IIIIIIIIIIIIIIIIIIIIII
......

Rt N
COMFERENCE AMND EXHIBITHIMN

Using Mutation Coverage
for Advanced Bug Hunting

Viadislav Palfy & Nicolae Tusinschi—OneSpin Solutions

Q)
onespin

making electronics reliable

DESIGM ARMND VERIFICATHIMN™

DVCCOIN The Verification Loop

, Requirements \

Build Test

2018

RYoi=im Assessing Quality of Verification

If you don’t measure, you don’t know

When am | done?

* Have | written enough stimuli to cover all requirements?
 What part of the design has been exercised by my assertions/covers? L Quantify™
s Have | written good quality checks?

+ Which parts of the design have been checked by my checkers?

s Are all specified functions implemented?

— GapFreeVerification™
+» Are all specified functions verified? P

AT Coverage & Bug Hunting
Two sides of the same coin

*» Both coverage and bug hunting are important

*» Where coverage is analytical, bugs are anecdotal

*

* 100% coverage with bugs in the design is unacceptable

*

s Extracting coverage should be quick and easy

*

** Report data must be meaningful

DESIGM ARMND VERIFICATHIMN™

oA Quantify MDV Overview
Multi-dimensional view—quantity and quality

Assessing the quality of verification by providing a quantitative metric

Quantify

% Takes as input a hardware design and a formal test bench
“ One push of a button produces a metric-driven sign-off report as output

Structural Coverage (Quantity)

+» Control & Observation Coverage—provides quantitative assessment

Functional Coverage (Quality)

% Assertion Coverage—provides qualitative assessment

IIIIIIIIIIIIIIIIIIIIII

oA Coverage Solution: Provides Meaningful Metrics
Continuous feedback for design and verification

*» Designer Bring Up: Get feedback on the quality of design bring up
+» Dead code; reachability
* Redundant code

¢ Verification: When quality and quantity both matter
s Metrics should indicate gaps in verification and show you where these are
¢ Missing checks
¢ Over-constraints
¢ Find bugs

2018

DESIGMN ARND VERIFICATHIMN™
=5 = B I
| | | | |

DVCOIN

]

el e Quantify Report
Color-coded highway to sign-off

T

Reached Reached by an Assertion

Controllability Unreachable & Unobservable Due to Constraints

Dead Unreachable and Unobservable

Not Reached and Not Observed
Observability Observed and Reached

Unobserved Reached and Not Observed

2018

DESIGM ARMND VERIFICATHIMN™

RYo= Quantify Dashboard View: Important Components

Structural Coverage Overview

Statements Branches
12 e 4 . 100.00%
reached 0 0.00% 0 0.00%
u unknown 0 0.00% 0 0.00%
OR unobserved 3 20.00% 0 0.00%
0 fooo% o oo
DN © b o Ioo%
Sum quantify targets 15 I 4+ I
Code Status Statements Branches
Xu excluded by user 0 0.00% 0 0.00%
' Xr excluded redundant code 0 [0.00% 0 [0.00%
Xv excluded verification code 15 50.00% 8 66.67%
0/1/U quantify targets 15 50.00% 4 33.33%
Sum total code 30 12

Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified

0 sva/as_empty from full assert
1 svalas _full from empty assert
2 sva/u_fifo /as_ordering_check assert

2018

DESIGM ARMND VERIFICATHIMN™

LY=L Quantify Dashboard
Directly Linked to Design Browser - -

verified code

‘ locking:

verification h0|e if (counter=—8'haa)

fem state next <= idle;

errar:
if (error i)
constrained cfg_reg
counter == 4'dBo;
code bl S it
J fsm state next == idle;

fsm state next <= idle;

dead code

default:

IIIIIIIIIIIIIIIIIIIIII

COMFERENCE AMND EXHIBITHIMN

Quantify in Action

FIFO Example

IIIIIIIIIIIIIIIIIIIIII

Interface of this design

e ————————————

resetn =// \\\
clk g rptr wptr |
w_valid_i . : : | - emply
w_ack_o » full
r_valid_i 4 | » data_out
r ack o < B - data S
data_in . /}
nput Output |
ABCDEEGH ABCDEFGH.. Vv

ABCDFE GH.. X

ABC EFGH.. X
ABCDDEFGH.. %X
C

DESIGM ARMND VERIFICATHIMN™

~~~~~~~~~~~~~~~~~~ Requirements for Verification

Ordering is correct

No duplication
No data loss

No data corruption

Empty and full checks

*Must be empty at the right time
**Must be full at the right time
s |If empty, then eventually full
s»If full, then eventually empty



2018

DESIGM ARMND VERIFICATHIMN™

DYEELE Quantify on FIFO Example—I
With no checks at all

Structural Coverage Overview

Staus Statements Branches

S o o 0 oo

R reached 0 0.00% 0 0.00%

U unknown 0 0.00% 0 0.00%

0r unohserved 0 0.00% 0 0.00%

22 7 mﬁm
0 oo 0 oo

0 oo 0 oo

Sum  quantfy targets 2 I 7 I

Structural Coverage by File

Statements Branches

22 (— 7 [  ___VERIFicAT
Assertion Coverage
Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified

Id File Language Kind Full Name

0 fifow verilog design /home/onespin/my_labs/fifo_guantify_demo_v2/no_checks/rtififo.v




2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

e Soremor Quantify on FIFO Example—lII
Design View

i(posedge

o 1f (!resetn)

5 w_ack = 1'b1;

% else if (! fulll

w w_nck <= 1'bl;

“® else if (full)

19 w_ack = 1'b0;

50

51 szzign w_sck_o = w_sck;

52 mssign r_nck_o = empty T 1°b0 : (Full 7 1°b0 : 1'bl):

53 mszign w_hsk = w_valid_i 66 w_nck_o;

54 assign r_hsk = r_valid i &6 r_ack_o;

111 mssign nxt_wptr = wptr + w_hsk;

56 mssign nxt_rptr rptr + r_hsk;

57 sssign nxt_empty = (empty || r_hsk) &6 !w_hsk &8 (nxt_rper nxt_wptr) ;

58

59

(]

6l if (iresetn)

62 k

3} empty <

(13 wptr < {DEPTH_BITS{1'bo}}; 0
[1] rptr <= {DEPTH_BITS{1'bO}}; L
[ end

67 0
[}

59 empty <= nxt_empty: 0
n wptr <= nxt_wptr; []
;! rptr < nxt_rptr; 0
” end

k] Write t

™

= if (w_hsk) 0
™ datalwptr] ¢ L
™ ;

n if (r_hsk 0
L[] data_int = datalrper]; 0
o assign Full = lempty && (rptr wptr) ; (]
a2 BsEign enpty_o = empty; 0
] sazign Full_o = Full; 0
L assign data o = data_int; 0
[ mody




VLA FIFO Verification Strategy

Uses symbolic and data abstraction

¢ Use two symbolic transactions for tracking all possible data values
¢+ Send these symbolic values in a pre-determined order in the FIFO
¢ Ensure that they come out of the FIFO in the same order

¢ Use four sampling registers

\/

* sampled in dl

)

/
0’0

sampled in dZ2

*

* sampled out dl

L)

*

L)

* sampled out d2

L)

¢ One side constraint
¢ One main ordering check



2018

AT FIFO Ordering Check

Glue logic

//-- Force dl inside before d2
am dl before d2:
assume property (
@ (posedge clk)
!'sampled in dl |-> !sampled in d2);

//-- End-to-end ordering check
as_ordering check:
assert property (
@ (posedge clk) disable iff ('resetn)
sampled in dl && sampled in d2 && !sampled out dl
| -> !sampled out d2);



2018

DESIGM ARMND VERIFICATHIMN™

AT Quantify on FIFO Example—lI|
With just ordering check

Structural Coverage Overview

63.64% design covered
reached 0 0.00% 0 0.00%
u unknown 0 0.00% 0 0.00%
e ‘ e - . 31.82% Design Unobserved
uncovered 1] Je55% 4.55% Design Uncovered
0C | constrained 0 Jo.00% 0 [0.00%
0D | dead 0 Jo.oo% 0 Jo.oo%
Sum  quantify targets 2 I 1 7 ]
Code Status Statements Branches
Xu excluded by user 0 0.00% 0 0.00%
Xr excluded redundant code 0 [0.00% 0 [0.00%
Xv excluded verification code 14 38.89% 4 36.36%
01U quantify targets 22 61.11% 7 63.64%
Sum total code 36 1
File Statements Branches
filo.y 22 [ 7 [ I ]
fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified .

0 sva ffo /as ordenng cheok se FORMALPROOF e COVERPASS (2 | _ Single Check
1 sva/u fifo /am d1 before d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

2 svalu fifo /am intf full assume FORMAL_ASSUMPTION infinite N/A 0 N/A

3 sva/u fifo /am stable di assume FORMAL_ASSUMPTION infinite N/A 0 N/A

4 sva/u fifo /am stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

Id File Language Kind Full Name
0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step2_ordering_check_only/rti/fifo.v
1 fifo sva.sv verilog design /home/onespin/my._labs/fifo_quantify_demo_v2/Step2_ordering_check_only/svalfifo_sva.sv




2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

e s Quantify on FIFO Example—IV

What'’s still missing?

41 if (Iresetn) OR
42 w_ack <= 1'bl1; OR
43 else if (lfull) OR

48 assign w_ack_o = w_ack; OR
'be:

489 //assign r_ack o = empty ? 1 1'b1;

51 assign w_hsk = w_valid_i & w_ack_o; OR

Missing coverage
«» Unobserved
% Uncovered

56 1 Registered calculations for empty, wptr and rptr
1 @ ige clk or negedge resetn)

58

65 begin

70 1/ Wri the data on a w_hsk

vosedge clk)

data on a r_hsk

clk)

78 assign empty o = empty; OR
80 assign full o = full; OR

o

82 endmodule




2018

DESIGM ARMND VERIFICATHIMN™

0~
[ 1 .y |
DV.'.....W‘- el |

DVZCL Quantify on FIFO Example—V
Let’s add checks on empty and full

as_empty to full:
assert property (@ (posedge clk) disable iff (!resetn)
empty o ##1 (push i && 'pop i) [*FIFO DEPTH] |=> full o);

as_full to _empty:
assert property (@ (posedge clk) disable iff (!resetn)

full o ##1 (pop_i && 'push i) [*FIFO DEPTH] |=> empty o)

as_empty after reset:

assert property (@ (posedge clk) !resetn |=> empty)



2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

COMFEREMCE AMD EXHIBITHOMN

How did we do now?

Structural Coverage Overview

ranches
72.73% desig

reached . 0 0.00%
u unknown 0 0.00% 0 0.00%
uncbserved 6 27.27% B! 42.86%
uncovered 0 Jo.00% 0 [Jo.00%
constrained 0 Jo.00% 0 [Jo.00%
0 Jo.oo% 0 Jooo%
Sum  quantify targets 2 IS 7 .
Excluded Code Overview
Code Status Statements Branches
Xu excluded by user 0  0.00% 0 0.00%
Xt | excluded redundant code | 0 [0.00% 0 [0.00%
Xv excluded verification code 14 38.89% 4 36.36%
01U quantify targets 22 61.11% 7 63.64%
Sum total code 36 "
Statements Branches
ﬁm 22 | 7 |
fifo sva.sv 14 4
Property Proof Result Proof Radius Cover Resuit Cover Radius Quantified
T —— Ufe  COVERPASS 1 ys
1 svalu fifo fas empty to full assert _—_
2 svalu fifo /as full to empty assert FORMAL_VACUOUS infinite
3 sval fo Jas ordering check coet | FORMALPROOF . miie | GOVERPASS 2z e
4 sva/u fifo /fam d1 before d2 assume FORMAL_ASSUMPTION infinite N/A 0 INVA
5 sva/u fifo /am intf full assume FORMAL_ASSUMPTION infinite N/A 0 N/A
6 svalu fifo fam stable d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
7 sva/u fifo /am stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
CE———
Language Kind Full Name
ﬂfg;! verilog design /home/onespin/my_labs/fifo_quantify demo_v2/Step3 with_empty_full_checks/rtiffifo.v
fifo sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step3_with_empty_full_checks/svaffifo_sva.sv

Quantify on FIFO Example—VI

Problem with debugging unreachables



2018

DESIGM ARMND VERIFICATHIMN™

DYELS  Quantify on FIFO Example—VIl
| | Where are the missing coverage targets?

42 if (lresetn) R |
43 w_ack <= 1'bl; O0R |
44 else if (lfull) OR |
45 w_ack <= 1'bl; OR |
46 else if (full) G
47 w_ack <= 1'b0; R |
48

48 assign w_ack_o = w_ack;

50
51 assign w _hsk = w valid i & w_ack o;
52
53

55
56
57
58
59

Missing coverage
: *+ Unobserved code
 — % Cannot observe empty!

64
85
66
67
88
69
70
n
72
73
74
75
78
77
78
79
80
81
82 assign empty o = empty;
83
84
85




2018

DESIGM ARMND VERIFICATHIMN™

DV Quantify on FIFO Example—VIi
A closer look

42 if (!resetn)

43 wiacks ¢="1tbi ”
44 else if (!full) OR
45 w_ack <= 1'b1; OR
46 else if (full) OR
47 w_ack <= 1'be; OR
48

49 assign w_ack_o = w_ack; OR
50

51 assign w_hsk = w_valid_i && w_ack_o; OR

This looks buggy ...
Let’s go and fix it!



2018

DESIGM ARMND VERIFICATHIMN™

RY S Quantify on FIFO Example—IX
After the bug fix on r_ack_o design

Structural Coverage Overview

Statements
[N 7 R 77.27% desig
reached 0 0.00% o 0.00%
unknown 0 0.00% 0 .
R unobserved 5 22.73% 3 42.86% Still 22.7% design unobserved
uncovered 0 Jo.00% 0 [o.00%
0C | constrained 0 [Jooo% 0 Jo.oo%
| dead 0 |foo% o Jo.oo%
Sum  quantify targets 22 7

Design coverage increased to 77.27%

Code Status Statements Branches

Xu excluded by user 0 0.00% 0 0.00% . . [ 0

W esmnananass 0 oo o o But still missing 22.73%)!
Xv excluded verification code 14 38.89% 4 36.36%

0/1/U  quantify targets 22 61.11% 7 63.64%

Sum total code 36 "

File Statements Branches

flo.y 22  I— 7  —

fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified

0 svlu fifo fas emply after reset assert  [[FORMALPROOF  [nfnte  [[COVERPASS 1 [lyes

2 svelu ffo lss full 1o erply oo FORMALPROOF e COVERPASS |5

4 svalu fifo /am d1 before d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

5 svalu fifo_/am_intf full assume FORMAL_ASSUMPTION infinite N/A 0 N/A

6 svalu fifo /am stable d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

7 svalu fifo /am stable d2 assume FORMAL_ASSUMPTION infinite N/A 0 N/A
 Festatos |

Id File Language Kind Full Name

0 fifo.v verilog design Iheme/onespin/my_labs/fifo_quantify_demo_v2/Step4_ordering_empty_and_full_checks_but_fix_rack_o/rii/fifo.v

1 fifo_sva.sv verilog design /home/onespin/my_labs/fifo_quantify_demo_v2/Step4_ordering_empty_and_full_checks_but_fix_rack_o/svalffifo_sva.sv




2018

DESIGM ARMND VERIFICATHIMN™

DVLCOIN

CONFERENCE AND EXHIEITION

42
43
44
45
46
47
48
48
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
87
68
89
70
n
72
73
74
75
78
77
78
79
80
81
82
83

if (Iresetn)
w_ack <= 1'b1;

else if (!full)
w_ack <= 1'b1;

else if (full)
w_ack <= 1'b0;

assign w_ack_o = w_ack;

" Let's fix the ack_o

assign w_hsk = w_valid_i &8 w_acl

//--- Registered caleulations for empty, wpte and rptr

@(posedge clk or ne se resetn)

begin

- Write the data on a w_hsk

always @(posedge clk)

//--- Read the data on a r_hsk

always @(posedge clk)

endmodule

OR
R
R
OR
OR

oR

Quantify on FIFO Example—X
Let’s dig deeper to find outﬁwhy

Missing coverage on
w_ack and w_hsk

Unobserved code



IIIIIIIIIIIIIIIIIIIIII

DV Quantify on FIFO Example—Xi

Let’s go add the remainder checks

//-- Fairness constraints
assume property (@ (posedge clk) disable iff (!'resetn)
'r valid i |-> ##[0:8] r valid i);

assume property (@ (posedge clk) disable iff (!'resetn)
'w valid i |-> ##[0:8] w_wvalid i);

//-- Liveness checks
assert property (@ (posedge clk) disable iff (!'resetn)
'r hsk |-> ##[0:$] r hsk);

assert property (@ (posedge clk) disable iff (!'resetn)
'w hsk |-> ##[0:$] w_hsk);



2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

COMNFEREMNCE AMD EXHIBITHIM

Structural Coverage Overview

Quantify on FIFO Example—XIl

How are we doing now?

Status Statements a
[ i
(A [covered | 90.91% desig
R reached ] 0.00% 007
u unknown 0 0.00% 0  0.00%
. .
ORE Rindteoed S0 S Still 9.09% design unobserved
0 oo gtk
0 [fo.oo% 0 |.0oo%
0 |f.oo% o |k.oo%
Sum _quantity targets 2 T
Excluded Code Overview
Code Status Statements Branches
Xu excluded by user 0 0.00% 0 0.00%
e I 3 0 [o.00% 0 [0.00%
Xv excluded verification code 14 38.89% 4 36.36%
0/1/U  quantify targets 22 61.11% 7 63.64%
Sum total code 36 n

Structural Coverage by File

File

Statements

22 |

Branches

Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
Q /u_fife Ii assert _
1 svalu filo_fas empty_to_ful assert |
2 svalu_fifo_fas_full to_empty assert |
3 svaly ffo fas_orderin assert [
5 svau fifo fas whsk_infinitely_often assert E
6 fifo_s 1_befor: assume FORMAL_ASSUMPTION infinite 0
7 i ir_rvali assume FORMAL_ASSUMPTION infinite NIA 0 N/A
8 svaly_fifo_Jam_fair_wvalid assume FORMAL_ASSUMPTION infinite NIA 0 N/A
9 valu_fifo_fam_intf_full assume FORMAL_ASSUMPTION infinite NIA 0 N/A
10 f le_d1 assume FORMAL_ASSUMPTION infinite NIA 0 N/A
11 svaly_fifo_fam_stable_d2 assume FORMAL_ASSUMPTION infinite NIA 0 N/A
File Status
Id File Language Kind Full Name
0 fifo.v verilog design /home/onespin/my_labs/fifo_quantify_dema_v3/Step5/rtiififo.v
1 ifo_sva.sv verilog design /home/onespin/my_labsififo_quantify_demo_v3/Step5/svaffifo_sva.sv

Design coverage increased to 90.91%



2018

DESIGM ARMND VERIFICATHIMN™

DYELES Quantify on FIFO Example—XiIll
So what’s going on now?

43 if (!resetn) OR
44 w_ack <= 1'bil;

4 —-\
40 —-\

47 else if (full)
48 w_ack <= 1'b@; OR \

In the cycle, if the FIFO is full, then we should not accept another write.
However, we only delay the write in the following cycle.
So it looks like we are allowing the write to a full FIFO!

But ... my proofs should have failed .... Why didn’t the ordering proof fail?



2018

DESIGM ARMND VERIFICATHIMN™

DYESLS Quantify on FIFO Example—XIV
Let’s look at the constraints
33
34 //--- Interface contraints
35 am_intf full: assume property (full o |-> !w_hsk || r_hsk);
36

When the FIFO is full, this constraint forces a read in the same cycle when there is a write.

Let’s take this constraint away ... and rerun the proofs.



2018

DESIGM ARMND VERIFICATHIMN™

DYE2ES Quantify on FIFO Example—XV
What happens to proofs now? Two asserts failed

Session Setup File Edit CC/MV EC Tools Window Help

o | S e 3 ~ -~ "\ ;' - v
& Design Explorer &' Lint Browser 4 Auto Checks 1 Dead-Code Checks & Assertion Checks 3

@ Proof Status: t|;|1h(et:i Validity: up to date

|Instance Name ] Proof Status |Nitness Statu:[ Validity
2B [top) Ll v | ! | <any status » | ! | <any st ~ | ! | <any validity> -
- Assertions 1 1

sva/u_fifo_/as_empty_after_reset hold ~ pass(1) up_to_date
sva/u_fifo_/as_empty_to_full [ fail (1) ~ pass (1) up_to_date
sva/u_fifo_/as_full_to_empty _hold pass (5) up_to_date
sva/u_fifo_/as_ordering_check | fail (8) . pass(2) up_to_date
sva/u_fifo_/as_rhsk_infinitely_often hold pass (2) up_to_date
sva/u_fifo_/as_whsk_infinitely_often hold pass (2) up_to_date

i- Constraints

4|

11 items total, 11 selected by filter

Shell
& Shell | € Messages @[l Progress

-I- Computing witness for ‘sva/u_fifo_/as_rhsk_infinitely_often’

-R‘ Witness computation for 'sva/u_fifo as_rnsk nrinitely ften’ successful (witness found within 2 cycles from reset) (0.04 se (: 16
-I- Computing witness for 'sva/u_fifo_/as_whsk_infinitely_often’
-R- Witness computation for 'sva/u_fifo 1s_whsk_infinitely_often' successful (witness found within 2 cycles from reset) (0.04 sec CPU, 4

mv>



DESIGM ARMND VERIFICATHIMN™

AT Quantify on FIFO Example—XVI
Let’s look at the failing ordering property

Waveform Viewer: sva/u_fifo_/as_ordering_check

- a x
File Edit Signals View

o BAEES 5 Be X L QQ X

t##-6 t#i-5 ti#-4 -3

+- u_fifo_/d1
& u_fifo_/d2




2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

COMFEREMCE AMD EXHIBITHOMN

Quantify on FIFO Example—XVIi

What does our coverage look like?

Structural Coverage Overview

Status Statements Branches
O S——— s 2
R reached 0  0.00% Q 0.00%
u unknown 0 0.00% 0 0.00%
. s R 36.36% unobserved
0 uncovered 0 Jo.00% U R
constrained 0 h‘ﬂﬂ% 0 pADO%
| dead 0 f.0o% 0 fooo%
Sum  quantify targets 22 7 N
Excluded Code Overview
Code Status Statements Branches
Xu excluded by user 0 0.00% 0 0.00%
' Xr | excluded redundantcode | o [ooo% 0 Jo.00%
Xv excluded verification oods 14 38.89% 4 36.36%
0MMU  quantify targets 22 61.11% 7 63.64%
Sum total code 36 1
Statements Branches
fifox 2 I 7 |
fifo_sva.sv 14 4

Kind Proof Result Cover Radius Quantified

Proof Radius

Cover Result

0wl o : o [ FORMALCERO0R 11 e [CONERBAS 1
1 svalu_fifo_/as_empty_to_fu assert FORMAL_NONE |covER PASS  |[1 | wiiness

2 valu_fifo_las_full_to_em assort | FORNANERGOEN

3 fifo_/as_orderi assert FORMAL_NONE \[oN:d:{e]e]5
§  svalu o Jas whsk infiiely_often asset [[FORMALPROOF ] ]

6 svalu tg__am_d_beln&..dz assume FORMAL_ASSUMPTION infinite 0

Tt valu fair_rvali assume FORMAL_ASSUMPTION infinite N/IA 0 N/A

8 /i It i, It assume FORMAL_ASSUMPTION infinite NIA 0 N/A

9 svalu_fifo_fam_stable_d1 assume FORMAL_ASSUMPTION infinite NIA 0 NIA

10 valu_fifo_lam_stabl assume FORMAL_ASSUMPTION infinite N/A 0 NIA

Language Kind Full Name
0 ﬂm_x verilog design /home/onespin/my_labsififo_quantify demo_v2/Step4_looknig_for bugs over_constr/rtl/fifo.v
1 fifo_sva.sv verilog design /home/onespin/my_labs/fifo_quantify _demo_v2/Step4_looknig_for_bugs_over_constr/svalfifo_sva.sv

Coverage reduced......
from 90.91% to 63.64%

NO PROOF



DESIGM ARMND VERIFICATHIMN™

RYZEL Quantify on FIFO Example—X Vil
Fix the bug, prove, then Quantify

W essignwacko - full 2 1'be:1'bl;

41




2018

DESIGM ARMND VERIFICATHIMN™

2YLi=ls  Quantify on FIFO Example—XVIII

Let’s fix the design and rerun proofs and Quantify

48 //--- Registered calculations for empty, wptr and rptr

;2 always @(posedge clk or negedge resetn) 1 OO% Cove red !

51 begin

5]
o]
o
3
|

57 begin

(3,0,
© ®

60

61 end

62

63 //--- Write the data on a w_hsk

64 always @(posedge clk)

. ||
I T
67

68 //--- Read the data on a r_hsk

69 always @(posedge clk)

70 S o i
Tl eetadeeedstafotel; e
72

7o essign full = lempty & (eptr =t 4
Mol esstmemtyo-ewt; .t
o essefullo =fuy
v [lesstendatao =detaliots

TRE endmodule




2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

COMFEREMNCE AMD EXHIBITHIN

Quantify on FIFO Example—XIX

What happened to our constraint?

ructural Coverage Overview

Status Statements Branches

R reached 0 0.00% 0 0.00%

u unknown 0 0.00% 0 0.00%

OR unobserved 0 0.00% 0  0.00%
TR o o o oo

0C | constrained 0 |p.oo% 0 |p.oo%

Sum  quantify targets 19 I 4+ I

Excluded Code Overview

Code Status Statements Branches

Xu excluded by user 0 0.00% 0 0.00%

: d red code | 0 [0.00% 0 [0.00%

Xv excluded verification code 14 42.42% 4 50.00%

01U quantify targets 19 57.58% 4 50.00%

sSum total code 33 8

Structural Coverage by File

File Statements Branches

filo 18 T 4 e |

fifo_sva.sv 14 4

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius Quantified
8 va/u_fifo_J 1_before_d. assume FORMAL_ASSUMPTION infinite N/A 0 N/A

g svalu_fifo_fam_fair_rvalid assume FORMAL_ASSUMPTION infinite NIA 0 N/A

10 valu_fifo_J: i Ji assume FORMAL_ASSUMPTION infinite N/A 0 N/A

1" /i ) le_d1 assume FORMAL_ASSUMPTION infinite N/A 0 N/A

12 valu_fifo_/am_stabl assume FORMAL_ASSUMPTION infinite N/A 0 NIA




2018

DESIGM ARMND VERIFICATHIMN™

DYEZELY Quantify on FIFO Example—XX
What happened to our constraint? It became a check!

ructural Coverage Overview
Status Statements. Branches

FNCEEE 0 0% ]

Assertion Coverage

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius

0 sva/u fifo /as_empty after reset assert _
1 svalu_fifo /as_empty to full assert _
2 sva/u_fifo /as_full to_empty assert

8 sva/u_fifo_/as_intf_empty assert

4 svalu_fifo /as_intf full assert

5 sva/u_fifo /as_ordering_check assert

6 svalu_fifo /as_rhsk_infinitely often assert _
7 svalu_fifo_/as_whsk_infinitely_often assert _
8 sva/u_fifo /am_d1_before d2 assume FORMAL_ASSUMPTION infinite N/A 0

9 sva/u_fifo_/am_fair_rvalid assume FORMAL_ASSUMPTION infinite N/A 0

10 sva/u_fifo_/am_fair_wvalid assume FORMAL_ASSUMPTION infinite N/A 0

11 sva/u_fifo_/am_stable_d1 assume FORMAL_ASSUMPTION infinite N/A 0

12 sva/u_fifo_/am_stable d2 assume FORMAL_ASSUMPTION infinite N/A 0

8 fifo_lam_d1_befors assume  FORMAL_ASSUMPTION infinite N/A 0 NA

o bt an kvl wome | FORMALASSUMPTION e i ’ i

9 B g e Rk 7 it




2018

DESIGM ARMND VERIFICATHIMN™

DYELES  Quantify on FIFO Example—XXI
| We discover additional requirements on this design

ructural Coverage Overview

T —— e I—

Id Property Kind Proof Result Proof Radius Cover Result Cover Radius
0 sva/u fifo /as_empty after reset assert

1 svalu_fifo /as_empty to full assert

2 sva/u_fifo /as_full to_empty assert

8 sva/u_fifo_/as_intf_empty assert

4 svalu_fifo /as_intf full assert

5

svalu_filo_/as_ordering_check assert
34 ”-/--_ Interface Checks

SO as_intf _empty: assert property (empty o |-> !r_hsk);
36 as_intf full: assert property (full o |[-> !w_hsk);

8 27 fifo_J: 1_befor assume FORMAL_ASSUMPTION infinite NIA 0 NIA
9 svalu_fifo_jam_fair_rvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A
10 svalu_fifo_/am_fair_wvalid assume FORMAL_ASSUMPTION infinite N/A 0 N/A
1 /i J: I assume FORMAL_ASSUMPTION infinite N/A 0 NIA
12 svalu_fifo_/am_stable_d2 assume FORMAL_ASSUMPTION infinite N/A 0 NIA




IIIIIIIIIIIIIIIIIIIIII

RY S Recap of What We Showed—I
Using coverage for bug hunting
¢ Without any test bench: Everything uncovered
¢ Single Ordering Check: Quantify reports 63.64% of design coverage
** We spotted missing checks on empty and full
¢ We add these checks, Prove -> RTL bug found!
s Fix, Prove, then Quantify
+¢ Still unobserved design -> need to write more checks
s Wrote more checks, re-ran proofs -> expected to see 100% coverage but had 90.91%

¢ An over-constraint in the test bench was masking another RTL bug!



A Recap of What We Showed—II
Bugs in your design indicate you do not have 100% coverage
¢ All proofs marked as proven, AND no property was marked unreachable, AND we
had checks on all design statements, AND yet the coverage was not 100%
¢ Missing coverage forced us to think
¢ Tool gave hints on where the gaps were
¢ This allowed us to unearth bugs in design and over-constraints in TB
*» We fixed the RTL bug
¢ Constraints are not required, as design is guaranteed to have the behavior
¢ In fact, we prove this on the design by proving these two additional assertions

¢ Overall, we find bugs, remove bad constraints, find more bugs, and enrich our test
bench with more good quality checks



IIIIIIIIIIIIIIIIIIIIII

COMFERENCE AMND EXHIBITHIMN

Verification of I2C Serial Protocol

Case Study: Coverage’s Role in the Verification Process



2018

DESIGM ARMND VERIFICATHIMN™

DV Systematic Verification Flow

Requirement tracing and coverage are of paramount importance

Individual requirements broken down into features,
implementations, verification goals, and metrics

o Assertion-based formal verification
is ideal for this task

. b4

Assertions

Code Coverage

Test Bench

b 4 D 4

i SOl o

h h. 4

Coverage Coverage

b4 h 4

Req1 <> Featl «— Feat1.1 «— Goall % Directed Test

Y Feat1.2 «—» Goal2
Feat1.3 vi Goal3 \ Functional Coverage
Goal4

\ Assertion Passing
Assertion Coverage




2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

o e e Getting the Big Picture of Verification

Integrated view of verification planning: formal and simulation

> ‘é >hb 5
=N D
w4

Verification Plan
Un-Annotated

Test Benches Assertions

Formal ABV

i
((?04.4 ]

Simulation

Formal Results
Results

Mixed Results

b 4 -

Annotate } /e }
Verification Plan e 0

Verification Plan Annotated




DESIGM ARMND VERIFICATHIMN™

AT Motivation
How do we verify IP blocks implementing off-chip serial protocols?

Typically used to connect a number of ICs at relatively low data rates
- I2C, SPI, UART, CAN, etc.

What would be an ideal approach?

« Verify protocol compliance at the interfaces binding a VIP checker
» Make use of a scoreboard to check data integrity

What is the challenge?

» Even slow SoCs are running at frequencies starting in the range of 10MHz, while I?C
standard-mode speed is up to 100kHz

» Do the math: The formal tool needs to check for many cycles in order to prove that a
single byte is transferred correctly.



2018

DESIGM ARMND VERIFICATHIMN™

DV I12C Bus Protocol

What is 12C about?

LCD DRIVER EEPROM




2018

DESIGM ARMND VERIFICATHIMN™

RYo=l=  Coverage’s Role in the Verification Process

Verification concerns: What needs to be verified?

1. SW programmable register
1.a Read read-only registers
1.b Read after write registers
1.c Clear command register at transfer complete, or arbitration lost
1.d Reset registers
2. Reset functionality
3. Arbitration lost interrupt, with automatic transfer cancelation
3.a Core drives SDA high, but other master keeps SDA line high
3.b Incoming stop detected, but not requested
4.Condition generation
4.3 Start condition generation
4.b Repeated-Start condition generation
4.c Stop condition generation
5. Bus busy detection
5.a Incoming start detection
5.b Incoming stop detection
6. Data validity
6.a SDA line must be stable when SCL line high
7. Clock synchronization, between two masters engaging the bus at the same time
7.a SCL line held LOW by the device with longest LOW period
7.b SCL line held HIGH by the device with shortest HIGH period
8. Clock stretching, slave introduces wait states
8.a During transfer master drives SCL high, but slave keeps SCL low
9. Slave address transfer
9.a 7bit addressing mode
9.b 10bit addressign mode
10. Data transfer
10.a Write operation

°C-S pec 10.b Read operation

11. Acknowledge detection from slave - write operation

(U M 1 02 04 ) 12. Acknowledge generation to slave - read operation

13. Interrupt handling
14. Range of input frequencies

DUT Spec




2018

S AT Coverage’s Role in the Verification Process

What is the very first step?

Let’s analyze the design. Language: Verilog
Primary input signals: 8 (17 bits)

Primary output signals: 3 (10 bits)

Let's do an automatic inspection. Why? Primary inout signals: 2 (2 bits)
State bits (flops): 128

+ Signal domain violation Assignments: 258 (1034 bits)

» Dead code Code branches: 116

* Unreachable FSM states FSMs: 2

« Signal toggling Adders: 0

Multipliers: 0
Primary clocks: 1

2 hold, 0 fail,
hold, 0 fail,
0 hold, fail,
hold, Tail,
hold, 10 fail,
hold, fail,
1 hold, fail,
106 hold, fail,

Validate results: Are failing checks expected?

[
=
r

bt
NOOON

—
o W N
O EAENOONNWN

b

N



DESIGM ARMND VERIFICATHIMN™

oA Coverage’s Role in the Verification Process
What is the approach?

A
AA ¥
Bug
Hunting
| A
4 v
Complete
V-Plan

N
] A
A,

Good to have a well-defined flow!

i —

v
Fix
Coverage
A
AA ¥

M




2018

DESIGM ARMND VERIFICATHIMN™

Y=  What Was Achieved?
Quantify MDV

Quantify MDV Overview

Overnyiew Structural Coverags Overview  Structural Coverage by File  Asserlion Coverage  File Status  Additional Information

Structural Coverage Overview

T 1
3.15%
(LR 0.859%
0R unobserved 0.00% 0.00%

& 0

0 1

] 0
T 0 o o o

0 0

L] 0

0.00%

U unknown

oo fooos
(0 e oo oo

Sum  guantify targets 4 112 1

File Statements Branches

i2c master bit cirly 133 ] 48 ]

i2c_master byle cirlv 85 ] 26 I

i2c_master top.v 56 e 28 I




2018

DESIGM ARMND VERIFICATHIMN™

o |

PYoiZis  Coverage’s Role in the Verification Process
Process over time

Verification Process Overview

100.00% 10
90.00% 9
80.00% 8
70.00% 7
60.00% 6
50.00% 5
40.00% 4
30.00% 3
20.00% 2
10.00% \ 1

0.00% 0
06.Sep 20.Sep 21.Sep 22.Sep 27.Sep 28.Sep 29.Sep 01.0ct 02.0ct 06.0ct 09.0ct 10.0ct 19.0ct 23.0ct 26.0ct 27.0ct 29.0ct
Bug Complete Fix
Hunting Verification Coverage
Plan Holes

ST-Covered NN ST-Constrained  emssmm\/plan-Progress esss=wBR-Covered e=ssmBugs

No. Bugs



2018

DESIGM ARMND VERIFICATHIMN™

RYoi=im Quantify in Action

Spotting over-constrained code—lI

/****************************************************************/

/* 28 SEP */

/****************************************************************/

// RD is mutual exclusive to WR
am _read exclusive_ to write:
assume property( disable iff(!'rstn || wb_rst i)
write active |-> RD != WR );
/****************************************************************/

begin

end

begin

end

begin

end

else // stop

begin

ST_STOP;
“I2C_CMD STOP;



2018

DESIGM ARMND VERIFICATHIMN™

RY S Quantify in Action
Spotting over-constrained code—lI

/****************************************************************/

/* 29 SEP */
/****************************************************************/

// RD is mutual exclusive to WR
am_read exclusive_ to write:
assume property( disable iff(!'rstn || wb_rst i)
write active |-> !'(RD && WR));
/****************************************************************/

Void message [UM10204-Notes Page.14]

START immediately followed by a STOP is an illegal format

begin

end

begin

end

begin

end

o
1]
(-]
H-
=

end



2018

DESIGM ARMND VERIFICATHIMN™

DVCOIN

COMFEREMCE AMD EXHIBITHN

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

06.Sep

Coverage’s Role in the Verification Process
Assertion effort vs. coverage

20.Sep 21.Sep

mmm ST-Covered

22.Sep

27.Sep

ST-Reached

28.Sep 29.Sep

Bug
Hunting

ST-Unknown

Coverage vs. Effort

01.0ct 02.0ct 06.0ct

ST-Unobserved

s ST-Uncovered

09.0ct 10.0ct

mm ST-Constrained

19.0ct 23.0ct

Complete
Verification
Plan

@ Assertions

26.0ct 27.0ct 29.0ct

@ Constraints

Fix
Coverage
Holes

80

70

B
o
No. Checks

w
o



What is the motivation?

 Off-chip serial protocols are everywhere, therefore we need to verify protocol
compliance and data integrity

« Verifying serial protocols with formal is challenging

Why does the approach matter?

« Having a well-defined verification approach helps in achieving great results

« Coverage increases confidence and helps us to easily identify over-
constrained, not exercised code

 Collecting regression data over time gives a clear view on where effort is
being expended and how things are progressing




2018

DESIGM ARMND VERIFICATHIMN™

AT Quantify: Scalable and Automated

*  Push-button solution
* Unique patented technology
*  Much more accurate than cone analysis
Used by multiple customers on their most critical IP

FIFO 100s Interactive
FSM-DDR2-Read 839 6 1065 use on single
— modules to
vCore-Processor 295 8 204s improve
Arithmetic Block 383 2 257s _J verification
Real example at Infineon:

IFX-Aurix-1 25563 85 Quantify identified verification holes and guided assertion development.
IEX-Aurix-2 27374 157 New assertions detected critical bugs.
IFX-Aurix-3 57253 253 Quantify now used to provide management metrics on all designs!

http://testandverification.com/DVClub/18_Nov_2013/Infineon-HolgerBusch.pdf




2018

DESIGM ARMND VERIFICATHIMN™

AT Quantification of Formal in ISO 26262
Coverage for safety-critical domains

+*Quantitative assessment of formal
verification environment needed

ss*Example: Qualify verification
environment for safety functions

=~ = : T o
s J £ 1=y | | R o 0.00%
— s 7 ed o 0009
t o 0.9
4 rro
; ] > e d 7 35.00%
Ry " e =F 1 ed 5 5.00
- = i ey i B ] 1 5.00%
) Rk ta Sl P g r 20
: - o coun a;
18l - Fsm_ dle;
il ey | | e
i i - e
154 ah = 8 else
RS P ANl L . state next <= idle;
fsm_state _next <= idle;
S | t.
Customer Case Study:
n

“Formal Safety Verification with Qualified Property Sets” *Use observation coverage to

Holger Busch at DAC’14 in Accelerating Productivity identify coverage holes

Through Formal and Static Methods (Session 38.3) **Integrate coverage results with
simulation coverage




2018

DESIGM ARMND VERIFICATHIMN™

AT Quantify and Other Coverage Solutions
Why Quantify is a superior coverage tool

% Good to spot big gaps quickly % Result depends on selected proof engine
s Can get false optimism *» More abstract engines produce pessimism
% Can hide bugs in the design % Engine dependent results are confusing

Mutation Quantify

Fast execution—multiple faults processed at once
Not intrusive—alters the design model, not RTL
Just-right level of abstraction

Allows better observability

Report is meaningful and linked to design browser

X/
0’0
X/
0‘0

Overall high run time—one fault at a time
Some mutations can cause vacuity
Intrusive—mutation applied on RTL

Too many iterative compile and runs
Covering all locations is expensive

X3
o
o

*

/ )
> 0.0
X/ X/
0‘0 0.0

*%

/
0’0
X/
0‘0




DV Summa ry
Continuous feedback for design and verification
+» Designer Bring Up
*» What can you know about your design without any verification effort?

¢ Reachability analysis—find design bugs as you bring up design
*¢ Redundant code—find wasted area in your design

¢ Verification Quality and Metrics
¢ Metrics indicate gaps in verification and show you where these gaps are
** Quantify tells you where checks are missing
¢ More checks allow you to identify hidden bugs
% |dentify accidental over-constraints; focus on verification
¢ Push-button, quick to run, easy to read, view linked to design browser
* Single metric provides overall quality



DESIGM ARMND VERIFICATHIMN™

COMFERENCE AMND EXHIBITHIMN




