenario Model?
	Paradigm Shift
	"Testbench Viewpoint"
	Testbench Example
	Test Intent Viewpoint
	Test Intent Example - Capture
	Test Intent Example - Inference
	PSS Overview - Constructs
	PSS Model
	Components
	Component Instances
	Modeling Behaviors - Actions
	Defining Atomic Actions
	Action Inputs and Outputs
	Flow Objects
	Buffers
	Action Inputs and Outputs
	Streams
	Stream Action inputs/outputs Example
	Flow Object Pools
	Flow Object Pool Binding
	Flow Object Pool Binding Example
	Resource Objects (Resources)
	Resource Pools
	Resource Pool Binding
	Constraints
	Packages
	data_flow_pkg
	wb_ops_c
	mac_c
	mac_c (cont.)
	mii_ops
	pss_top
	wb_subsys Visualization
	Test Realization
	PSS Test Realization
	HSI
	HSI Example – Uart Register Block
	HSI Example – Uart Configuration Action
	Executable Specification Test Case Synthesis
	SDV Portable Stimulus Deployment Example
	ARM Platform Verification Issues
	ARMv8 Application�Easy verification of ARM installations
	Top Level ARMv8 Graph Structure
	ARMv8 Verification Metrics
	Cache State Transitions
	Cache State Transitions
	Cache State Transition Graph
	Cache Line Sharing Cases
	Cache Line Sharing Cases
	Snoop/Probe Sources
	Snoop/Probe Sources
	Load/Store Operation Sizes
	Load/Store Operation Sizes
	ARMv8 Load/Store Instructions
	ARMv8 Load/Store Instructions
	Multiple Memory Regions
	Memory Ordering Tests
	Memory Ordering Tests
	Dekker Algorithm
	Dekker Scaled to Multiple Processors
	Load/Store Sources
	Summary

