
Using Mutation Coverage
for Advanced Bug Hunting

Vladislav Palfy & Nicolae Tusinschi—OneSpin Solutions

The Verification Loop

Requirements

Verification
Plan

Build Test
BenchRun & Debug

Sign-off

Assessing Quality of Verification

When am I done?

 Have I written enough stimuli to cover all requirements?
What part of the design has been exercised by my assertions/covers?
 Have I written good quality checks?
Which parts of the design have been checked by my checkers?

 Are all specified functions implemented?
 Are all specified functions verified?

If you don’t measure, you don’t know

Quantify™

GapFreeVerification™

Coverage & Bug Hunting
Two sides of the same coin

 Both coverage and bug hunting are important

 Where coverage is analytical, bugs are anecdotal

 100% coverage with bugs in the design is unacceptable

 Extracting coverage should be quick and easy

 Report data must be meaningful

Quantify MDV Overview

Assessing the quality of verification by providing a quantitative metric

Quantify

 Takes as input a hardware design and a formal test bench
 One push of a button produces a metric-driven sign-off report as output

Structural Coverage (Quantity)

 Control & Observation Coverage—provides quantitative assessment

Functional Coverage (Quality)

 Assertion Coverage—provides qualitative assessment

Multi-dimensional view—quantity and quality

Coverage Solution: Provides Meaningful Metrics

 Designer Bring Up: Get feedback on the quality of design bring up
 Dead code; reachability

 Redundant code

 Verification: When quality and quantity both matter
 Metrics should indicate gaps in verification and show you where these are

 Missing checks

 Over-constraints

 Find bugs

Continuous feedback for design and verification

Quantify Report
Color-coded highway to sign-off

Result Meaning

Controllability

Reached Reached by an Assertion

Constrained Unreachable & Unobservable Due to Constraints

Dead Unreachable and Unobservable

Observability

Uncovered Not Reached and Not Observed

Covered Observed and Reached

Unobserved Reached and Not Observed

Quantify Dashboard View: Important Components

Quantify Dashboard

verification hole

verified code

constrained
code

dead code

Directly Linked to Design Browser

Quantify in Action

FIFO Example

FIFO
Interface of this design

clk
resetn

empty

full

rptr wptr

data

w_valid_i

r_valid_i

data_in

data_out

ABCDEFGH.. ABCDEFGH..
Input Output

ABCDFE GH..

ABCDDEFGH..
ABC EFGH..

r_ack_o

w_ack_o

Requirements for Verification

Ordering is correct

No duplication

No data loss

No data corruption

Empty and full checks

Must be empty at the right time
Must be full at the right time
If empty, then eventually full
If full, then eventually empty

Quantify on FIFO Example—I
With no checks at all

VERIFICATION HOLE

VERIFICATION HOLE

Quantify on FIFO Example—II
Design View

FIFO Verification Strategy

 Use two symbolic transactions for tracking all possible data values

 Send these symbolic values in a pre-determined order in the FIFO

 Ensure that they come out of the FIFO in the same order

 Use four sampling registers
 sampled_in_d1

 sampled_in_d2

 sampled_out_d1

 sampled_out_d2

 One side constraint

 One main ordering check

Uses symbolic and data abstraction

FIFO Ordering Check

//-- Force d1 inside before d2

am_d1_before_d2:

assume property (

@(posedge clk)

!sampled_in_d1 |-> !sampled_in_d2);

//-- End-to-end ordering check

as_ordering_check:

assert property (

@(posedge clk) disable iff (!resetn)

sampled_in_d1 && sampled_in_d2 && !sampled_out_d1

|-> !sampled_out_d2);

Glue logic

Quantify on FIFO Example—III
With just ordering check

31.82% Design Unobserved

Single Check

4.55% Design Uncovered

63.64% design covered

Quantify on FIFO Example—IV
What’s still missing?

Missing coverage
 Unobserved
 Uncovered

Quantify on FIFO Example—V

as_empty_to_full:
assert property (@(posedge clk) disable iff (!resetn)

empty_o ##1 (push_i && !pop_i)[*FIFO_DEPTH] |=> full_o);

as_full_to_empty:
assert property (@(posedge clk) disable iff (!resetn)

full_o ##1 (pop_i && !push_i)[*FIFO_DEPTH] |=> empty_o);

as_empty_after_reset:
assert property (@(posedge clk) !resetn |=> empty);

Let’s add checks on empty and full

Quantify on FIFO Example—VI
How did we do now?

36.36% Design Unobserved

Vacuous Failure

Problem with debugging unreachables

72.73% design covered

Quantify on FIFO Example—VII
Where are the missing coverage targets?

Missing coverage
 Unobserved code
 Cannot observe empty!

Quantify on FIFO Example—VIII
A closer look

This looks buggy …
Let’s go and fix it!

Quantify on FIFO Example—IX
After the bug fix on r_ack_o design
coverage increased

Still 22.7% design unobserved

77.27% design covered

Design coverage increased to 77.27%
But still missing 22.73%!

Quantify on FIFO Example—X
Let’s dig deeper to find out why

Missing coverage on
w_ack and w_hsk

Unobserved code

Quantify on FIFO Example—XI
Let’s go add the remainder checks

//-- Fairness constraints
assume property (@(posedge clk) disable iff (!resetn)

!r_valid_i |-> ##[0:$] r_valid_i);

assume property (@(posedge clk) disable iff (!resetn)
!w_valid_i |-> ##[0:$] w_valid_i);

//-- Liveness checks
assert property (@(posedge clk) disable iff (!resetn)

!r_hsk |-> ##[0:$] r_hsk);

assert property (@(posedge clk) disable iff (!resetn)
!w_hsk |-> ##[0:$] w_hsk);

Quantify on FIFO Example—XII
How are we doing now?

Still 9.09% design unobserved

90.91% design covered

Design coverage increased to 90.91%

Quantify on FIFO Example—XIII

In the cycle, if the FIFO is full, then we should not accept another write.

However, we only delay the write in the following cycle.

So it looks like we are allowing the write to a full FIFO!

But … my proofs should have failed …. Why didn’t the ordering proof fail?

So what’s going on now?

Quantify on FIFO Example—XIV
Let’s look at the constraints

When the FIFO is full, this constraint forces a read in the same cycle when there is a write.

Let’s take this constraint away … and rerun the proofs.

Quantify on FIFO Example—XV
What happens to proofs now? Two asserts failed

Quantify on FIFO Example—XVI
Let’s look at the failing ordering property

Quantify on FIFO Example—XVII
What does our coverage look like?

NO PROOF

NO PROOF

36.36% unobserved

Coverage reduced……
from 90.91% to 63.64%

Quantify on FIFO Example—XVIII
Fix the bug, prove, then Quantify

Quantify on FIFO Example—XVIII
Let’s fix the design and rerun proofs and Quantify

100% covered!

Quantify on FIFO Example—XIX
What happened to our constraint?

Quantify on FIFO Example—XX
What happened to our constraint? It became a check!

Quantify on FIFO Example—XXI
We discover additional requirements on this design

Interface Checks

Recap of What We Showed—I

 Without any test bench: Everything uncovered

 Single Ordering Check: Quantify reports 63.64% of design coverage

 We spotted missing checks on empty and full

 We add these checks, Prove -> RTL bug found!

 Fix, Prove, then Quantify

 Still unobserved design -> need to write more checks

 Wrote more checks, re-ran proofs -> expected to see 100% coverage but had 90.91%

 An over-constraint in the test bench was masking another RTL bug!

Using coverage for bug hunting

Recap of What We Showed—II

 All proofs marked as proven, AND no property was marked unreachable, AND we
had checks on all design statements, AND yet the coverage was not 100%

 Missing coverage forced us to think

 Tool gave hints on where the gaps were

 This allowed us to unearth bugs in design and over-constraints in TB

We fixed the RTL bug

 Constraints are not required, as design is guaranteed to have the behavior

 In fact, we prove this on the design by proving these two additional assertions

 Overall, we find bugs, remove bad constraints, find more bugs, and enrich our test
bench with more good quality checks

Bugs in your design indicate you do not have 100% coverage

Verification of I²C Serial Protocol

Case Study: Coverage’s Role in the Verification Process

Systematic Verification Flow
Requirement tracing and coverage are of paramount importance

Req1 Feat1 Feat1.1 Goal1 Directed Test

Code Coverage

Functional Coverage

Feat1.2 Goal2

Assertion Passing

Feat1.3 Goal3

Goal4

Assertion Coverage

Coverage Models & Database

Formal

Coverage

Simulation Debug

Verification Plan

Test Bench Assertions

Coverage

Requirements Specification

Implementation Plan

Individual requirements broken down into features,
implementations, verification goals, and metrics

Assertion-based formal verification
is ideal for this task

Getting the Big Picture of Verification
Integrated view of verification planning: formal and simulation

Simulation

Annotate
Verification Plan

Test Benches

Verification Plan Annotated

Simulation
Results Mixed Results

Requirements
Specification

Verification Plan
Un-Annotated

Formal ABV

Assertions

Formal Results

Motivation
How do we verify IP blocks implementing off-chip serial protocols?

Typically used to connect a number of ICs at relatively low data rates

• I²C, SPI, UART, CAN, etc.

What would be an ideal approach?

• Verify protocol compliance at the interfaces binding a VIP checker
• Make use of a scoreboard to check data integrity

What is the challenge?

• Even slow SoCs are running at frequencies starting in the range of 10MHz, while I²C
standard-mode speed is up to 100kHz
• Do the math: The formal tool needs to check for many cycles in order to prove that a

single byte is transferred correctly.

I²C Bus Protocol
What is I²C about?

SCL

SDA

MCU-A

GATE
ARRAY

LCD DRIVER

ACD

EEPROM

MCU-B

Coverage’s Role in the Verification Process
Verification concerns: What needs to be verified?

DUT Spec

I²C – Spec
(UM10204)

V-Plan

Coverage’s Role in the Verification Process
What is the very first step?

Language: Verilog
Primary input signals: 8 (17 bits)

Primary output signals: 3 (10 bits)
Primary inout signals: 2 (2 bits)

State bits (flops): 128
Assignments: 258 (1034 bits)

Code branches: 116
FSMs: 2

Adders: 0
Multipliers: 0

Primary clocks: 1

Let’s do an automatic inspection. Why?

• Signal domain violation
• Dead code
• Unreachable FSM states
• Signal toggling

Let’s analyze the design.

Validate results: Are failing checks expected?

Coverage’s Role in the Verification Process
What is the approach?

Good to have a well-defined flow!DUT Inspect

Bug
Hunting

QuantifyV-Plan

Complete
V-Plan

QuantifyV-Plan

Fix
Coverage

Quantify

Review Quantify

19.10.201706.10.201729.09.201722.09.201716.09.201729.10.2017

What Was Achieved?
Quantify MDV

Coverage’s Role in the Verification Process
Process over time

9

0

1

2

3

4

5

6

7

8

9

10

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.Oct 02.Oct 06.Oct 09.Oct 10.Oct 19.Oct 23.Oct 26.Oct 27.Oct 29.Oct

Bug
Hunting

Complete
Verification

Plan

Fix
Coverage

Holes

N
o.

 B
ug

s

Verification Process Overview

ST-Covered ST-Constrained Vplan-Progress BR-Covered Bugs

Quantify in Action
Spotting over-constrained code—I

/**/
/* 28 SEP */
/**/

// RD is mutual exclusive to WR
am_read_exclusive_to_write:
assume property(disable iff(!rstn || wb_rst_i)

write_active |-> RD != WR);
/**/

Quantify in Action
Spotting over-constrained code—II

/**/
/* 29 SEP */
/**/

// RD is mutual exclusive to WR
am_read_exclusive_to_write:
assume property(disable iff(!rstn || wb_rst_i)

write_active |-> !(RD && WR));
/**/

Void message [UM10204-Notes Page.14]
START immediately followed by a STOP is an illegal format

Coverage’s Role in the Verification Process
Assertion effort vs. coverage

0

10

20

30

40

50

60

70

80

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.Oct 02.Oct 06.Oct 09.Oct 10.Oct 19.Oct 23.Oct 26.Oct 27.Oct 29.Oct

Bug
Hunting

Complete
Verification

Plan

Fix
Coverage

Holes

N
o.

 C
he

ck
s

Coverage vs. Effort

ST-Covered ST-Reached ST-Unknown ST-Unobserved ST-Uncovered ST-Constrained Assertions Constraints

Summary

What is the motivation?

• Off-chip serial protocols are everywhere, therefore we need to verify protocol
compliance and data integrity

• Verifying serial protocols with formal is challenging

Why does the approach matter?

• Having a well-defined verification approach helps in achieving great results
• Coverage increases confidence and helps us to easily identify over-

constrained, not exercised code
• Collecting regression data over time gives a clear view on where effort is

being expended and how things are progressing

Quantify: Scalable and Automated

Design #Code Lines #Assertions Runtime

FIFO 321 30 100s

FSM-DDR2-Read 839 6 106s

vCore-Processor 295 8 204s

Arithmetic Block 383 2 257s

• Push-button solution
• Unique patented technology
• Much more accurate than cone analysis
• Used by multiple customers on their most critical IP

Real example at Infineon:
Quantify identified verification holes and guided assertion development.

New assertions detected critical bugs.

Quantify now used to provide management metrics on all designs!

Interactive
use on single
modules to
improve
verification

http://testandverification.com/DVClub/18_Nov_2013/Infineon-HolgerBusch.pdf

Design #Code Lines #Assertions

IFX-Aurix-1 25563 85

IFX-Aurix-2 27374 157

IFX-Aurix-3 57253 253

Quantification of Formal in ISO 26262

Problem

Quantitative assessment of formal
verification environment needed
Example: Qualify verification

environment for safety functions

Solution

Use observation coverage to
identify coverage holes
Integrate coverage results with

simulation coverage

Coverage for safety-critical domains

verification hole

verified
code

constrained
code

dead
code

Statistic
overview

Customer Case Study:
“Formal Safety Verification with Qualified Property Sets”
Holger Busch at DAC’14 in Accelerating Productivity
Through Formal and Static Methods (Session 38.3)

Quantify and Other Coverage Solutions
Why Quantify is a superior coverage tool

Cone of Influence

 Good to spot big gaps quickly
 Can get false optimism
 Can hide bugs in the design

Proof Core

 Result depends on selected proof engine
 More abstract engines produce pessimism
 Engine dependent results are confusing

Mutation

 Overall high run time—one fault at a time
 Some mutations can cause vacuity
 Intrusive—mutation applied on RTL
 Too many iterative compile and runs
 Covering all locations is expensive

Quantify

 Fast execution—multiple faults processed at once
 Not intrusive—alters the design model, not RTL
 Just-right level of abstraction
 Allows better observability
 Report is meaningful and linked to design browser

Summary

 Designer Bring Up
 What can you know about your design without any verification effort?
 Reachability analysis—find design bugs as you bring up design

 Redundant code—find wasted area in your design

 Verification Quality and Metrics
 Metrics indicate gaps in verification and show you where these gaps are

 Quantify tells you where checks are missing

 More checks allow you to identify hidden bugs

 Identify accidental over-constraints; focus on verification

 Push-button, quick to run, easy to read, view linked to design browser

 Single metric provides overall quality

Continuous feedback for design and verification

Thank you!

Questions?

