

Using Mutation Coverage for Advanced Bug Hunting

Vladislav Palfy & Nicolae Tusinschi—OneSpin Solutions

making electronics reliable

Assessing Quality of Verification

If you don't measure, you don't know

When am I done?

Have I written enough stimuli to cover all requirements?
 What part of the design has been exercised by my assertions/covers?
 Have I written good quality checks?
 Which parts of the design have been checked by my checkers?
 Are all specified functions implemented?
 Are all specified functions verified?

Coverage & Bug Hunting Two sides of the same coin

- Both coverage and bug hunting are important
- Where coverage is analytical, bugs are anecdotal
- ✤ 100% coverage with bugs in the design is unacceptable
- Extracting coverage should be quick and easy
- Report data must be meaningful

Quantify MDV Overview Multi-dimensional view—quantity and quality

Assessing the *quality* of verification by providing a *quantitative* metric

Quantify

- Takes as input a hardware design and a formal test bench
- One push of a button produces a metric-driven sign-off report as output

Structural Coverage (Quantity)

Control & Observation Coverage—provides quantitative assessment

Functional Coverage (Quality)

✤ Assertion Coverage—provides qualitative assessment

Coverage Solution: Provides Meaningful Metrics Continuous feedback for design and verification

Designer Bring Up: Get feedback on the quality of design bring up

- Dead code; reachability
- Redundant code

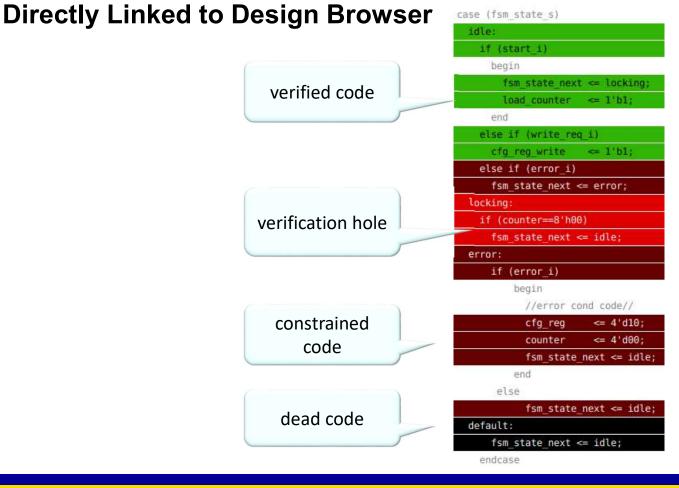
Verification: When quality and quantity both matter

- Metrics should indicate gaps in verification and show you where these are
 - Missing checks
 - Over-constraints
 - Find bugs

Quantify Report

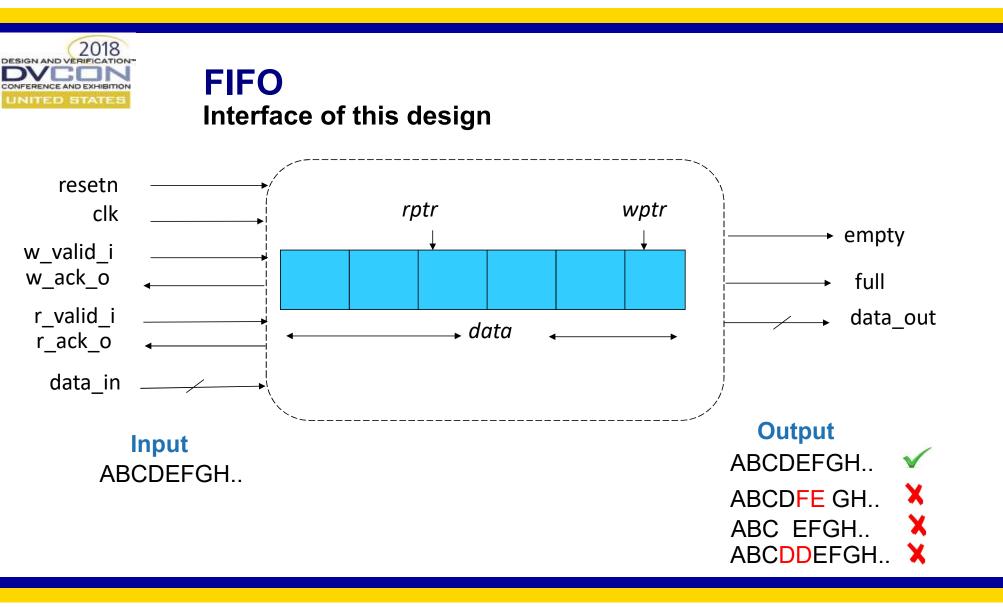
Color-coded highway to sign-off

	Result	Meaning			
	Reached	Reached by an Assertion			
Controllability	Constrained	Unreachable & Unobservable Due to Constraints			
	Dead	Unreachable and Unobservable			
	Uncovered	Not Reached and Not Observed			
Observability	Covered	Observed and Reached			
	Unobserved	Reached and Not Observed			



Quantify Dashboard View: Important Components

Struc	ctural Coverage Overview									
Status	s	nts			Branch	ies				
1	covered	12		80.00%		4		100.00%		
R	reached	0	0.00%			0	0.00%			
U	unknown	0	0.00%			0	0.00%			
0R	unobserved	3	20.	.00%		0	0.00%			
0	uncovered	0	0.00%			0	0.00%			
0C	constrained	0	0.00%			0	0.00%			
0D	dead	0	0.00%			0	0.00%			
Sum	quantify targets	15				4				
Exclu	uded Code Overview									
Code	Status	Statemer	nts			Branches				
Xu	excluded by user	0	0.00%	Ó			0.00%			
Xr	excluded redundant code	0	0.00%	0%		0	0.00%			
Xv	excluded verification code	15		50.00%		8	66.67	66.67%		
0/1/U	quantify targets	15		50.00%		4	33.33%	33.33%		
Sum	total code	30				12				
Asse	rtion Coverage									
ld	Property	ł	Kind	Proof Result	Proof Radi	us	Cover Result	Cover Radius	Quantified	
0	sva/as_empty_from_fullassert		issert	FORMAL_PROOF	infinite		COVER_PASS	9	yes	
1	sva/as full from empty	a	assert	FORMAL_PROOF	infinite	1	COVER_PASS	1	yes	
2	sva/u fifo /as ordering check	a	ssert	FORMAL_PROOF	infinite		COVER PASS	2	yes	


Quantify Dashboard

Quantify in Action

FIFO Example

Requirements for Verification

Ordering is correct	
No duplication	
No data loss	
No data corruption	
Empty and full checks	
 Must be empty at the right time Must be full at the right time If empty, then eventually full 	

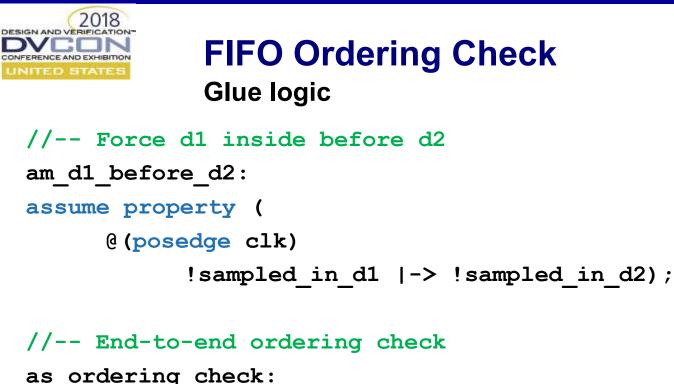
✤If full, then eventually empty

Quantify on FIFO Example—I With no checks at all

Struct	ural Coverage Overview	1					
Status		Statemen	IS	Branch	nes		
1	covered	0	0.00%	0	0.0	0%	
\$	reached	0	0.00%	0	0.0	0%	
U	unknown	0	0.00%	0	0.0	0%	
0R	unobserved	0	0.00%	0	0.0	0%	
)	uncovered	22	100.00%	7		100.00%	VERIFICA
)C	constrained	0	0.00%	0	0.0	0%	
0D	dead	0	0.00%	0	0.0	0%	
Sum	quantify targets	22		7			

Asser	tion Coverage						
ld	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified

File Status							
ld	File	Language	Kind	Full Name			
0	<u>fifo.v</u>	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/no_checks/rtl/fifo.v			


Quantify on FIFO Example—II Design View

43	always @(posedge clk or negedge resetn)	
44	if (!resetn)	0
45	$w_ack \ll 1'b1;$	0
46	else if (!full)	0
47	w_ack <= 1'bl;	0
48	else if (full)	0
49	w_ack ⊲= 1'b0;	0
50		
51	assign w_ack_o = w_ack;	0
52	<pre>assign r_ack_o = empty ? 1'b0 : (full ? 1'b0 : 1'b1);</pre>	0
53	assign w_hsk = w_valid_i && w_ack_o;	0
54	assign r_hsk = r_valid_i && r_ack_o;	0
55	assign nxt_wptr = wptr + w_hsk;	0
56	assign nxt_rptr = rptr + r_hsk;	0
57	assign nxt_empty = (empty r_hsk) && !w_hsk && (nxt_rptr == nxt_wptr);	0
58		
59	// Registered calculations for empty, wptr and rptr	
60	always @(posedge clk or negedge resetn)	
61	if (!resetn)	0
62	begin	
63	empty ⊲= l'bl;	0
64	wptr <= (DEPTH_BITS(1'b0));	0
65	<pre>rptr == {DEPTH_BITS(1'b0)};</pre>	0
66	end	
67	else	- 0 /
68	begin	
69	empty ⊲= nxt_empty;	0
70	wptr ⊲= nxt_wptr;	0
71	rptr <= nxt_rptr;	0
72	end	
73	// Write the data on a w_hsk	
74	always @(posedge clk)	
75	if (w_hsk)	0
76	data[wptr]	0
77	//···· Read the data on a r_hsk	
78	always @(posedge clk)	
79	if (r_hsk)	0
80	data_int <= data[rptr];	0
81	assign full = !empty && (rptr == wptr);	0
82	assign empty_o = empty;	0
83	mssign full_o = full;	0
84	assign data_o = data_int;	0
85	endmodule	

FIFO Verification Strategy Uses symbolic and data abstraction

- Use two symbolic transactions for tracking all possible data values
- Send these symbolic values in a pre-determined order in the FIFO
- Ensure that they come out of the FIFO in the same order
- Use four sampling registers
 - sampled_in_d1
 - sampled_in_d2
 - sampled_out_d1
 - sampled_out_d2
- One side constraint
- One main ordering check


```
as_ordering_check:
assert property (
  @(posedge clk) disable iff (!resetn)
      sampled_in_d1 && sampled_in_d2 && !sampled_out_d1
      |-> !sampled_out_d2);
```


Quantify on FIFO Example—III With just ordering check

	ural Coverage Overview							
Status		Statemen	ts		Branches			
1	covered	14	63.64%		63.64% de	sign cov <u>ered</u>		
R	reached	0	0.00%		0 0	0.00%		
U	unknown	0	0.00%		0 0	0.00%		
0R	unobserved	7	31.82%	4	2	28.57%		31.82% Design Unobserved
0	uncovered	1	4.55%		4.55% Desi	gn Uncovered		J1.02/0 Design Onobserved
0C	constrained	0	0.00%		0 0	0.00%		
0D	dead	0	0.00%		0	0.00%		
Sum	quantify targets	22			7			
Exclud	ded Code Overview							1
		Statemen	ts		Branches			
Code S		Statemen 0				0.00%		
Code S Xu	tatus	100000000000000		-	0	0.00%	-	
Code S Xu Xr	tatus excluded by user	0	0.00%	-	0			
Code S Xu Xr	tatus excluded by user excluded redundant code	0 0	0.00% 0.00%	_	0	0.00%		
Code S Xu Xr Xv	tatus excluded by user excluded redundant code excluded verification code	0 0 14	0.00% 0.00% 38.89%		0 0 4	0.00% 36.36%		
Code S Xu Xr Xv 0/1/U	tatus excluded by user excluded redundant code excluded verification code quantify targets	0 0 14 22	0.00% 0.00% 38.89%		0 0 4 7	0.00% 36.36%		
Code S Xu Xr Xv 0/1/U Sum	tatus excluded by user excluded redundant code excluded verification code quantify targets	0 0 14 22	0.00% 0.00% 38.89%		0 0 4 7	0.00% 36.36%		
Code S Xu Xr Xv 0/1/U Sum	tatus excluded by user excluded redundant code excluded verification code quantify targets total code	0 0 14 22 36	0.00% 0.00% 38.89%		0 0 4 7	0.00% 36.36%		

fifo s	<u>sva.sv</u> 14			4				
Ass	ertion Coverage							
ld	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified	
0	sva/u fifo /as ordering check	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes	Single Check
1	sva/u fifo /am d1 before d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	J
2	sva/u fifo /am intf full	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
3	sva/u fifo /am stable d1	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
4	sva/u fifo /am stable d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	

File Status							
ld	File	Language	Kind	Full Name			
0	<u>fifo.v</u>	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/Step2_ordering_check_only/rtl/fifo.v			
1	fifo sva.sv	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/Step2_ordering_check_only/sva/fifo_sva.sv			

Quantify on FIFO Example—IV What's still missing?

42 w_ack c = 1'bj 0R 43 else if (full) 0R 44 w_ack c = 1'bj 0R 45 else if (full) 0R 46 w_ack c = 1'bj 0R 47	41	if (!resetn)	0R
44 w_ack (* a'bi; 0R 45 else if (vil) 0 46 w_ack (* a'bi; 0 47	42	w_ack <= 1'b1;	0R
46 else if (foll) 0 46 w_ack < 1'bo;	43	else if (!full)	0R
46 w_akk (> 1'b3; 0 47	44	w_ack <= 1'b1;	0R
assign w_ack_po = w_ack; OR 48 assign w_ack_po = wepty ? 1'bo: 1'b1; 0 50 assign m_ack_po = wepty ? 1'bo: 1'b1; 1 51 assign m_hkk = w_alid1 & & w_ack_p; 0R 52 assign m_hkk = w_alid1 & & w_ack_p; 0R 53 assign m_hk = w_alid1 & & w_ack_p; 1 54 assign nxt_mptr = wptr + w_bk; 1 55 assign nxt_mptr = rptr + n hk; 1 56 sign nxt_mptr = wptr + w_bk; 1 56 if (freestr) 1 57 always @(posedge clk or negodge resetn) 1 58 if (freestr) 1 59 begin 1 50 emptr < (DEFH_BITS(1'b0));	45	else if (full)	0
48 assign w_ack_o = w_ack; OR 49 //assign r_ack_o = eepty 7 1 bb : 1 bb ;	46	w_ack <= 1'b0;	0
49 //ssign r_sk_o = empty % 1'b0: 1'b1; 1 50 assign r_sk_o = empty % 1'b0: 1'b1; 1 51 assign r_sk_s = r_valid_i && r_ack_o; 0R 52 assign r_sk_s = r_valid_i && r_ack_o; 1 53 assign nxt_ptr = sptr + r_bk; 1 54 assign nxt_ptr = rptr + r_bk; 1 55 assign nxt_co = cempty, wptr and rptr 1 56 if (lresetm) 1 57 abusys &@(posdeg clk or negedge resetn) 1 58 if (lresetm) 1 59 begin 1 60 eepty c '10; 0R 61 wptr c (DEPH_dITS(1'b0)); 1 62 rptr c (DEPH_dITS(1'b0)); 1 63 end 1 64 else 1 65 segin 1 66 eepty (rit_back_back_back_back_back_back_back_back	47		
50 assign n_ack_o = empty 7 1'b0 : (full 7 1'b0 : 1'b1); 1 51 assign n_bk = n_walid_i && m_ack_o; 0R 52 assign n_bk = n_walid_i && m_ack_o; 1 53 assign n_bt = mytr + w_bk; 1 54 assign n_t_ptr = mytr + w_bk; 1 55 assign n_t_ptr = nytr + w_bk; 1 56 assign n_t_ptr = mytr + w_bk; 1 57 assign n_t_ptr = coptr + n_bk; 1 58 if (lresetn) 1 59 bgin 1 60 empty << 1'bi;	48	assign w_ack_o = w_ack;	0R
51 assign w_hsk = w_walid_i && w_ack_o; 0R 62 assign n,hk = r_walid_i && r_ack_o; 1 63 assign n,hk = r_walid_i && r_ack_o; 1 64 assign n,t wptr = wptr + w_hsk; 1 65 assign n,t_eptr = nptr + n_hsk; 1 66 assign n,t_eptr = nptr + n_hsk; 1 67 always @(posedge clk or negedge resetn) 1 68 if (lresetn) 1 69 begin 0R 60 empty <= 1'bi;	49	//assign r_ack_o = empty ? 1'b0: 1'b1;	
52 assign n.hsk = r_valid_i && r_ack_0; 1 53 assign nxt_wptr = uptr + w_hsk; 1 54 assign nxt_wptr = uptr + w_hsk; 1 55 assign nxt_wptr = uptr + w_hsk; 1 56 if (ruset) 1 57 always @(posedge clk on egedge resetn) 1 58 if (resetn) 1 59 begin 0R 60 empty <= 1/bi;	50	assign r_ack_o = empty ? 1'b0 : (full ? 1'b0 : 1'b1);	1
33 assign nxt_mptr = wptr + w_hsk; 1 64 assign nxt_mptr = cempty r_hsk) && ks (nxt_mptr == nxt_mptr); 1 55 assign nxt_mptr = cempty r_hsk) && ks (nxt_mptr == nxt_mptr); 1 56 // Registered calculations for empty, wptr and mptr 1 57 always @(posedge clk or negedge resetn) 1 58 if (iresetn) 1 59 begin 0 60 empty <= 1'bi;	51	assign w_hsk = w_valid_i && w_ack_o;	0R
54 assign nxt_rptr = rptr + n hsk; 1 65 assign nxt_rempty = (empty r_nsk) && lnyk && (nxt_rptr == nxt_wptr); 1 66	52	assign r_hsk = r_valid_i && r_ack_o;	1
55 assign nxt_empty = (empty r_hsk) && lw_hsk && (nxt_rptr *= nxt_wptr); 1 56 // Registered calculations for empty, wptr and rptr 1 57 always @(posedge clk or negedge resetn) 1 58 if (tresetn) 1 59 begin 0R 60 empty << 1'bi;	53	assign nxt_wptr = wptr + w_hsk;	4
58 // Registered calculations for empty, wptr and rptr 57 always @(posedge clk or negedge resetn) 58 if (iresetn) 1 59 begin 0R 60 empty <= 1'bl;	54	assign nxt_rptr = rptr + r_hsk;	1
57 always @(posedge clk or negedge resetn) 1 58 if (Iresetn) 1 59 begin 0 60 empty <= 1'bi;	55	assign nxt_empty = (empty r_hsk) && lw_hsk && (nxt_rptr == nxt_wptr);	1
58 if (!resetn) 1 59 begin 0 60 empty <= 1'bi;	56	// Registered calculations for empty, wptr and rptr	
59 begin 00 60 empty <= 1'b1;	57	always @(posedge clk or negedge resetn)	
constraint OR empty <= 1'b1;	58	if (Iresetn)	1
61 wptr <= (DEPTH_BITS(1'b0));	59	begin	
62 rptr << (DEPTH_BITS(1'b0));	60	empty <= 1'b1;	0R
63 end 1 64 else 1 65 begin 1 66 empty <= nxt_empty;	61	wptr <= {DEPTH_BITS(1'b0}};	1
64 else 1 65 begin 7 66 empty <= nxt_empty;	62	rptr <= {DEPTH_BITS(1'b0}};	1
66 begin 0 66 empty <= nxt_empty;	63	end	
66 empty <= nxt_empty;	64	else	1
67 wptr <= nxt_mptr;	65	begin	
68 rptr <= mxt_ptr;	66	<pre>empty <= nxt_empty;</pre>	1
69 end	67	wptr <= nxt_wptr;	1
70 // write the data on a w_hsk 1 71 always @(posedge clk) 1 72 if (w_hsk) 1 73 data[wptr] << data_i;	68	<pre>rptr <= nxt_rptr;</pre>	1
71 always @(posedge clk) 1 72 if (w_hsk) 1 73 data[wptr] < data_i;	69		
172 if (w_hsk) 1 73 data[wptr] << data i;	70		
73 data[wptr] <= data_i;			
74 // Read the data on a r_isk 75 always @(posedge clk) 76 if (r_isk) 77 data_int <= data[rtr];			1
75 always @(posedge clk) 76 if (n_hsk) 1 77 data_int <= data[rptr];			1
if (r_hsk) 1 77 data_int <= data[rptr];	74		
77 data_it <= data[rptr];			
78 assign full = lempty && (rptr == wptr); 1 79 assign empty_o = empty; OR 80 assign full_o = full; OR 81 assign data_o = data_int; 1		if (r_hsk)	
79 assign empty_o = empty; OR 80 assign full_o = full; OR 81 assign data_o = data_int; 1			
80 assign full_o = full; OR 81 assign data_o = data_int; 1	1000		
81 assign data_o = data_int; 1	0.10		
	80	assign full_o = full;	0R
82 endmodule		assign data_o = data_int;	1
	82	endmodule	

Missing coverage

- Unobserved
- Uncovered

Quantify on FIFO Example—V Let's add checks on empty and full

as_empty_to_full: assert property (@(posedge clk) disable iff (!resetn) empty_o ##1 (push_i && !pop_i)[*FIFO_DEPTH] |=> full_o);

as_full_to_empty: assert property (@(posedge clk) disable iff (!resetn) full_o ##1 (pop_i && !push_i)[*FIFO_DEPTH] |=> empty_o);

as empty after reset:

assert property (@(posedge clk) !resetn |=> empty);

Quantify on FIFO Example—VI How did we do now?

Struc	Internal Coverage Overview						
Status		Statement	ts	Branch	es		
1	covered	16	72.73%	72.7	3% design covered		
R	reached	0	0.00%	0	0.00%		
U	unknown	0	0.00%	0	0.00%		
0R	unobserved	6	27.27%	3	42.86%		
0	uncovered	0	0.00%	0	0.00%		
0C	constrained	0	0.00%	0	0.00%		
0D	dead	0	0.00%	0	0.00%		
Sum	quantify targets	22		7			

Exclu	Excluded Code Overview							
Code S	itatus	Statement	ts	Branches				
Xu	excluded by user	0	0.00%	0	0.00%			
Xr	excluded redundant code	0	0.00%	0	0.00%			
Xv	excluded verification code	14	38.89%	4	36.36%			
0/1/U	quantify targets	22	61.11%	7	63.64%			
Sum	total code	36		11				

Structural Coverage by File						
File	Statements	Branches				
fifo.v	22	7				
fifo sva.sv	14	4				

Assertion Coverage								
ld	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified	
0	sva/u fifo /as empty after reset	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes	
1	sva/u fifo /as empty to full	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes	
2	sva/u fifo /as full to empty	assert	FORMAL_VACUOUS	infinite	COVER_VACUOUS	infinite	no	
3	sva/u fifo /as ordering check	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes	
4	sva/u fifo /am d1 before d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
5	sva/u fifo /am intf full	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
6	sva/u fifo /am stable d1	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
7	sva/u fifo /am stable d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	

File	File Status						
ld	File	Language	Kind	Full Name			
0	fifo.v	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/Step3_with_empty_full_checks/rtl/fifo.v			
1	fifo sva.sv	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/Step3_with_empty_full_checks/sva/fifo_sva.sv			

Vacuous Failure

Problem with debugging unreachables

Quantify on FIFO Example—VII Where are the missing coverage targets?

42	if (!resetn)	0R
43	w_ack <= 1'b1;	0R
44	else if (!full)	0R
45	w_ack <= 1'b1;	0R
46	else if (full)	0R
47	w_ack <= 1'b0;	0R
48		
49	assign w_ack_o = w_ack;	0R
50	assign r_ack_o = empty ? 1'b0 : (full ? 1'b0 : 1'b1);	1
51	assign w_hsk = w_valid_i && w_ack_o;	0R
52	assign r_hsk = r_valid_i && r_ack_o;	1
53	assign nxt_wptr = wptr + w_hsk;	1
54	assign nxt_rptr = rptr + r_hsk;	1
55	assign nxt_empty = (empty r_hsk) && !w_hsk && (nxt_rptr == nxt_wptr);	1
56	// Registered calculations for empty, wptr and rptr	
57	always @(posedge clk or negedge resetn)	
58	if (Iresetn)	1
59	begin	
60	empty <= 1'bl;	1
61	<pre>wptr <= {DEPTH_BITS{1'b0}};</pre>	1
62	<pre>rptr <= {DEPTH_BITS{1'b0}};</pre>	1
63	end	
64	else	1
65	begin	
66	<pre>empty <= nxt_empty;</pre>	1
67	<pre>wptr <= nxt_wptr;</pre>	1
68	<pre>rptr <= nxt_rptr;</pre>	1.
69	end	
70		
71	// Write the data on a w_hsk	
72	always @(posedge clk)	
73	if (w_hsk)	1
74	data[wptr] <= data_i;	1
75		
76	// Read the data on a r_hsk	
77	always @(posedge clk)	
78	if (r_hsk)	1
79	data_int <= data[nptn];	1
80		
81	assign full = lempty && (rptr == wptr);	1
82	assign empty_o = empty;	0R
83	assign full_o = full;	1
84	assign data_o = data_int;	1
85	endmodule	
-		

Missing coverage

- Unobserved code
- Cannot observe empty!

Quantify on FIFO Example—VIII A closer look

42	if (!resetn)	0
43	w_ack <= 1'b1;	0
44	else if (!full)	0R
45	w_ack <= 1'b1;	0R
46	else if (full)	0R
47	w_ack <= 1'b0;	0R
48		
49	assign w_ack_o = w_ack;	0R
50	assign r_ack_o = empty ? 1'b(: (full ? 1'b0 : 1'b1);	1
51	assign w_hsk = w_valid_i && w_ack_o;	0R

This looks buggy ... Let's go and fix it!

Quantify on FIFO Example—IX After the bug fix on r_ack_o design

Status		Statement	ts	Branch	es
1	covered	17	77.27%	77.	27% design covered
R	reached	0	0.00%	0	0.00%
U	unknown	0	0.00%	0	0.00%
0R	unobserved	5	22.73%	3	42.86%
0	uncovered	0	0.00%	0	0.00%
0C	constrained	0	0.00%	0	0.00%
0D	dead	0	0.00%	0	0.00%
Sum	quantify targets	22		7	

Exclu	Excluded Code Overview							
Code Status		Statements		Branches	5			
Xu	excluded by user	0	0.00%	0	0.00%			
Xr	excluded redundant code	0	0.00%	0	0.00%			
Xv	excluded verification code	14	38.89%	4	36.36%			
0/1/U	quantify targets	22	61.11%	7	63.64%			
Sum	total code	36		11				

Structural Cove	erage by File			
File	Statements	Branches		
<u>fifo.v</u>	22	7		
FF	44			

Ass	ssertion Coverage							
ld	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified	
0	sva/u fifo /as empty after reset	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes	
1	sva/u fifo /as empty to full	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes	
2	sva/u fifo /as full to empty	assert	FORMAL_PROOF	infinite	COVER_PASS	5	yes	
3	sva/u fifo /as ordering check	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes	
4	sva/u fifo /am d1 before d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
5	sva/u fifo /am intf full	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
6	sva/u fifo /am stable d1	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	
7	sva/u fifo /am stable d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A	

File	File Status						
ld	File	Language	Kind	Full Name			
0	<u>fifo.v</u>	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/Step4_ordering_empty_and_full_checks_but_fix_rack_o/rtl/fifo.v			
1	fifo_sva.sv	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v2/Step4_ordering_empty_and_full_checks_but_fix_rack_o/sva/fifo_sva.sv			

Design coverage increased to 77.27% But still missing 22.73%!

Still 22.7% design unobserved

Quantify on FIFO Example—X

Let's dig deeper to find out why

43 w_ack <= 1'b1; 0R	
44 else if (Ifull) OR	
45 w_ack <= 1'b1; 0R	
46 else if (full) OR	
$47 \qquad w_ack <= 1'b0; \qquad \qquad OR$	
48	
49 assign w.ack.o = w.ack; OR	
50 // Let's fix the r_ack o	
51 assign r ack o = empty ? 1'b0 : 1'b1;	
52 assign w_hsk = w_yalid_i && w_ack_o; OR	
53 assign r hsk = r valid i 88 r ack o;	
54 assign nxt_wptr = wptr + w_hsk; 1	
55 assign nxt.rptr = rptr + r_hsk; 1	
56 assign nxt_empty = (empty r_hsk) && !w_hsk && (nxt_rptr == nxt_wptr); 1	
57 // Registered calculations for empty, wptr and rptr	
50 Share Of sector all second sector all	
	$na \circ on$
bi always griposeege (ik of negeoge Peseth) 59 if (ireseth) 60 begin 11 Missing covera	
61 empty <= 1'b1; 1	0
61 eepty <	ا م ما <i>د</i>
63 rptr $\langle \langle 00PH, BITS(1, be) \rangle$; 1 W ack and W	NSK
64 end	
65 else 1	
66 begin	
67 empty <= nxt_empty; 1	
68 wptr <= nxt_wptr; 1	
⁶⁹ rptr (* nxt_rptr; 1 70 end	200
	JUE
71 // Write the data on a w_hsk	
72 always @(posedge clk)	
73 if (w_hsk) 1	
74 data[wptn] <= data_i; 1	
75 // Read the data on a r_hsk	
76 always @(posedge clk)	
77 if (r_hsk) 1	
78 data_int <= data[rptr]; 1	
79 assign full = lempty && (rptr == wptr); 1	
80 assign empty_o = empty; 1	
81 assign full_o = full; 1	
82 assign data_o = data_int; 1	
83 endmodule	

Quantify on FIFO Example—XI Let's go add the remainder checks

Quantify on FIFO Example—XII How are we doing now?

Struc	tural Coverage Overvi	ew		
Status		Statement	ts	Bray hes
1	covered	20	90.91%	90.91% design covered
R	reached	0	0.00%	0.00%
U	unknown	0	0.00%	0 0.00%
OR	unobserved	2	9.09%	Still 9.09% design unobserved
0	uncovered	0	0.00%	
0C	constrained	0	0.00%	0 0.00%
0D	dead	0	0.00%	0 0.00%
Sum	quantify targets	22		7

Code S	tatus	Statemen	ts	Branches		
Xu	excluded by user	0	0.00%	0	0.00%	
Xr	excluded redundant code	0	0.00%	0	0.00%	
Xv	excluded verification code	14	38.89%	4	36.36%	
0/1/U	quantify targets	22	61.11%	7	63.64%	
Sum	total code	36	A REAL PROPERTY AND A REAL	11		

Structural Cove	rage by File	
File	Statements	Branches
fifo.v	22	7
fifo_sva.sv	14	4

Id	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified
0	sva/u_fifo_/as_empty_after_reset	assert	FORMAL_PROOF	infinite	COVER_PASS	- 1	yes
1	sva/u fifo /as empty to full	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes
2	sva/u_fifo_/as_full_to_empty	assert	FORMAL_PROOF	infinite	COVER_PASS	5	yes
3	sva/u_fifo_/as_ordering_check	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
4	sva/u_fifo_/as_rhsk_infinitely_often	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
5	sva/u_fifo_/as_whsk_infinitely_often	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
3	sva/u_fifo_/am_d1_before_d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
7	sva/u_fifo_/am_fair_rvalid	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
8	sva/u_fifo_/am_fair_wvalid	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
9	sva/u_fifo_/am_intf_full	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
10	sva/u_fifo_/am_stable_d1	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
11	sva/u fifo /am stable d2	assume	FORMAL ASSUMPTION	infinite	N/A	0	N/A

File	File Status								
ld	File	Language	Kind	Full Name					
0	fifo.v	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v3/Step5/rtl/fifo.v					
1	fifo_sva.sv	verilog	design	/home/onespin/my_labs/fifo_quantify_demo_v3/Step5/sva/fifo_sva.sv					

Design coverage increased to 90.91%

Quantify on FIFO Example—XIII So what's going on now?

43	if (!resetn)	0R
44	w_ack <= 1'b1;	0R
45	else if (!full)	1
46	w_ack <= 1'b1;	1
47	else if (full)	0R
48	w_ack <= 1'b0;	0R

In the cycle, if the FIFO is full, then we should not accept another write.

However, we only delay the write in the following cycle.

So it looks like we are allowing the write to a full FIFO!

But ... my proofs should have failed Why didn't the ordering proof fail?

Quantify on FIFO Example—XIV Let's look at the constraints

33	
34	// Interface contraints
35	<pre>am_intf_full: assume property (full_o -> !w_hsk r_hsk);</pre>
36	

When the FIFO is full, this constraint forces a read in the same cycle when there is a write.

Let's take this constraint away ... and rerun the proofs.

Quantify on FIFO Example—XV What happens to proofs now? Two asserts failed

Proof State	us: mixed Validity: up to date				
nstance 🛛 🛆	Name	1	Proof Status	Nitness Statu:	Validity
∄ [top]	!	-	! <any statu:="" td="" •<=""><td>! <any !<="" -="" st="" td=""><td><any validity=""></any></td></any></td></any>	! <any !<="" -="" st="" td=""><td><any validity=""></any></td></any>	<any validity=""></any>
	Assertions				
	sva/u_fifo_/as_empty_after_reset		hold	pass (1)	up_to_date
	sva/u_fifo_/as_empty_to_full		fail (1)	pass (1)	up_to_date
	sva/u_fifo_/as_full_to_empty		hold	pass (5)	up_to_date
	-sva/u_fifo_/as_ordering_check		fail (8)	pass (2)	up_to_date
	-sva/u_fifo_/as_rhsk_infinitely_often		hold	pass (2)	up_to_date
	sva/u_fifo_/as_whsk_infinitely_often ⊕-Constraints		hold	pass (2)	up_to_date
	1				
L1 items total,	11 selected by filter				
	lessages IIII Progress			Shell	

Quantify on FIFO Example—XVI Let's look at the failing ordering property

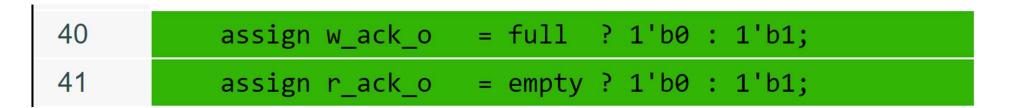
					Wav	eform Viewer:	sva/u_fifo_/a	_ordering_ch	neck								 ×
File Edit Signals View																	
🖬 🔍 🔜 🖬 🍻 🐰	h & X	$ \land \land $		Q & 2]												
	0 1	2 3 t##-8	4 5	6 7 8 t##-7	9 1	0 11 12 t##-6	13 14 15 t##-	16 17 5	18 19 t##-4	20 21	22 23 t##-3	24 25	26 27 t##-2	28 29	30 <mark>3</mark> . t##	 33 3	5 36 #0
-© clk 0 - resetn 1 - u_fifo_/sampled_out_d2 0 - u_fifo_/sampled_in_d1 1 - u_fifo_/sampled_in_d2 1 - u_fifo_/sampled_out_d1 0 - u_fifo_/resetn 1 E- Related signals 0 - r_hsk 0 - full_0 0 B- data {0, 0, 3, 3 E- u_fifo_/d1 3 E- u_fifo_/d2 1	 	{0, 0, 0, 0	D} 0				3, 0}			1		(i(0, 0, 3, i)))	1}				

Quantify on FIFO Example—XVII What does our coverage look like?

Status		Statemen	ts		Branche	es
1	covered	14	63.64%		3	42.86%
R	reached	0	0.00%		0	0.00%
U	unknown	0	0.00%	4	0	0.00%
0R	unobserved	8	36.36%		2	6.36% unobserved
0	uncovered	0	0.00%			
0C	constrained	0	0.00%		0	0.00%
0D	dead	0	0.00%		0	0.00%
Sum	quantify targets	22			7	

Exclu	ded Code Overview				
Code S	Status	Statemen	ts	Branches	3
Xu	excluded by user	0	0.00%	0	0.00%
Xr	excluded redundant code	0	0.00%	0	0.00%
Xv	excluded verification code	14	38.89%	4	36.36%
0/1/U	quantify targets	22	61.11%	7	63.64%
Sum	total code	36		11	

Structural Cover	rage by File	
File	Statements	Branches
fifo.v	22	7
fifo_sva.sv	14	4


Coverage reduced..... from 90.91% to 63.64%

d))	Property sva/u_fifo_/as_empty_after_reset		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
0 1	sva/u_fifo_/as_empty_after_reset		Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified
1		1	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes
	sva/u_fifo_/as_empty_to_full		assert	FORMAL_NONE	0	COVER_PASS	1	witness
2	sva/u_fifo_/as_full_to_empty		assert	FORMAL_PROOF	infinite	COVER PASS	5	yes
3	sva/u_fifo_/as_ordering_check		assert	FORMAL_NONE	0		NO	PROOF
4	sva/u_fifo_/as_rhsk_infinitely_ofte	en	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
5	sva/u_fifo_/as_whsk_infinitely_off	ten	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
6	sva/u_fifo_/am_d1_before_d2		assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
7	sva/u_fifo_/am_fair_rvalid		assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
8	sva/u_fifo_/am_fair_wvalid		assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
9	sva/u_fifo_/am_stable_d1		assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
10	sva/u_fifo_/am_stable_d2		assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A

Quantify on FIFO Example—XVIII

Fix the bug, prove, then Quantify

Quantify on FIFO Example—XVIII Let's fix the design and rerun proofs and Quantify

40	assign w_ack_o = full ? 1'b0 : 1'b1;	1
41	assign r_ack_o = empty ? 1'b0 : 1'b1;	1
42	assign w_hsk = w_valid_i && w_ack_o;	1
43	assign r_hsk = r_valid_i && r_ack_o;	1
44	assign nxt_wptr = wptr + w_hsk;	1
45	assign nxt_nptr = nptr + n_hsk;	1
46	assign nxt_empty = (empty r_hsk) && !w_hsk && (nxt_rptr == nxt_wptr);	1
47		
48	// Registered calculations for empty, wptr and rptr	
49	always @(posedge clk or negedge resetn)	
50	if (!resetn)	1
51	begin	
52	<pre>empty <= 1'b1;</pre>	1
53	<pre>wptr <= {DEPTH_BITS{1'b0}};</pre>	1
54	<pre>rptr <= {DEPTH_BITS{1'b0}};</pre>	1
55	end	
56	else	1
57	begin	
58	<pre>empty <= nxt_empty;</pre>	1
59	<pre>wptr <= nxt_wptr;</pre>	1
60	<pre>rptr <= nxt_rptr;</pre>	1
61	end	
62		
63	// Write the data on a w_hsk	
64	always @(posedge clk)	
65	if (w_hsk)	1
66	data[wptr] <= data_i;	1
67		
68	// Read the data on a r_hsk	
69	always @(posedge clk)	
70	if (r_hsk)	1
71	data_int <= data[rptr];	1
72		
73	assign full = lempty && (nptr == wptr);	1
74	assign empty_o = empty;	1
75	assign full_o = full;	1
76	assign data_o = data_int;	1
77	endmodule	

100% covered!

Quantify on FIFO Example—XIX What happened to our constraint?

Suuc	tural Coverage Overvi	iew (
Status	Status		'S	Branch	es	
1	covered	19	100.00%	4	100.00%	
R	reached	0	0.00%	0	0.00%	
U	unknown	0	0.00%	0	0.00%	
0R	unobserved	0	0.00%	0	0.00%	
0	uncovered	0	0.00%	0	0.00%	
0C	constrained	0	0.00%	0	0.00%	
0D	dead	0	0.00%	0	0.00%	
Sum	quantify targets	19		4		

Exclu	ded Code Overview				
Code S	Status	Statemen	ts	Branch	es
Xu	excluded by user	0	0.00%	0	0.00%
Xr	excluded redundant code	0	0.00%	0	0.00%
Xv	excluded verification code	14	42.42%	4	50.00%
0/1/U	quantify targets	19	57.58%	4	50.00%
Sum	total code	33	and the second s	8	

Structural Cove	rage by File	
File	Statements	Branches
<u>fifo.v</u>	19	4
fifo sva.sv	14	4

Ass	ertion Coverage						
Id	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	Quantified
0	sva/u_fifo_/as_empty_after_reset	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes
1	sva/u_fifo_/as_empty_to_full	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes
2	sva/u_fifo_/as_full_to_empty	assert	FORMAL_PROOF	infinite	COVER_PASS	5	yes
3	sva/u_fifo_/as_intf_empty	assert	FORMAL_PROOF	infinite	COVER_PASS	1	yes
4	sva/u_fifo_/as_intf_full	assert	FORMAL_PROOF	infinite	COVER_PASS	5	yes
5	sva/u_fifo_/as_ordering_check	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
6	sva/u_fifo_/as_rhsk_infinitely_often	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
7	sva/u_fifo_/as_whsk_infinitely_often	assert	FORMAL_PROOF	infinite	COVER_PASS	2	yes
8	sva/u_fifo_/am_d1_before_d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
9	sva/u_fifo_/am_fair_rvalid	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
10	sva/u_fifo_/am_fair_wvalid	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
11	sva/u_fifo_/am_stable_d1	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A
12	sva/u_fifo_/am_stable_d2	assume	FORMAL_ASSUMPTION	infinite	N/A	0	N/A

Quantify on FIFO Example—XX What happened to our constraint? It became a check!

Status	ral Coverage Overview Statements	Branches				
1	covered 19 100.00%	4	100.00%			
Ass	ertion Coverage					
ld	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius
0	sva/u_fifo_/as_empty_after_reset	assert	FORMAL_PROOF	infinite	COVER_PASS	1
1	sva/u_fifo_/as_empty_to_full	assert	FORMAL_PROOF	infinite	COVER_PASS	1
2	sva/u_fifo_/as_full_to_empty	assert	FORMAL_PROOF	infinite	COVER_PASS	5
3	<u>sva/u_fifo_/as_intf_empty</u>	assert	FORMAL_PROOF	infinite	COVER_PASS	1
4	<u>sva/u_fifo_/as_intf_full</u>	assert	FORMAL_PROOF	infinite	COVER_PASS	5
5	sva/u_fifo_/as_ordering_check	assert	FORMAL_PROOF	infinite	COVER_PASS	2
6	sva/u_fifo_/as_rhsk_infinitely_often	assert	FORMAL_PROOF	infinite	COVER_PASS	2
7	sva/u_fifo_/as_whsk_infinitely_often	assert	FORMAL_PROOF	infinite	COVER_PASS	2
8	<u>sva/u_fifo_/am_d1_before_d2</u>	assume	FORMAL_ASSUMPTION	infinite	N/A	0
9	<u>sva/u_fifo_/am_fair_rvalid</u>	assume	FORMAL_ASSUMPTION	infinite	N/A	0
10	<u>sva/u_fifo_/am_fair_wvalid</u>	assume	FORMAL_ASSUMPTION	infinite	N/A	0
11	<u>sva/u_fifo_/am_stable_d1</u>	assume	FORMAL_ASSUMPTION	infinite	N/A	0
12	<u>sva/u_fifo_/am_stable_d2</u>	assume	FORMAL_ASSUMPTION	infinite	N/A	0
	va/u_fifo_/am_d1_before_d2 assume FORMAL_ASSUMPTION va/u_fifo_/am_fair_rvalid assume FORMAL_ASSUMPTION	infinite N/A infinite N/A	0 N/A 0 N/A			
10 <u>s</u>	va/u_fifo_/am_fair_wvalid assume FORMAL_ASSUMPTION	infinite N/A infinite N/A	0 N/A 0 N/A			
	va/u_fifo_/am_stable_d1 assume FORMAL_ASSUMPTION va/u_fifo_/am_stable_d2 assume FORMAL_ASSUMPTION	infinite N/A	0 N/A 0 N/A			

Quantify on FIFO Example—XXI We discover additional requirements on this design

Status	Iral Coverage Overview Statements	Branches					
Assertion Coverage							
ld	Property	Kind	Proof Result	Proof Radius	Cover Result	Cover Radius	
0	sva/u_fifo_/as_empty_after_reset	assert	FORMAL_PROOF	infinite	COVER_PASS	1	
1	sva/u_fifo_/as_empty_to_full	assert	FORMAL_PROOF	infinite	COVER_PASS	1	
2	sva/u_fifo_/as_full_to_empty	assert	FORMAL_PROOF	infinite	COVER_PASS	5	
3	sva/u_fifo_/as_intf_empty	assert	FORMAL_PROOF	infinite	COVER_PASS	1	
4	<u>sva/u_fifo_/as_intf_full</u>	assert	FORMAL_PROOF	infinite	COVER_PASS	5	
5	sva/u_fifo_/as_ordering_check	assert	FORMAL_PROOF	infinite	COVER_PASS	2	
3	4 / Inte	erface	Checks				
3	5 as_intf_em	pty:	assert proper	ty (empty	/_o -> !r	_hsk);	
3	6 as_intf_fu	11:	assert proper	ty (full_	_o -> !w	_hsk);	
9 <u>s</u> 10 <u>s</u> 11 <u>s</u>	Valu tito /am_d1 before_d2 assume FORMAL_ASSUMPTION valu fifo_/am_fair_tvalid assume FORMAL_ASSUMPTION valu fifo_/am_fair_tvalid assume FORMAL_ASSUMPTION valu fifo_/am_fair_tvalid assume FORMAL_ASSUMPTION valu fifo_/am_stable_d1 assume FORMAL_ASSUMPTION valu fifo_/am_stable_d2 assume FORMAL_ASSUMPTION	infinite N/A infinite N/A infinite N/A infinite N/A	0 N/A 0 N/A 0 N/A 0 N/A 0 N/A				

Recap of What We Showed—I Using coverage for bug hunting

- Without any test bench: Everything uncovered
- Single Ordering Check: Quantify reports 63.64% of design coverage
- We spotted missing checks on empty and full
- We add these checks, Prove -> RTL bug found!
- Fix, Prove, then Quantify
- Still unobserved design -> need to write more checks
- Wrote more checks, re-ran proofs -> expected to see 100% coverage but had 90.91%
- An over-constraint in the test bench was masking another RTL bug!

Recap of What We Showed—II

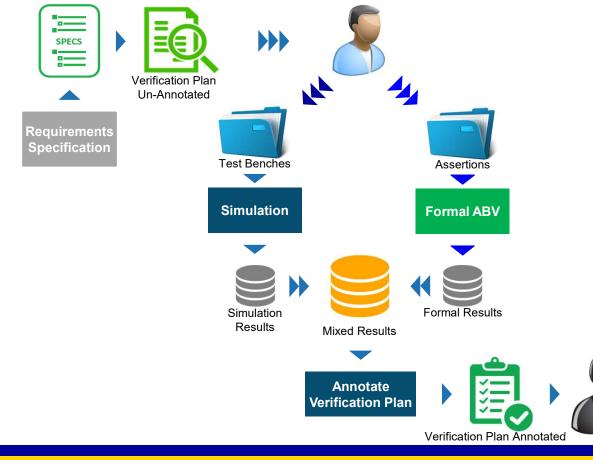
Bugs in your design indicate you do not have 100% coverage

- All proofs marked as proven, AND no property was marked unreachable, AND we had checks on all design statements, AND yet the coverage was not 100%
- Missing coverage forced us to think
- Tool gave hints on where the gaps were
- This allowed us to unearth bugs in design and over-constraints in TB
- We fixed the RTL bug
- Constraints are not required, as design is guaranteed to have the behavior
- In fact, we prove this on the design by proving these two additional assertions
- Overall, we find bugs, remove bad constraints, find more bugs, and enrich our test bench with more good quality checks


Verification of I²C Serial Protocol

Case Study: Coverage's Role in the Verification Process

Systematic Verification Flow


Requirement tracing and coverage are of paramount importance

Getting the Big Picture of Verification

Integrated view of verification planning: formal and simulation

Motivation How do we verify IP blocks implementing off-chip serial protocols?

Typically used to connect a number of ICs at relatively low data rates

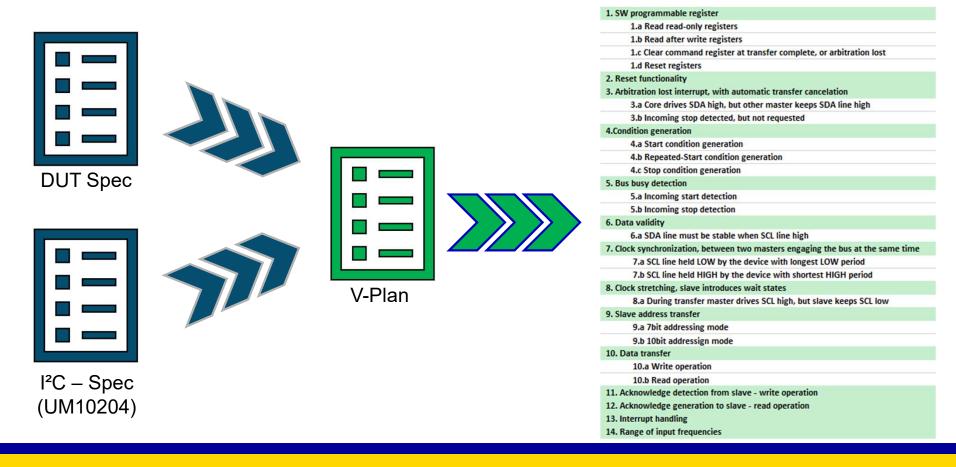
• I²C, SPI, UART, CAN, etc.

What would be an ideal approach?

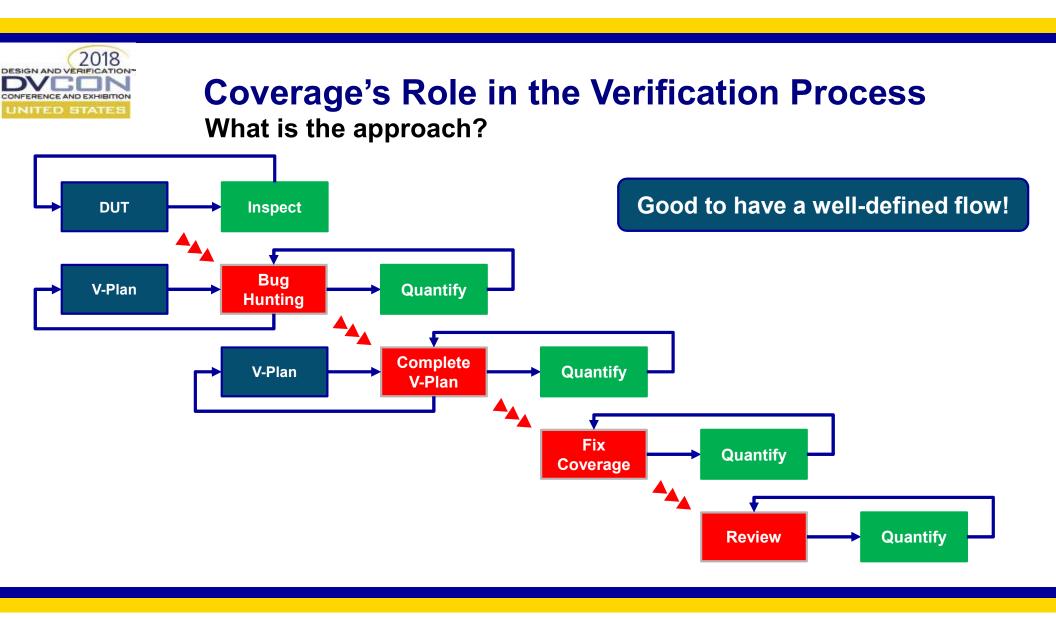
- Verify protocol compliance at the interfaces binding a VIP checker
- · Make use of a scoreboard to check data integrity

What is the challenge?

- Even slow SoCs are running at frequencies starting in the range of 10MHz, while I²C standard-mode speed is up to 100kHz
 - Do the math: The formal tool needs to check for many cycles in order to prove that a single byte is transferred correctly.



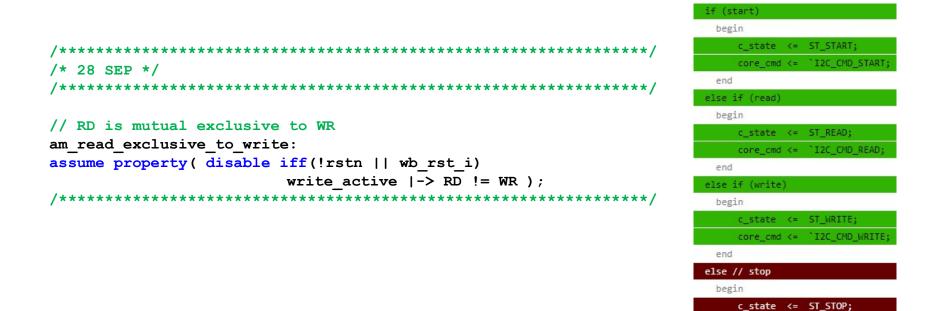
I²C Bus Protocol What is I²C about?


Coverage's Role in the Verification Process Verification concerns: What needs to be verified?

Coverage's Role in the Verification Process What is the very first step?

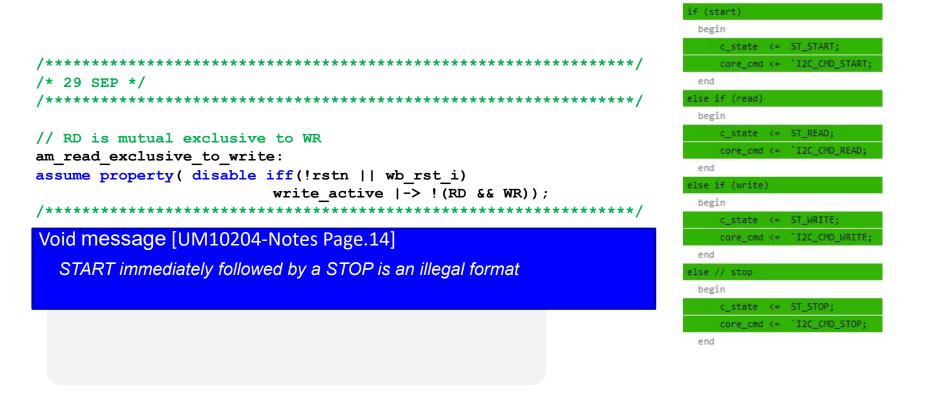
Let's analyze the design.		Language: Verilog			
	Primary input signals: 8 (17 bits)				
		Primary o	utput signals:	3 (10 bits)	
Let's do an automatic inspection. Why?	Primary inout signals: 2 (2 bits)				
	State bits (flops): 128				
 Signal domain violation 	Assignments: 258 (1034 bits)				
Dead code	Code branches: 116				
 Unreachable FSM states 	FSMs: 2				
 Signal toggling 	Adders: 0				
Validate regulta. Are failing abacks avec	Multipliers: 0				
Validate results: Are failing checks expe	Primary clocks: 1				
<pre>full_case checks: parallel_case checks: resolution_x checks: signal_domain checks: init checks: fsm checks: dead_code checks: stick checks:</pre>	2 3 2 128 2 134 108	2 hold, 3 hold, 0 hold, 0 hold, 118 hold, 2 hold, 134 hold, 106 hold,	0 fail, 0 fail, 2 fail, 2 fail, 10 fail, 0 fail, 0 fail, 2 fail,	0 open 0 open 0 open 0 open 0 open 0 open 0 open 0 open	

What Was Achieved? Quantify MDV

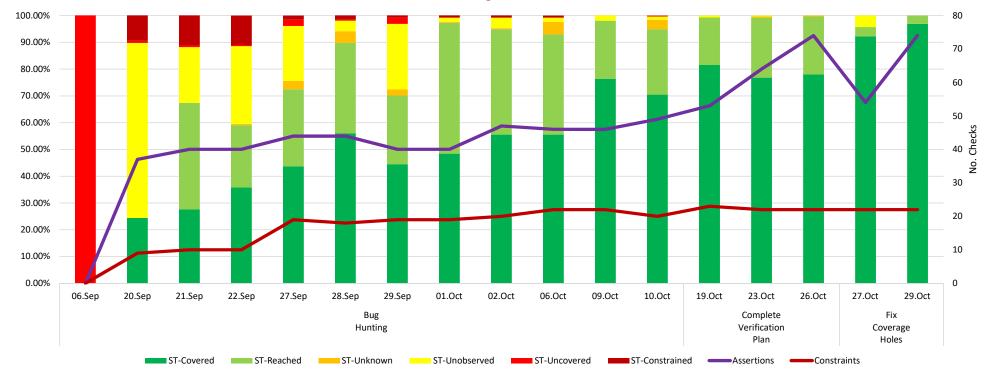

(201-0)	tural Coverage Overvie	STOR THE PARTY AND		Dranabaa	
Status 1	covered	Statements 246	96.85%	Branches 111	99,11%
R	reached	8	3.15%	0	0.00%
υ	unknown	0	0.00%	1	0.89%
0R	unobserved	0	0.00%	0	0.00%
0	uncovered	0	0.00%	0	0.00%
0C	constrained	0	0.00%	0	0.00%
0D	dead	0	0.00%	0	0.00%
Sum	quantify targets	254		112	
truct	quantify targets tural Coverage by File				
File Staten		Staton	nents	Branche	es
File		Juten	Torito	10000000000	

Quantify in Action

Spotting over-constrained code—I


core_cmd <= `I2C_CMD_STOP;</pre>

end


Quantify in Action

Spotting over-constrained code—II

Coverage's Role in the Verification Process Assertion effort vs. coverage

Coverage vs. Effort

Summary

What is the motivation?

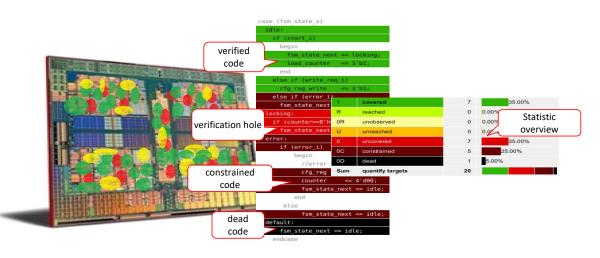
- Off-chip serial protocols are everywhere, therefore we need to verify protocol compliance and data integrity
- Verifying serial protocols with formal is challenging

Why does the approach matter?

- Having a well-defined verification approach helps in achieving great results
- Coverage increases confidence and helps us to easily identify overconstrained, not exercised code
- Collecting regression data over time gives a clear view on where effort is being expended and how things are progressing

Quantify: Scalable and Automated

- Push-button solution
- Unique patented technology
- Much more accurate than cone analysis
- Used by multiple customers on their most critical IP


Design	#Code Lines	#Assertions	Runtime
FIFO	321	30	100s
FSM-DDR2-Read	839	6	106s
vCore-Processor	295	8	204s
Arithmetic Block	383	2	257s

Design	#Code Lines	#Assertions	Real example at Infineon:
IFX-Aurix-1	25563	85	Quantify identified verification holes and guided assertion development.
IFX-Aurix-2	27374	157	New assertions detected critical bugs.
IFX-Aurix-3	57253	253	Quantify now used to provide management metrics on all designs!

http://testandverification.com/DVClub/18_Nov_2013/Infineon-HolgerBusch.pdf

Quantification of Formal in ISO 26262 Coverage for safety-critical domains

Problem

- Quantitative assessment of formal verification environment needed
- Example: Qualify verification environment for safety functions

Solution

- Use observation coverage to identify coverage holes
- Integrate coverage results with simulation coverage

Customer Case Study:

"Formal Safety Verification with Qualified Property Sets" Holger Busch at DAC'14 in Accelerating Productivity Through Formal and Static Methods (Session 38.3)

Quantify and Other Coverage Solutions Why Quantify is a superior coverage tool

Cone of Influence	Proof Core
 Good to spot big gaps quickly Can get false optimism Can hide bugs in the design 	 Result depends on selected proof engine More abstract engines produce pessimism Engine dependent results are confusing
Mutation	Quantify
 Overall high run time—one fault at a time Some mutations can cause vacuity Intrusive—mutation applied on RTL Too many iterative compile and runs Covering all locations is expensive 	 Fast execution—multiple faults processed at once Not intrusive—alters the design model, <i>not</i> RTL Just-right level of abstraction Allows better observability Report is meaningful and linked to design browser

Summary Continuous feedback for design and verification

Designer Bring Up

- What can you know about your design without any verification effort?
 - Reachability analysis—find design bugs as you bring up design
 - Redundant code—find wasted area in your design

Verification Quality and Metrics

- ✤ Metrics indicate gaps in verification and show you where these gaps are
- Quantify tells you where checks are missing
- More checks allow you to identify hidden bugs
- Identify accidental over-constraints; focus on verification
- Push-button, quick to run, easy to read, view linked to design browser
- Single metric provides overall quality

Thank you!

Questions?

