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* Brief Introduction to PSS — Aileen & Mike
* PSS modeling concepts — Mike
e Overview of key PSS constructs — Mike

ARMVS integration verification - Aileen
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e Writing and Debugging Tests?

UuvM
Laborious concurrent sequence, scoreboard and Project Resource Deployment
coverage authoring, limited reuse Verification: Design
Debug 32%

SoC 25% |
Time-consuming, manual C tests targeting multi- Verification: Verlifica:hom

. Test Development g7 ey
core platforms with many corner-cases 30%
Silicon
Complex diagnostic patterns with no link to Test development drives debug

verification, limited visibility Complex directed test cases are

hard to get right
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vt Accellera Portable Stimulus Standard

Accellera Sponsored Portable Stimulus Working Group * Abstract, specification-driven

Scope
(Integration)

User t t H
e HW Analog sw Verification | SW Test P\?;;?'t'igg" estin g
Developer Developer Developer Engineer Engineer Enal
gineer ®

Msdenare Designed to be portable across:
etc..) Abstract Portable Stimulus Model o ]
. Ute Casevertiaton - ‘éi?#ﬁéi?ﬂi’&abbsémanﬁcsj — Verification process phases

‘\ L] L] .
) - — Verification platforms

Bare Metal SW . .

System on Chip Tools (Secret Sauce) APls —_ E N gl neerin g g rou pS

(HW + SW)

- ) e The real win:
Sub-System . . . .
Wﬁ] — - — Eliminate UVM painful coding
— - m m m - — Create intricate SDV corner cases
UML/SysML AMS
erification Environmen — Automate S|||C0n dlagnOSt|CS
e I M S Rl * PSS 1.0 poweerful.

atform but the tools make the difference!

Proposed Portable Stimulus Specification (Courtesy: Accellera Systems Initiative)
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Traditiona

Cohtact lots
of airlines for
lots of flights

Is a bit like

—u —u —~u
uvm uvm uvmMm
s " “

Authoring lots
of tests

accellera
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Flights Hotels  Packages  Cars Gruises

Roundirip  Omeway  Multi-city

=
Activities

Discover

Modern

F m Fiying to
San Francisco, CA (SFO-San Francisco Intl) x Boston, MA (BOS-Logan Intl.) x
Departing A

Stops
Nonstep (7)
1 Stop (35)
2+ Stops (3)

Airlines included
United (19)
American Airlines (16)
Delta (6)
JetBlue Airways (3)
Alaska Airlines (1)

Departure time
Afterncon (12:00pm - 5:59pm)
Evening (6:00pm - 11:59pm)

Arrival time
Early Morning (12:00am - 4:59am)
Morning (5:00am - 11:59am)
Afterncon (12:00pm - 5:59pm)

From:
$399
$406
$4086

From:
$404
$406
$404
$399
$404

Set

Describe
intent

Options
synthesized

constraints

PSS Concept: Flight Booking Example

4:15pm - 12:58am +1 5h 43m Monsiop) = 3 4 s3m0

4115pm - 12:58am +1 5h 43m [Nonstopl = @ 4 399 M
~ JetBlue Airwavs  SFI

Excel)
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. ~ JotBlue Airwavs SFO one v
Detsit S5 artspm - 12:58am 01 5h 43m Marstop) = @ 4
BEA o Jetorn ccn_ona
VEVC psop petar %) 4115pm - 12:58am 41 Sh43m
a4 il
B - JetBlue Airvavs S P
Very € &
Detait (g 3y S0P Datai 4 el co-ct |
[ one vy
Detail, |, 8:50p1

B
TROS Datsi )y, 85OP Details & baggags fees
= R - P

Detailt | 1108 Datail ;E'?j_j 8:50pm - 5:30am 1  5h 40m [Nonstop) = [ 4
! B placka Aiines SFO
o Very Good Fights
Datai 2 NG
Hun

430m petair VS Dt & baggage fees
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| Aps :
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 Two "flavors" or different syntax for PSS
— Domain Specific Language (DSL) syntax
» SystemVerilog like syntax
— C++ using a C++ class library that is semantically equivalent to the DSL
* Today

— PSS language explained using DSL
— ARMVS8 verification using C++

SYSTEMS INITIATIVE
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SoC

e Test scenario (or scenario)
cPU Memory DMA Modem

— High-level documentation of a use case I | | |
e "Tells" a story

Camera
Controller

— "Capture an image, manipulate it with a photo GPU Forifis
processor and save it to memory"

— "Capture audio and transmit it out the modem"

Display
Controller

— Performed to ensure end-to-end functionality
* Looks at the system as a whole — not just individual parts

e Test scenarios are derived from "user stories"

 The scenario space encompasses the possible test scenarios or use
cases for a particular system

SYSTEMS INITIATIVE
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e PSS language is used to model the the scenario space of a system
— AKA a PSS scenario model

* Tools can "process" the PSS language scenario model and represent it in
a graph-based scenario model

— Tool solves for one or multiple test scenarios from this model
» Test case(s) are generated for a target test environment

* |t can be useful to think of a PSS scenario model as an "abstract" layer or
model or on top of an underlying test layer or model

— Underlying layer:

e UVM tests/model %

* "C" based tests/model Py psio || convle

acceller?) ool q
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nnnnnnnnnnn 202. What then is a PSS Scenario Model?

* PSS models the scenario space in terms of
— Resources
 What is available to accomplish scenarios
* CPU, DMA, Encrypt/decrypt, Graphics processor, camera etc.
— Actions
* Behaviors of a scenario
* Encrypt/decrypt, transmit/receive, image capture, dma transfer etc.
— Data and control flows
* Information flow in the scenario
e Buffers, streams, states etc.

SYSTEMS INITIATIVE
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 Coming from a UVM or Software Driven Verification (SDV) environment
to PSS requires a paradigm shift (a must have "aha!" moment)

— You will struggle mightily until you make this shift
 Must move from a "testbench viewpoint" to a "test intent viewpoint"

hvl_top —
wb_subsys
test = hdl_top
- mii_agent
mii_env RN Memory AES DMA
Y if Eth

<S5
mac
wb_sys_env / %

/ DMA Ethernet
[

> BONE AES v

wb_reg env | Wb_reg_agent bus Wishbone M|
? o) Operations Operations
A

slave
wb_env || Memory mon._af WB mem
i if
wishbone _ T
dac EEI! era master_agent ?r:ae\r,:
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e Think in terms of what the testbench must do to cause a desired
behavior in the system (DUT)

— Look at the pieces of the system as boxes with some kinds of interfaces that are
exercised to cause DUT behaviors

— Write code that executes on VIP/Processor that uses the DUT interface to
exercise and observe DUT behaviors

 UVM sequences, C functions

— Initialize IPs m/ ji
— Cause DMAs, encrypt/decrypt, ethernet transfers etc /
— Do all the interfaces operations \\ i
— Get results wh_reg_env " '|:
— "Scoreboard" DUT behaviors - i ‘|:

11
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I Testbench Example

COMFERENCE AMD EXHIBITION

* Focusing just on the DMA IP in the wb subsys example...

* Write sequences/functions

— DMA initialization

* Write/read memory mapped registers to initialize the DMA
— DMA transfer

* Initialize buffer(s)

e Start transfer

e Verify transfer

* Write a test (and another and another...)

test

hdl_top

Eth

wb_reg_env

wb_env

_. g _
7]
EN 30 > o
o
|§z||§%||ﬁ||§|| 3 |

— Code is written with a specific execution platform in mind
* Sequences for a UVM VIP interface agent
* Ccode for a processor

— Explicit calls to sequences/functions that execute on the VIP agent/processor

— Written from the point of view "What do | need to do to the DMA IP?"

SYSTEMS INITIATIVE
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* Think in terms of what the system does
— What does it do?
— What are its behaviors?
— What inputs does it require?

* Write a PSS model that captures the test intent
— Not the test implementation — we are not writing tests in PSS

* Model (scenario model) of the test intent

wb_subsys

Memory

AES

—

DMA

Ethernet
MAC

4

Wishbone
Operations

— Describes what the system must do to prove it has been verified

* Is as abstract as possible to make tests re-targetable

— Describes the system in terms of resources, requirements and behaviors

— Partial description
e E.g. what the requirements are, not how they are met
— Let the PSS tool infer the "how they are met"

SYSTEMS INITIATIVE
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Test Intent Example - Capture

* Focusing just on the DMA IP in the wb subsys examp

wb_subsys

e Capture the behaviors, resources and requirements

Memory

AES

DMA

— DMA initialization

* Perform the DMA configuration

Ethernet
MAC

—ree

— DMA transfer
e Perform DMA
* Require a DMA channel as a resource
* Require source and destination memory blocks

— PSS written from the point of view: "What does this DMA IP do?

v

Wishbone
Operations

Tool inference
and Visualization

Compose
scenario

Capture
PSS Model

) 4 > >

Test generation for target
testbench environment

SYSTEMS INITIATIVE
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2012 Test Intent Example - Inference
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* Tool infers a source for required resources

— DMA initialization

* VIP/Processor that executes the DMA

configuration

— DMA transfer

e What DMA channel is used

* What provides the source block
— Other IP in the system - Ethernet MAC, AES etc.

— VIP/processor

* What infers the DMA transfer to happen

— Other IP in the system - Ethernet MAC, AES etc.

— VIP/processor

Capture
PSS Model

SYSTEMS INITIATIVE
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Compose
scenario

>

whb_subsys

Memory AES DMA

—ree

Ethernet
MAC

Tool inference
and Visualization

v L

Wishbone Mil
Operations Operations

Test generation for target
testbench environment
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* component

* Flow objects: buffer, stream, state

e action
e resource

* Pools of flow objects
and resources

SYSTEMS INITIATIVE
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" component .
[ action ] ",
:

component component !

]

[ action action ] |

|

]

|

]

.‘0 0”‘ :

lock/share ~" lock/share :

]

|

1
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PSS Model

component —
functional units of
the system

N

d resource

action does a lock of

SoC \ \

component — "something" (VIP,

DMA, "
Memory AES [ dma_xfer_a ]\
N
SPI Ethernet
CPU Controller MAC /|
[ rx_pkt_a

T~

“"
.
R
.
R
.
R
.
Ry

.
e
o
.*
Y
3

pool of resources

DMA
“\Channel

resource — available
computational resources
(DMA channels here)

N

action — abstract
representation of a
component's behavior

pool of flow objects

/

processor etc.) outside the system
providing system requirements

Operations

MiII

eth_pkt

stream flow object

17
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e Components
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Memory AES DMA

S S ——

SPI Ethernet
Controller MAC

e Abstract representation of the functional
units of a system o

— HW IPs

— HW Cores

— Testbench VIP

— The DMA, AES, GPX etc. in the SoC diagram would be components in a PSS model

¢ Components are containers
— Instances of other components

— Actions

— Resources component component name{} component
Example:
component dma c{ ... };

SYSTEMS INITIATIVE



s 2002 Component Instances

SoC
o . Memor AES DMA
 Components may contain instances of other :
components : | | |
SPI Ethernet
— Creates a hierarchical structure cPu J Controller MAC

— The top or root component
* pss top

e

component type instance name;

Example: .
pss_top { - .

dma c dma{};

e o o

\

} \
N

S e e e

SYSTEMS INITIATIVE
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* Actions
— Defined in a component
— Abstract representation of component behavior

component

[ action ]

* Transmit a packet, DMA transfer, capture video etc.

e Compound actions

— "Call" other actions

* May be scheduled in any order but are sequentially by default
— Various operators covered later for more complex scheduling of actions

e Atomic actions

— "Call" test code that is one of

* Ccode that would run on a target processor
e SV code that runs on SV or UVM VIP
e Other target languages

SYSTEMS INITIATIVE
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e Atomic actions contain test code in a block referred to as an exec block
— body exec block contains either of

 Literal C or SV code (we will use this type for now)
* Imported or exported function calls (we will illustrate later)

— There are other exec block types available but not covered here

action action name {
exec body C """ 4 dma A
// target language code
} ; Example : dma_xfer_a
component dma c {
action dma xfr a
exec body C """ - /

printf ("\n *** dma xfr a action ***\n\n");

wivw .
4

SYSTEMS INITIATIVE
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* An action is an abstract representation of component behavior

* Actions may require inputs
— A DMA transfer requires data to move
— An encrypt requires data and a key to encrypt

* Actions may generate outputs
— A DMA transfer generates data that was moved
— An encrypt generates encrypted data
* The input of an action could be the output of another action

— This is a key abstraction of PSS (matching inputs and outputs)

— The properties of the inputs must be agreed upon by all involved actions
» Size, format or direction of data
* Location in memory of data

SYSTEMS INITIATIVE
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* Flow objects are the abstract representation of the input and output
information of an action

e PSS has 3 flow object types
— Buffer

* Represents persistent data

— Stream

* Represents transient data
— State

e Represents state information

SYSTEMS INITIATIVE
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* Represent persistent data (data storage) that can be written and read
— Data once generated is always available
— Typically represent data or control buffers in memories

* Schedule dependency

— Abuffer must be written (generated) before it is read

buffer name { body item, ... }
Example: |
buffer mem buff ( b“e”LbUﬁ]

rand bit[31:0] addr;
rand bit[15:0] size;
}

SYSTEMS INITIATIVE
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e Actions may define the inputs they require

* Actions may generate outputs ction
[ flow_object ]———L' input_name ]

input flow object type input name;

output flow object type output name; action
F —oPIEER i { input_name flow_object]

Example:
component dma c {
action dma xfer a

4 N

input mem buff buff in; dma_xfer a

output mem buff buff out; [mem_buff]<— buff in  buff out —[mem_buff]
N /

dma

}

25
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e Streams represent transient information

— Typically represents data flow, message or control exchange
* Typically models the transmission of data or control

* Schedule dependency

— Streams are exchanged between actions that are concurrent
e Examples

— "Transmit" of an ethernet packet from an Ethernet MAC to Ethernet VIP
— "Receive" of a packet by a modem from VIP

stream name { body item, ... }
Example: / eth_packet/
stream eth packet {
rand bit [15:0] payload len;

i
rand bit [47:0] dest MAC addr;
[

rand bit [47:0] srce_MACiaddr;
accellera )

SYSTEMS INITIATIVE
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* Transmit packet action of MAC has a st ream output

* Receive packet action of MIl Operations has a stream input

}

component mac_c
action tx pkt a {

}

component mii ops_c {
action rcv_tx eth pkt a {

SYSTEMS INITIATIVE

Example:

stream eth packet {
rand bit [15:0] payload len;
rand bit [47:0] dest MAC addr;
rand bit [47:0] srce MAC addr;

(" MAC

tx_pkt_a
pkt_out

\_

~

)

actions must
execute in parallel

input eth packet pkE;in; // input ethernet packet

output eth packet pkt out; // output ethernet packet

Stream Action inputs/outputs Example

/ eth_packet//

4 mii_ops A
(rcv_eth_pkt_a}
» pkt_in

N g

27
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Flow Object Pools

* Flow object pools are collections of flow objects (buffer, stream,
state)

e Actions use a pool to exchange flow objects

— An action's inputs and outputs are references to a flow object pool

pool flow object type name

pool name;

Example:

pool mem buff mem buff p; // pool of mem buff

pool eth packet eth pkt p;

// pool of ethernet packets

SYSTEMS INITIATIVE
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* Every flow object resides in some pool
e Every action of an instance of a component
— Outputs objects to or inputs objects from a specific pool

* Pool bind directives determine which pool is accessible to each action
in each component instance

 Two forms of binding

— Default binding — associate a pool by object type
* bind pool to any action's input or output of the object type

— Explicit binding — associate a pool with a specific action's input or output of the
object type (not discussed here)

// bind pool to any action's input or output of pool name type
bind pool name {*};

SYSTEMS INITIATIVE
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* Pool binding: mem buff poolto any action withamem buff inputor

OUtpUt Example:

component pss top {
pool mem buff mem buff p; // pool of mem buff
// bind pool to any action's input/output of type mem buff
bind mem buff p {*};

action inputs and
outputs are bound
tomem buff p

[iif%em_buff:fiij

component dma c {
action dma xfer a {
input mem buff buff in;
output mem buff buff out;

SYSTEMS INITIATIVE
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e Resource objects represent available computational resources that may
be associated with actions

— |.e. resources describe what is available in the execution environment to
accomplish a scenario
* Resources relate to the underlying model IPs, buses etc.

— In the diagram below we might list DMA channels, CPU, GPX, Ethernet MAC, USB
device, Encrypt/decrypt engine and the camera as resources

SoC
resource resource name { body item, ... }
Memory AES DMA
Example:
component dma c {
resource dma chan r {} // DMA channel resource '
- - SPI Ethernet
CPU Controller MAC
}

31
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* Resource object pools are collections of objects of a resource type

* Pool size (total number of resources)
— Default size is 1, may be set to any size

* Resources may be claimed by actions

— lock

* An action claims an available resource
* This action has exclusive use of the resource throughout its execution

pool type name name;
pool[size] type name name;

Example:
component dma c {

resource dma chan r {} // DMA channel resource

pool[4] dma chan r dma chan p; // pool of DMA channels, size 4
accellera |
SYSTEMS INITIATIVE
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* Every resource object resides in some pool

* Every action of an instance of a component can be assigned a resource
of a certain pool

* Like flow object pools, bind directives determine which pool is
accessible to each action in each component instance

e Same types of binding (default and explicit)

bind pool name {*};

bind pool name *; // equivalent syntax
Of|11]12]|3

Example:
component dma c {
resource dma chan r {} // DMA channel resource
pool[4] dma chan r dma chan p; // pool of DMA channels, size 4
bind dma chan p {*}; // bind pool to anything that uses a dma chan r
a@ } 33
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e Actions and flow objects may have constraints applied
— Defines legal combinations of data and control resources
— Key abstraction in PSS, limits the possible scenario solution space

* A valid PSS scenario is one that satisfies ALL constraints

constraint constraint expression;

constraint constraint name { constraint expression; ... }
Example:
component dma_c { Provider (source) of

mem buff must meet
these constraints

dma xfr a {

input mem buff  buff in; // source of
output mem buff  buff out; // dest of
lock dma chan r dma chan; // lock~a DMA channel

constraint buff in.size < 4096; “// constrain size of DMA xfer
// constrain output buffer to same size as input buffer
constraint buff out.size == buff in.size;

accef!era b}

SYSTEMS INITIATIVE
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* PSS package is similar to a package in SV or a namespace in C++
* Package

— Defines a namespace (or scope)
— A namespace for declarations

» Data flow types, resource types, enumerations etc.

package package name { body item, ... }

Example:

package data flow pkg ({
stream eth packet {...}
buffer mem buff {...1}

}

SYSTEMS INITIATIVE
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53&45555;3 package data flow pkg {
enum dir e {Rx = 0, Tx};

enum buff type e {MEM BLOCK = 0, ETH PKT}

// Ethernet Packet definition
stream eth packet ({

rand dir e dir;
rand bit[15:0] payload len; Memory
b

// memory buffer definition
buffer mem buff {
rand buff type e buff type;
rand bit[31:0] addr;
rand bit[15:0] size;
}
// resources
resource wb bus {};

Ethernet
MAC

accellera

-
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component wb_ops_ c/{ 1 |

import data flow pkg; // import data flow pkg items

Ethernet
MAC

a

// receive action

\ 4 A\ 4

action wb receive a { Wishb Ml
. — — . Isnpone
input mem buff buff in; Operations Operations
exec body {
pss_info ("wb receive a","*** WB operations send action i *** \n\n");

- AN

Simple printouts for test realization
// send action ///

action wb send a {
output mem buff buff out;
exec body {
pss_info ("wb send a","\n *** WB operatins send action *** \n\n");

}
}

SYSTEMS INITIATIVE
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DVGCON — -
CONFERENCE AMD EXHIBITION component ma c_c {

import data flow pkg::*; //importdata_flow_pkg items H
// action to receive an ethernet packet Emgft
action rx pkt a { 5

input eth packet pkt in; // input eth packet v v
output mem buff  buff out; // output wb mem buffer Wishbone Ml
// Lock the Wishbone bus so transmit doesn't starve Operations | [ Operations
lock wb bus wb bus 1;

// constrain eth packet direction to receive only

constraint pkt dir con {pkt in.dir == Rx; }
// constrain mem buff type
constraint buff type con {buff out.buff type == ETH PKT; }

exec body {
pss_info ("rx pkt a","\n *** MAC rx pkt action *** \n\n");

}

SYSTEMS INITIATIVE



— mac c (cont.)
%WEEﬁAﬁ ] ] Memory DMA
EONFERENCE AND EXHIBMON // action to transmit an ethernet packet

action tx_pkt_a { H
input mem buff buff in; // input mem buffer 1
output eth packet pkt out; // output eth packet Ethernet
// Lock the Wishbone bus so transmit doesn't starve MAC
lock wb bus wb bus 1; |
// constrain eth packet direction to send only + +
constraint pkt dir con {pkt out.dir == Tx; } Wishbone 2l
// constrain m;m_baff type - Operations Operations
constraint buff dir con {buff in.buff type == ETH PKT; }

exec body {
pss_info ("tx pkt a","\n *** MAC tx pkt action *** \n\n");
bl
// action configure MAC
action config mac a {
lock wb bus wb bus 1; // lock wishbone bus
exec body {
pss_info("config mac a","\n *** MAC config action *** \n\n");

}

SYSTEMS INITIATIVE
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;fﬁﬁé:& Memory DMA
component mii ops_c { H
import data flow pkg;
// send action Ethernet
action mii send a { Mf:
output eth packet pkt out; // output ethernet packet
// constrain eth packet direction to be to the MAC Wm;me J|

constraint pkt dir con{pkt out.dir == Rx}; O B
exec body {
pss _info("mii send a", "\n *** MII VIP send action *** \n\n");}

}

// receive action
action mii receive a
input eth packet pkt in; // input ethernet packet
// constrain eth packet direction to be from the MAC (MAC transmit)
constraint pkt dir con{ pkt in.dir == Tx}; exec body {
pss info("mii receive a","\n *** MII VIP receive action *** \n\n");

}
}

SYSTEMS INITIATIVE



t wb_subsys

DESIGMN AMD VEHQFQA]I'SN" p S S_ O p

DVCON Memory DMA

COMFERENCE AMND EXHIBITION

component pss_top { ‘ |

import data flow pkg::*; //importdata_flow_pkg items Ethernet
// component instantiations MAC
mac c mac; ¥ ¥
dma_c dma; Wishbone Mil
mili vip ¢ mil Vvip; Operations Operations

wb_vip_c  wb_vip; // entry action

action entry a {

// fl>001|t-}s1 ot eth oxe iy | of eth X et mac_c::rx_pkt_a rX_pkt;
pool eth pacxket eth PKT pool; POOT OT ENErnet packets mac c::tx pkt a tx pkt;

pool mem buff mem buff pool; //poolof ethernet packets activity |

pool [1l] wb bus wb bus pool; schedule {
kt;
// binds Ei—ikt,
bind eth pkt pool *; //bind eth_pkt_pool to * Vo '
bind mem buff pool *; //bind mem_buff_poolto * }
bind wb bus pool *; [/ bind wb_bus_pool to * \ "Compound" action: Schedules

other actionsinan activity

a@@%@%ﬁ) } ek
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DVCON

COMFERENCE AMD EXHIBITION

dma_chan_p

dma_xfer_a dma_chan 1 e chnp_—
[ wb send a ]

buff_out
[ mii_send_a ] (wb_receive_a}
lpkt out buff_in L
( PR config_mac_a P
« = X_PKL_a config_dma_a
/ eth_packet/ L ] [ — — J
. buff_out/ ------------- wb_bus_IF

pkt_in

[mii_receive_a]
accellera
42
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o Test Realization

DESIGMN ARD WVERIFICATICMN™

e We have scenarios that do correct actions

— However if we asked Trek5 to generate tests from our scenarios the tests
would only do print statements as written!

* Need to describe behavior in our action exec blocks that
implement tests in the targeted test environment
— The MAC tx pkt a action needs to "do" the transmit of a packet

 We want to take advantage of existing APls, sequences etc. in our
target test environment

— Be it C code on a embedded processor or a sequence in a UVM
testbench
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PSS Test Realization

DESIGMN ARD WVERIFICATICMN™

el e -
COMFERENCE AMND EXHIBITION

* PSS provides the ability to interact with foreign-language code
— Help compute stimulus or expected values during stimulus generation
— Calls to APl or libraries that correspond to behavior in leaf-level actions

e PSS Procedural Interface (Pl)

— Defines mechanisms by which the PSS model can interact with other
languages such as C/C++ and/or SystemVerilog
* Import or export functions
* Used to reference external foreign-language functions or classes
 However, PSS does not specify beyond "you can can import or
export what you want"

— Result is different "solutions" across different vendors for integration
with their tool and "talking" with C or SystemVerilog
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COMFERENCE AMD EXHIBITION

* Breker has defined a Hardware Software Interface (HSI) for use in
exec blocks

— Provides a standardized way of accessing registers, memories and VIP
— Provides a translation layer that hides underlying details

* For accessing registers and memories

— Defines a "register model" very similar to the UVM register model
e Similar APl methods for writing, reading, setting, updating registers and memories
* Provides a translation layer for register and memory accesses

* For communication with VIP etc.
— Defines TLM style transactions and ports with TLM methods (get, put etc.)

* HSI code gets realized in target language (C, SV etc.)
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o0 HSI Example — Uart Register Block

DVLCIN class uvart _block : public hsi::reg block ({
public:
uart block(
const pss::scope& name, hsi::reg addr base, const std::stringé& tb path)
hsi::reg block (this),
map ("map", base), cfg port("cfg port", tb path + " cfg"),
drv_port ("drv port", tb path + " drv"), chk port("chk port",

tb path + " chk")

map.add reg ( UART RX, 0x00 ); // R :
- - adding and
map.add reg ( UART LSR, 0x05 ); // R mapping
- - registers
}
reg uart DATA UART RX { "UART RX" b
reg uart LSR UART LSR { "UART LSR" };
hsi::reg map map;
hsi::put port <uart cfg tlm> cfg port; TLM Ports
hsi::put port <uart drv tlm> drv_port; —

iﬂmﬂﬁwﬂ hsi::check port <uart chk tlm> chk port;

’ .
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o HSI Example —Uart Configuration Action

DESIGMN ARD WVERIFICATICMN™

DV class UartCfg : public pss::action {

COMFERENCE AMD EXHIBITION

void config(uart blocké& blk) {
hsi::status e status;

// config uart
blk.UART_LCR.DIVISOR_ACCESS.Set(O);
blk.UART_LCR.PARITY_ENABLE.Set(1);

blk.UART LCR.update (status);

// config uart VIP to match DUT config%:ifigﬂ__—__——:::::::::::
uart cfg tlm cfg tlm {"cfg tlim"};

Writing

UART

configuration
registers in the

Create a TLM
transaction

cfg tlm.parity enable.set 7 blk.UART LCR.PARITY ENABLE.get() );
cfg tlm.parity even.set ( blk.UART LCR.PARITY EVEN.get () ) 7
cfg tlm.char size.set ( blk.UART LCR.CHAR SIZE.get () ) 7

blk.cfg port.put(cfg tlm); } <=

void body () |
config(*sys.uarts.at(0)); // config uartO
config(*sys.uarts.at(l)); // config uartl

SYSTEMS INITIATIVE

Send transaction
to VIP

\

Do the UART
configuration

code in examples/wb_subsys v2a




....222. Executable Specification Test Case Synthesis

Visual
Construction
\/

DVCOIN

COMFEREMCE AMD EXHIBITION

Abstract, scenario test-case
synthesis, for all stages of the
verification process, from a
single, comprehensible,
executable intent
specification

SYSTEMS INITIATIVE

Scenario
ol SR avaiee
&8ss 2= |

Ctimuus>CC

L

hecks ) ( Covera@

)

UVM
Testbench

L

SoC
Testbench

DUT

Silicon
Testbench

DUT

)

Results

i

—_

Advanced modeling,

— Apps for common

challenges

Verification Space

— Analysis and

Optimized Test
Generation

_Platform Specific

Test Optimization

We will focus on the SDV flow
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DVCON

COMFERENCE AMD EXHIBITION

* Broad, comprehensive test sets synthesized to
exercise corner-cases, hard to write by hand

* Memory management, hardware software
interface, “trickboxing” for full automation

* Debug visualization of concurrent, synchronized
transaction and SW tests with backdoor access

SYSTEMS INITIATIVE

= i)

B

Scenario
Model

BREKER"
TrekSoC

test.tbx

v

!

— » test.c

Compiler
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!
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Offload
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A
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“
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COMFEREMCE AMD EXHIBITION

Juno SoC e | [
an | (e ARM

This infrastructure verification process needs a large number of tests to check, for example:
* Cache coherency, Stress testing of sub-system components, SoC functional testing, etc.

a@ 50
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DVCON

COMFERENCE AMD EXHIBITION

~1.6 x 10°8 possible test

ARMvV8 Application
Easy verification of ARM installations

Hierarchical graph nodes

- ﬁéc .
v

M\ /

paths under goal "test top"

%@;
est_top| |
= 4
generate_application 4 generate_driver -

: — '
moesi N
e
v
a
operations

)_check_external
address...

SYSTEMS INITIATIVE

Automated test generation for
a broad range of ARMv8
integration issues, including in-
depth SoC cache coherency.

* Auto-generation of broad, inclusive test sets, otherwise requiring man-months of manual authoring
Find and wring out complex, SoC corner cases hard to envisage manually

Complete ARMv8 integration verification for SoC simulation, emulation and post silicon
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DVEDIN Top Level ARMv8 Graph Structure

Y e P @ = # £7 A KA
armv8TrekApp
expanded Blue rectangles are
module boundary sequence goals

Yellow Octagons are hierarchical
modules that can be expanded

2
: -_____--—

Z/_ armv8TrekApp.impl /
coherency_scenario
address...

@

=
.
Purple Diamonds are select goals impl

(randomized decision points)

Tool Traverses Scenario Model graph to generate tests
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BV ARMv8 Verification Metrics
* Cache State Transitions * Crossing Cache Line Boundaries
* Cache Line Sharing Cases * Capacity Eviction Cases
* Snoop / Probe Sources  Multiple Memory Regions
* Load/Store Operation Size e Memory Ordering Tests
* Load/Store Sources * Concurrent Scenarios
* False Sharing Cases * Interrupt/Exception Sources

53
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DVECON Cache State Transitions

 There can only be up to five states in global context
* Need to follow a specific sequence of transitions to reach each state

Reset Read Hit

INVD), WEINVD
I/_\I

Probe Write Hit

Read Miss, Bxclusive

Probe Read Hit

,! source: http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506 Spring 2011/ch8 cl
dacceliera

SYSTEMS INITIATIVE
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DVECON Cache State Transitions

 "One Address, Many Data"

e Start with end state, work backwards to find transition scenario
N Transition Scenarios

o] VIP] e
LD

L
Bl

D

=
T
STEX

Schedule Memory
Interleave & Pack
Resolve Dependencies

a@ 55
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DVEDN Cache State Transition Graph

TrekSoC: Version 4.2.9 - o x

rerage  Constraints Select View Preferences Window

File Cow
BEE-Ee HE £rf 0180 =117 2eoRAhwFE AKAA

armveTrekApp

armv8TrekApp.impl

armvB8TrekApp.impl.moesiStates

]

[T [«I+]
1 descendant paths|

a@ 56
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BV Cache Line Sharing Cases

* Need to consider all possible cache line sharing cases across caches
— How many caches are sharing the cache line
— Which caches are involved
— Is the shared line clean or modified

]SS- Ml I

(al (b

Ml

S . " oo o . PP o .
Fig. 2. {a) State space of SI protacol with 3 cores. Each global state is presented with 3 letters, e.g., IS means com 2, core 1, and core 0 are Fig. 3. State space of MSI protocol with 3 cores. For the clarity of presentation, the transitions to global modified states (IIM, IMI, MII) are

) . - e i _— )
in states I, I, and S, respectively. (b) Viewed as a composition of 3 isomorphic trees. omitted, if the transition in the opposite direction does not exist

source: Qin et al., http://www.cise.ufl.edu/tr/DOC/REP-2012-537.pdf

57

SYSTEMS INITIATIVE



http://www.cise.ufl.edu/tr/DOC/REP-2012-537.pdf

DVEOIN Cache Line Sharing Cases

CONFERENCE AMD EXHIEITION
TrekSoC: Version 4.2.9 - 0O x
File Coverage Constraints Select View Preferences Window
EB-BEe B¢ £P7 086 =11 @;@ﬁnh‘ﬁf{' AKX A
armv8TrekApp N
armv8TrekApp.impl i
- il
armv8TrekApp.imolmemActions
snoop write driven by cpu vs.
external VIP
How many agents to involve
in snoop writes
random pre-delay before

How many agents to involve . .

. read/wrlte operatlons

in snoop reads

1 'f
S
g, I 100 rf@fpdr'ven by cpu vs. j .
externa
i (] <)
L acceﬂera [3.44975e+26 descendant paths|
T - 58
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BVEDN Snoop/Probe Sources

* Snoops/Probes query a cache to see if it contains a cache line
— Cache may respond by writing back / returning dirty data

* Need to consider multiple Snoop / Probe sources
— Another core on the same cluster
— A core from a another cluster
— A core from another chip
— A coherency master ( e.g. PCle)

SYSTEMS INITIATIVE
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DVEDIN Snoop/Probe Sources

COMFEREMCE AMD EXHIBITION
TrekSoC: Version 4.2.9 - 0O x
File Coverage Constraints Select View Preferences Window
EB-Be B¢ &£ 0200 =23 1F 220 [Adin#FE- AANA
armv8TrekApp
armv8TrekApp.impl
armv8TrekApp.impl.agents
select agent category to use
memActions
accellera) |- -
Tt ) Q)
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VEON Load/Store Operation Sizes

 Must consider 1 Byte, 2 Byte, 4 Byte, 8 Byte operations for Loads and Stores
to caches
— Can do many small operations concurrently
— Opportunities for false sharing ( more on this later )

* Must also consider block operations
— Do a sequential Load or Store operations to a block of addresses ( e.g. 3233 bytes )
— Causes fetch buffers, write buffers, branch prediction etc to fill up
— Different type of testing than with single, small operations
— Some operations require blocks that are multiples of cache-line size

SYSTEMS INITIATIVE
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Load/Store Operation Sizes

TrekSoC: Version 4.2.9 - o x

COMFEREMCE AMD EXHIBITION

¥

File Coverage Constraints Select View Preferences Window

EE-BQ WE ©F 0R80 24 » P» A

[*]

armv8TrekApp
armv8TrekApp.impl

armv8TrekApp.impl.address
singe instruction address /

random sized address block é §
multiple of cach%

ress
}uﬁﬂd D

2 descendant paths|

s
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BVEON ARMvS8 Load/Store Instructions

 All variants of Load/Store operations including
— Acquire/Release
— Exclusive
— Pair Operations ( 16 byte)
— All valid sizes of the above

63
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TrekSoC: Version 4.2.9 - 0O x

CONFERENCE AND EXHIBITION
» o A

oK ARMvVS8 Load/Store Instructions

¥

D]

File Coverage Constraints Select View Preferences Window
EB-Be B¢ £/F 0286 =11 2L 2RI

armvETrekApp

:an'rwBTrEkApp irn|
E iarmyvBTrekApp.impl.operations

tlbi instructions

invalidate instructions

read instructions

write instructions

N

AmilsT exapn
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EEEEEEEEEEEEEEEEEEE Multiple Memory Regions

* A memory region is a range of addresses at a specific location in the
memory map

* Randomize memory addresses across multiple memory regions with
different properties

— Different cache-ability properties
— Different memory controllers
— Different physical memory types

* Memory regions configured in configure/platform.trekcfg

SYSTEMS INITIATIVE
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BVEON Memory Ordering Tests

 CPUO

— writes data A
— ( memory barrier)
— write flag B

* CPU1

— wait for flag B
— read data A

* CPU1 must get data value A from CPUO

66
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DVEDN Memory Ordering Tests

* Every dependency that crosses processors tests memory ordering
— Producer writes data
— Producer updates state ( with memory barrier )
— Consumer waiting for state

Processor A Processor B

— Consume uses data

check

copy to (read)

(write)

» Tested on every producer/consumer dependency E\i

— check

* See Test Map view - (read)
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BVETIN Dekker Algorithm

 Assume initial state A=0, B=0

 The Dekker Algorithm States
core ©: ST A, 1; LD B
core 1: ST B, 1; LD A
error iff ( A == 0 && B == 0 )

* This is a test for a weakly ordered memory system

— Such a system must preserve the property that a LD may not reorder ahead of a
previous ST from the same agent

SYSTEMS INITIATIVE
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ovonl  Dekker Scaled to Multiple Processors

STA STB STC STD
LD B LD C LD D LD A

e Errorif all loads see initial value

e Dekker randomized for all memories, operation sizes, load/store sources

3@ 69
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BV Load/Store Sources

&

F

armv8TrekApp

o random copy and
i armv8TrekApp.impl.wor check of data

TrekSoC: Version 4.2.9

File Coverage Constraints Select View Preferences Window

B-Be 9¢ £MF 052006 =23 1F 22 0@k fFfE- AAA

________________________________________________________________________________________________________________________________________________________________________________

S —

read_write

read only— #= final_check | m= mem_check

: ( copy data from source to destination

I
read-only data

random checks on

compute checksum on data

trek_allocate memory

<1

|65536 descendant paths|
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RV Summary

* PSS provides a powerful method to raise the abstraction for multiple
verification flows

* PSS combined with the right tooling allows for powerful verification
solutions with the minimal of user coding effort

« ARMvS8 integrations are one area where PSS can discover a range of
Issues
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