
Using Model Checking to Prove Constraints of
Combinational Equivalence Checking

Xiushan Feng, Joseph Gutierrez∗, Mel Pratt, Mark Eslinger, Noam Farkash†
∗Advanced Micro Devices, Inc.

{Shaun.Feng, Joseph.Gutierrez}@amd.com
†Mentor Graphics Corp. USA

{Mel Pratt, Mark Eslinger, NoamFarkash}@mentor.com

Abstract—RTL-to-gate logic equivalence checking is a very
critical step inside circuit design flows. It is used to make sure
the gate-level circuit doesn’t alter functional behaviors of the
RTL. Of the various commercial logic equivalence checking
tools, Combinational Equivalence Checking (CEC) tools are often
used to prove equivalence between RTL and gate due to their
high efficiency and good scalability. However, unlike Sequential
Equivalence Checking (SEC), which traverses the product Finite
State Machine (FSM), combinational equivalence checking proves
equivalence for combinational circuits (i.e., Equivalences are
formally verified for combinational logic cones between the state
points.).

For AMD high-performance microprocessor designs, we ag-
gressively exploit optimization techniques to achieve competitive
performance, power consumption, and die size. It is very common
to see false non-equivalence of CEC on state spaces that are
either optimized away or infeasible based on the circuit behavior.
In order to avoid such false non-equivalences, we use design
constraints to remove the invalid state space. As a consequence,
the CEC results now highly rely on the correctness of these
constraints.

This paper presents our experiences and learning with formal
verification of CEC constraints using model checking tools.

Index Terms—Model Checking, Formal Verification, Combi-
national Equivalence Checking

I. I NTRODUCTION

In current circuit design/verification flows, most of the
simulation/formal-based verification is done at the Register
Transfer Level (RTL). After the RTL circuit is extensively
verified, we synthesize and implement the RTL into a gate-
level circuit. As soon as the gate-level circuit is available, we
need to prove logical equivalence between the RTL and the
gate-level to make sure the gate-level circuit hasn’t altered the
functional behavior of the RTL. Otherwise, all of the RTL
verification results become invalid and non-applicable.

A. Sequential vs. Combinational Equivalence Checking

Based on whether equivalence needs to be proven for each
state point, there are two major types of logic equivalence
checking tools –combinationalandsequential[6, 9, 13].
• Combinational Equivalence Checking (CEC): CEC tools

prove equivalence for combinational circuits. CEC tools
don’t need to analyze logic across state points. Equi-
valence checking passes only if all state points are
properly mapped between RTL and gate and mapped
points are proven to be equivalent (Fig. 1).

i i+1

mapped SP

...

...

...

...

i+2

=? =?

Fig. 1. Combinational Equivalence Checking (CEC). Equivalence is proven
by verifying each combinational logic cone.

...
...inputs

inputs

mapped

...
...

mapped

Outputs

Outputs

...

...

=?

Fig. 2. Sequential Equivalence Checking (SEC). Equivalence is proven by
verifying primary outputs.

• Sequential Equivalence Checking (SEC): SEC tools prove
equivalence for sequential circuits. Instead of proving
equivalence for each combinational logic cone, SEC tools
prove equivalence based on circuit inputs and previous
values on state points (e.g., DFF, DLAT, etc.). SEC
algorithms analyze the product finite state machine of
the RTL and gate designs. Therefore, equivalence of
intermediate state points inside the circuit may not be
required. If we flatten the whole sequential circuit and
fold all the state points into one big combinational circuit,
then the SEC problem is reduced to CEC (Fig. 2).

From these descriptions, we can see that SEC tools have to
deal with the extra complexities of state elements. Although
both CEC and SEC tools are built upon similar formal proof
engines (e.g., BDDs [2] or SAT solvers [1, 10]), the SEC tools
are more sensitive to the size of the design. Of the various

commercial logic equivalence checking tools, CEC tools are
often used to prove equivalence between RTL and gate-level
designs due to their high efficiency and good scalability.

At AMD, due to the size of our designs, SEC is not a
practical option for our design flow. In addition, we have
synthesis/implementation rules in place to guarantee the 1-
to-1 mapping between RTL and gate state points. Therefore,
CEC is our option of choice for logic equivalence checking.

The primary limitation of CEC is that it only verifies com-
binational logic cones between state points. In real circuits,
each state point is driven by its fan-in logic cone, but such
functional behavior is not taken into account by CEC tools
because CEC doesn’t analyze logic across state boundary
points. CEC tools will use the whole exponential combination
of boolean values (0 and 1) for state points when analyzing the
combinational logic cones that they drive. In typical designs,
this scenario is usually not valid. Possible values of a state
point are constrained by the previous stages of logic and state
points driving the state point in question. Without using these
constraints, we could have false non-equivalences.

B. False Non-equivalence

False non-equivalence (or false negative)is a term used
for the scenario in logic equivalence checking where there is
a non-equivalent point found by the tool, but in the actual
circuit behavior, this point is equivalent.

For AMD high-performance microprocessor designs, we
aggressively exploit optimization techniques to achieve com-
petitive performance, power consumption, and die size. It is
very common to see false non-equivalence when using CEC
on state spaces that are either optimized away or infeasible
based on the circuit behavior.

In order to avoid false non-equivalence, we need to identify
the invalid state space first. Then, we write design constraints
for the CEC tools to ignore the invalid state space (i.e., we
don’t care whether it is equivalent or not on the invalid state
space.). Most of these constraints are identified manually from
the actual design or from analysis of the higher-level design
block that contains the current design. Please keep in mind that
CEC is a conservative approach. If CEC can prove equivalence
without any constraint, then the equivalence holds for the
entire state space which includes the valid states. Our designers
follow a methodology of only adding constraints when they are
necessary to resolve false non-equivalences. After the design
passes CEC, we must then formally prove these constraints,
noting that false constraints may invalidate all of the CEC
results.

Here is a simple example to show why we need constraints
for CEC and how a bad constraint can invalidate CEC results.

For example, we have an RTL circuit:

module TOY (CLK, SHIFT, G);
input CLK;
input [1:0] SHIFT;
output [3:0] G;

reg [3:0] B;
reg [3:0] G;

always @(posedge CLK)
B[3:0] <= 4’h2 ** SHIFT;

always @ *
case (B[3:0])

4’b0001 : G[3:0] = B[3:0];
4’b0010 : G[3:0] = B[3:0];
4’b0100 : G[3:0] = B[3:0];
4’b1000 : G[3:0] = B[3:0];
default : G[3:0] = 4’b1111;

endcase

endmodule

Given the above RTL, synthesis tools or human designers
can implement the following gate-level circuit:

module TOY (CLK, SHIFT, G);

input CLK;
input [1:0] SHIFT;
output [3:0] G;

reg [3:0] B;

always @(posedge CLK)
B[3:0] <= 4’b0001 << SHIFT[1:0];

assign G[3:0] = B[3:0];

endmodule

The equivalence of these two designs is obvious for an SEC
tool. For all possible inputs with all possible values on the
flops, the outputs of the two designs are equivalent. However,
since CEC tools (e.g., Cadence Conformal LEC [3]) cannot
evaluate logic on the other side of the flops, they will report
non-equivalences forG[3 : 0] by finding a random vector on
the flops (e.g.,B[3 : 0] = 4’b1011). We can easily see that
such a test vector is not possible due to the decoder logic
before the flops.

In order to work around the false non-equivalence that may
be found, we have to tell the tool that there is a constraint on
B[3 : 0]. For example, in Conformal LEC, we can give the
following constraint:

$constraint($one_hot(B[3:0]));

This constraint will create a don’t-care space for equivalence
checking. Any values that don’t satisfy the above one-hot
constraint are don’t-cares. CEC tools will ignore any non-
equivalence in the don’t-care space and successfully prove the
equivalence of the two circuits.

We can see constraints in CEC are very useful. However,
they are very dangerous if not used properly. CEC users

can easily ignore any state space that they want, which will
introduce false equivalence [12]. For the same RTL in the
TOY example, if a designer gives the following gate-level
implementation:

module TOY (CLK, SHIFT, G);

input CLK;
input [1:0] SHIFT;
output [3:0] G;

reg [3:0] B;

always @(posedge CLK)
B[3:0] <= 4’b0001 << SHIFT[1:0];

assign G[3:0] = ˜B[3:0];

endmodule

and the following Conformal LEC constraint:

$constraint(B[3:0] == 4’b0000);

Conformal LEC will still report equivalences for all state
points and outputs. However, the equivalence was proven on
an infeasible state (B[3 : 0] = 4’b0000) and all valid states are
ignored as don’t-cares by using this constraint. Such a false
CEC constraint can introduce serious design bugs that will
cause huge verification efforts later inside your design flow.
In the worse case scenario, you may never locate these bugs
before taping out a broken chip.

In this paper, we will present our experience on how to
formally prove CEC constraints by using model checking
tools.1 We start with how to maintain CEC constraints inside
our design flow and how to translate them for use in CEC
and model checking tools. We will also show some challenges
encountered in proving such constraints. In the end, we give
some suggestions to the EDA community on how to improve
these tools to support a better flow.

II. CONSTRAINT HARVESTING AND TRANSLATIONS

CEC constraints can come from multiple places: CEC
constraints can be written inside the RTL by using assertion
specification languages, then harvested and translated for the
CEC tools; CEC constraints can also be created when circuit
designers run RTL versus gate-level equivalence checking.
Each usage has its advantages. Harvesting RTL assertions can
give us some higher-level constraints, such as architecture-
level constraints. In addition, assertions in the RTL can be veri-
fied by RTL simulation tools using test vectors. Also, allowing
circuit designers to provide their own CEC constraints can give
them more flexibility to design or optimize their circuits. The

1We use Cadence Conformal LEC [3] as our CEC tool. Our model checking
tool of choice is 0-In [8] from Mentor Graphics. Although we attempt to use
standard assertion languages for the test cases used in this paper, for some test
cases, we have used proprietary constraints (or assertions) from Conformal or
0-In.

CEC

RTL
Tagged

RTL Constr

GATE

CEC Constraints

Impl Constr

Fig. 3. Constraints in CEC. Harvested from RTL assertions or from
implementation constraints

circuit designers have done the synthesis/implementation, then
run the CEC tools to verify the RTL to gate-level equivalence,
so they are the ones to best provide the CEC constraints when
they find the false non-equivalence.

With the CEC constraints, RTL, and gate-level circuit, the
CEC tool can then proceed with the equivalence checking
(Fig. 3 shows how constraints are prepared for the CEC tool).
A good design flow should allow constraints from these two
sources and can harvest and translate constraints for both the
CEC and model checking tools.

Because different tools use different assertion/constraint
languages (or libraries), it is a big challenge to translate
constraints from various sources for different tools. To help
our tools support the harvesting/translation step, we have
to put extra information (e.g., pragmas) around our asser-
tions/constraints.

A. RTL Assertions Reused as CEC Constraints

In each design project, the RTL verification team can use
different assertion languages (e.g., OVA, OVL, etc.) for their
simulation. To support that, we have to use pragmas to tell our
flow whether an assertion will be needed for the equivalence
checking and model checking steps. We use two kinds of
pragmas to guide constraint harvesting and model checking
tools on how to treat these CEC constraints.
• ‘//! CEC MC-ASSUME’: this pragma tells our flow that

the assertion followed by this tag is used as a constraint
for both CEC and model checking. We rely on RTL
simulation to verify these constraints.

• ‘//! CEC MC-PROVE’: for CEC constraints with such a
tag, the model checking step must prove them.

For example, here is an OVA assertion inside RTL code:

//! CEC MC-ASSUME
// ova forbid_bool((˜foo & bar),

"when foo is 0, bar cannot be 1!");

This OVA will be harvested as a CEC constraint. It will be
translated into an assumption for the model checking tool.

An equivalent OVL RTL assertion could look like this:

//! CEC MC-ASSUME
ovl_assert

#(.msg("When foo is 0, bar cannot be 1!")
OVL_TEST (

.clock(CLK),

.reset(RST),

.test_expr(˜(˜foo & bar)),

.fire(),

.enable(‘EN_ABV),
)

By recognizing the proper pragmas, these RTL assertions
are harvested for the current design under CEC check using
CAD tools. After they are harvested, we need to translate
them into the format that the CEC tool can understand. For
Conformal LEC, we have to translate the above CEC constraint
to:

$constraint RTL_C_1 (˜(˜foo & bar));

We give each CEC constraint a unique name, so we can
track them inside the various flows.

Most model checking tools can not read OVA assertions
directly due to their proprietary nature and for most OVLs
there are many global references for OVL ports or parameters
(e.g., clock, reset, enable, port, etc.). These global references
may not be resolvable inside the current design. For these
reasons, the constraints must be translated before they can be
used by model checking tools.

For example, for one project, we translate an OVA assertion
to 0-In CheckerWare assertion like this:

/* 0in assert -var (˜(˜foo & bar))
-name RTL_C_1 -constraint*/

Then we use 0-In to automatically infer the clock and reset
for the assertion. We can also use 0-In control files to specify
this information.

We can also translate the OVA into an OVL assertion if
needed:

assert_never
#(.msg("..."),

.property_type(‘OVL_ASSUME))
OVL_TEST (

.clk(‘block_default_clock),

.reset_n(1’b1),

.test_expr(˜foo & bar)
)

In this translation, we have to specify reset and clock
explicitly.

B. Constraints Used Inside CEC Flows

As we discussed earlier, it is very helpful to allow designers
to specify their CEC constraints, so they can avoid any false
non-equivalence. They can also run the model checking tool

to prove their CEC constraints right after they pass the CEC
check.

This is the methodology we used: for design blocks at the
lowest level, designers can provide the CEC constraints. They
also need to provide pragmas if they want the constraint to be
an assumption instead of an assertion in the model checking
tool.

For example, a designer can provide the following constraint
in their user input file.

//! MC-ASSUME
$constraint ((˜foo & bar) == 1’b0);

The flow will pick it up, then give it a unique name. CEC
will pick up the translated constraint. Based on the pragma,
the flow will translate it into an assumption for the model
checking tool.

We only allow users to put their CEC constraints in the
lowest block level. These constraints will be automatically
propagated by the CAD tools to higher levels once the lower
level blocks have passed the CEC check.

Users can choose to prove their CEC constraints in the low-
level blocks. However, because the low level may not have
enough context logic to prove all constraints, running model
checking tools at this level is not a tape out requirement. In the
ideal scenario, we should run model checking at the highest
level, e.g., the full chip level, but that is not possible because
of state complexity considerations for model checking tools.

We define a level for our tape-out check where the CEC
check must pass without any blackboxing. i.e., we don’t allow
constraints hidden inside any blackboxes. Because such hidden
constraints will not be used by CEC, therefore won’t be
verified by model checking. We want all CEC constraints
proven at this tape-out-check level.

In the next section, we will discuss how to prove CEC
constraints.

III. C ONSTRAINT PROVING CHALLENGES AND

SOLUTIONS

A. How to Choose Initial State for Model Checking?

Generally, a hardware model checking problem [4, 5, 11]
can be expressed as follows: given a hardware model in any
design language (e.g., VHDL, Verilog, System C)M , an initial
state ofM , and a specified propertyφ in a certain temporal
logic (e.g., SVA, PSL, etc.), determine whetherM, sinit |= φ
(i.e., for all possible circuit executions starting fromsinit, the
assertionφ holds for the design modelM .).

From this description, we can see that the initial state of
the design is one of the factors on which the model checking
result is built.

In general, the ultimate goal of hardware model checking is
to verify the assertion for all ‘possible’ initial states. However,
given a sufficiently complex design, such as a full CPU core,
finding all the possible initial states is not always practical or
even possible because of potential missing execution context.

In our CEC constraint model checking flow, we leverage
simulation results created during RTL simulation. At a certain

point of the simulation, we ask the simulator to dump out
a state for model checking. This approach is very easy to
implement inside our verification flow.

However, there are some potential issues using this ap-
proach. For example, for our modern microprocessor designs,
a universal reset state for all possible executions is not always
available. Dumping a state too late could lead to an incomplete
proof, if a certain state is only possible early in the simulation,
and a real bug can be missed. Dumping a state too early
can leave a lot of states uninitialized, which may cause false
firings. There is some research on how to get a more general
initial state for model checking without specifying a test
vector [7]. The authors use symbolic simulation to provide
symbolic initial states for model checking, therefore, the model
checking covers all possible valid initial states and avoids
false firings. This symbolic simulation approach works well for
gate-level properties that are related to decoder logic. For CEC
constraint model checking, using symbolic simulation only to
get good initial states is not enough. Some more advanced
techniques are needed to get design constraints/assumptions
to avoid false firings due to uninitialized states. This could be
a future direction for us.

Knowing the limitations of using a simulation state for
initialization, we always ask the RTL verification teams to
provide a good initial state that covers the most execution
paths of the circuit. When we see model checking disprove an
assertion because of uninitialized states (model checking can
freely choose 0 or 1 for such states) that take on infeasible
values, we will set up the RTL simulator to run more cycles
to flush out the uninitialized values. After that, we need to
carefully review the constraints to make sure that there is no
true firing before this new initial state.

B. How to Bind Constraints/Assertions to Original RTL?

In general, except for these harvestable RTL assertions, we
don’t want to modify the existing RTL to add CEC constraints.
This could lead to un-manageable RTL code with different
assertions/constraints.

For example, if we put CEC constraints and related 0-In
assertions into the RTL, you will have something like this:

‘ifdef CEC
$constraint($one_hot(B[3:0]));
‘endif CEC

‘ifdef MC
assert_one_hot #(.)

FOO (... .text_expr(B[3:0]), ...);
‘endif MC

// or 0in CW
// 0in 0in bits_on -var B[3:0] -max 1 ...

In addition to that, whenever a circuit designer identifies
a CEC constraint, RTL writers need to maintain multiple
equivalent assertions manually, which is very error-prone.
In the AMD CAD flow, we maintain implementation-related

assertions outside of the RTL. Conformal LEC constraints
are stored in CEC working directories. These Conformal
LEC constraints are either harvested and translated from RTL
tagged assertions automatically by the CAD tools or manually
provided by circuit designers. All 0-In model checking as-
sertions/assumptions are translated automatically by the CAD
tools.

Therefore, it takes very little effort to maintain these CEC
constraints. For each step, the flow will save log files and
results so that we can easily retrieve and reproduce any data.

After constraints for each tool are in place, we need to bind
them to the design for each tool. For the CEC tool, we use
a nice feature in Conformal LEC, “append to”. So we can
append LEC constraints to any RTL module. e.g., this will
append some LEC constraints to module FOO. It works the
same as putting these LEC constraints directly into the RTL
source code of model FOO.

append_to module FOO;
...
$constraint(...
...
endmodule

For Mentor 0-In, if we use 0-In CheckerWare as the
assertion language, we can put assertions into 0-In user control
files and specify on which module each assertion is applied.

module checker_control;
...
//! MC-PROVE
/* 0in assert -var ... -name ...

-module FOO ... */
...
//! MC-ASSUME
/* 0in assert -var ... -name ...

-module BAR ... -constraint */
...
endmodule

For projects that use OVL as the assertion specification
library, binding OVLs to a design is not simple. We can use
the System Verilog “bind” statement, but that will still involve
a lot of effort to bind ports and signals. The best solution that
we have found is to use the PSL flavor of OVL. Then, we can
use the PSL vunit assertion binding solution:

vunit formal_assertions_foo (FOO) {
assert_... #(.property_type(‘OVL_ASSERT)

(... .text_expr(...), ...);
}

vunit formal_assertions_bar (BAR) {
assert_... #(.property_type(‘OVL_ASSUME)

(... .text_expr(...), ...);
}

This PSL code binds one assertion to module FOO and one
assumption to module BAR.

Using this solution, we can always have constraints in a
separate file, so we don’t need to touch the RTL inside the
design flow. This also makes constraint management much
easier.

C. How to Reduce the Prove Space for Tough CEC Con-
straints?

Sometimes the model checking tool will give an incon-
clusive answer for an assertion. We name such assertions
“aborts”. After investigating what caused the aborts, we can
use some techniques to attack them by reducing the prove state
space.

1) Re-write Formal-friendly Models:Usually, model check-
ing tools expect synthesizable RTL. There still may be certain
structures such as glitching latch models which may cause
issues. Abstraction techniques can sometimes increase the
state space of the formal prove model, which can cause some
assertions to abort. In these cases, formal friendly models may
need to be created or advanced tool features used to resolve
the aborts to a conclusive result.

2) Deal with Clock Gaters:Model checking tools prove
assertions in a certain clock domain. Signals of each assertion
need to be driven (controlled) by a clock. Our designs use
aggressive power-save techniques, e.g., extensive use of clock
gaters to enable/disable clocks to save power. Formal analysis
state space may increase very fast by trying to explore the
exponential state points of these gater states. Almost all of our
CEC constraints don’t rely on these gaters. i.e., they should be
true if gaters are all on. So if we see aborts on assertions that
are gated by many clock gaters, we need to locate the gating
chains and turn them on. This will guide the module checking
tool to explore a much smaller state space.

3) Provide Assumptions for Model Checking:Sometimes,
0-In formal will fire certain assertions due to the lack of port
constraints. For example, certain signals (reset, enable, etc.)
are constants (or should satisfy certain constraints) all the way
through the whole formal run, but we didn’t put assumptions
for them. 0-In will try all possible values for these ports,
which can cause assertions to abort. Common techniques for
these are to identify these ports with RTL designers and set a
constraint/constant on them.

If we find certain aborted assertions that are related to
large logic cones, we may need to provide 0-In formal more
information to quickly prove these assertions. We can put
more complicated assumptions on ports to provide a smaller
prove state space. Since such assumptions cannot be proven
at the current design level with model checking, we ask our
RTL writers to write RTL assertions and tag them as “//!
MC ASSUME”. i.e., this is a harvestable RTL assertion. Then,
RTL simulation will verify them.

4) Use Simulation-based Tools to Verify:There exist some
assertions for which we cannot easily find port assumptions
to prove them. Model checking spends days with no progress.
For such assertions, we use simulation-based engines to find
counter examples. e.g., 0inconfirm in the 0-In tool suite is
one of our choices. We use 0inconfirm to run fast simulation

with constrained random simulation. If we can find a counter
example, then we disprove the assertion. If 0inconfirm still
cannot disprove the assertion, and we have tried all the above
solutions with no luck, then the last solution we have is to
ask our RTL writers to put this assertion in RTL and let RTL
simulation verify it. By using this approach, we have tried all
we can do to find a counter example to cause this assertion to
fire.

D. How to Handle Limitations of Model Checking Tools?

Model checking, which works on an NP-complete space,
has its fundamental limitations. When the technique tries to
formally prove properties by exhaustively exploring the state
space, it is limited by the exponential size of the state space.
In our hardware model checking, we cannot apply model
checking on our whole CPU design. We have to find the
best level to run model checking. This level cannot be too
small, to prove anything would require huge efforts to write
design assumptions, and this level cannot too big, to compile
a formal model may be prohibitive. Finding a good design
level is important. We run 0-In formal at our tape out check
level, which requires the block to pass both CEC and model
checking.

Another limitation is non-formal friendly structures. For
certain RTL, we could have some arithmetic operators (e.g.,
multiplication), that could cause state explosion for the model
checking tools. Fortunately, at the gate-level, these difficult-to-
understand structures are gone. We can prove these assertions
at the gate level. Since we have proven the equivalence of the
gate-level to the RTL by using the CEC tool, the formal proofs
at gate level should hold for RTL as well. After CEC is done,
we have the complete mappings of state points between the
RTL and gate design. Then, we can translate RTL assertions
into their gate-level representations. Some signals of these
assertions are nets instead of state points. The CEC tool
doesn’t have mappings for non-state points. What we do is
to force these nets as primary outputs by using Conformal
LEC commands. Then, ask our gate designers (or synthesis
tools) to have these nets implemented at the gate level circuit.
Therefore, we have mappings for these forced primary outputs
by using CEC tools. In order to prove these assertions at the
gate-level circuit, we also need to read in an RTL simulation
dump file and get initial values for these gate state points (e.g.,
we start from an RTL FSDB dump file, then translate it to a
VCD file). By using the CEC mappings, we parse the VCD file
for state points and inputs, and translate each RTL signal to
its gate-level corresponding signal with an initial value. While
tedious, this process is script-able. Right now, all these steps
are done automatically by our CAD tools.

IV. SUGGESTIONS TOEDA COMPANIES

The flow (harvesting CEC constraints, using them inside
equivalence checking, and proving them by model checking)
is extremely complicated. We do our best to automate each
step to avoid any user errors. However, we believe with the
help of EDA tools, there is a much simpler solution.

A. Single Assertion Language

When our flow was first built, there were many assertion
languages and no industrial standard for all tools. So we have
mixed usage of OVA, 0-In CW, and OVL. Now, more and
more EDA tools support OVL. However, the support is not
mature.

For example, the latest version of Conformal LEC only
takes a small set of OVL assertions (e.g., assertproposition,
assertalways). It doesn’t support system calls inside the test
expressions. Our model checking tool, 0-In, supports OVL but
has limited support for system calls in the test expression.
Even if we can have an OVL checker that is accepted by RTL
simulation, Conformal LEC, and 0-In, we still need to resolve
the signals of ports such as clock and reset. In theory, the CEC
tool should not care anything about clock and reset ports. The
model checking tool should have a way to infer clock and
reset without specifying it. (e.g., when a user writes a CEC
constraint, there is no clock or reset defined. They are just
propositional constraints and should be always true inside its
current combinational logic cone – clock or reset should be
inferred easily).

We would like to have EDA tools on the same page for
OVL checkers2 that are needed for CEC. We also want to
have smarter tools to avoid any translations.

For example, in RTL or our user CEC constraint file, we
can have the following OVL constraint:

‘ifdef EC
assert_never

#(.msg("..."),
.property_type(‘OVL_ASSERT))

OVL_MC_ASSUME (
.clk(‘CLK),
.reset_n(‘RESET),
.test_expr($one_hot(bus_foo))

)
‘endif

Then, withEC defined, both RTL simulation and the CEC
tool should understand it. When we run model checking, the
tool should pick up that assertion as an assumption (we could
force certain assertions to assumptions). IfCLK or RESET
are not inside the current design, the tool should infer them.
Therefore, there is no need to translate them for each tool
inside the design flow.

B. Easy Assertion Bindings

We like the way Cadence Conformal supports assertion
binding by using “appendto module”, which is very handy.
There should be a similar simple standard for all tools (if such
a standard is not possible in the RTL language). Right now, we
are using a PSL “vunit” to bind our OVL assertions, but this
is not a good approach because we lose the ability to use any
SVA features (e.g., system tasks/calls) inside our assertions.

2At AMD, we use less than 6 OVL checkers.

ACKNOWLEDGMENT

The authors thank AMD engineers who use the flows and
provide us feedback.

REFERENCES

[1] Armin Biere, Alessandro Cimatti, Edmund Clarke, and
Yunshan Zhu. Symbolic model checking without BDDs.
In Proceedings of TACAS 1999, pages 193–207, 1999.

[2] R.E. Bryant. Graph-based algorithms for boolean func-
tion manipulation.IEEE Transactions on Computers, C-
35(8):667–691, August 1986.

[3] Cadence. Encounter Conformal Equivalence Checking
User Guide, Product Version 8.1, June 2009.

[4] Edmund M. Clarke and E. Allen Emerson. Design and
synthesis of synchronization skeletons using branching
time temporal logic. In Dexter Kozen, editor,Workshop
on Logics of Programs, pages 52–71, May 1981.

[5] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A.
Peled.Model Checking. MIT Press, 1999.

[6] Xiushan Feng. Formal Equivalence Checking of Soft-
ware Specifications vs. Hardware Implementations. PhD
thesis, University of British Columbia, January 2007.

[7] Xiushan Feng, Brian McMinn, Richard Bartolotti, and
Mark Eslinger. Using backward symbolic justification to
constrain initial state don’t-cares in model checking. In
MTV ’09: Proceeding of the 10th International Workshop
on Microprocessor Test and Verification, 2009.

[8] Mentor Graphics. Formal Verification User Guide, Soft-
ware Version 2.6j, October 2009.

[9] Andreas Kuehlmann and Cornelis A. J. van Eijk. Com-
binational and sequential equivalence checking. In Tsu-
tomu Saso, Soha Hassoun, editor,Logic Synthesis and
Verification, pages 343–372. Kluwer Academic Publish-
ers, 2002. ISBN:0-7923-7606-4.

[10] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,
Lintao Zhang, and Sharad Malik. Chaff: Engineering
an efficient SAT solver. In38th Design Automation
Conference, pages 530–535. ACM/IEEE, 2001.

[11] Jean-Pierre Queille and Joseph Sifakis. Specification
and verification of concurrent systems in Cesar. In5th
International Symposium on Programming, pages 337–
351. Springer, 1981.

[12] Erik Seligman and Joonyoung Kim. FEV’s greatest
bloopers: False positives in formal equivalence. InDV-
Con ’07: Proceeding of Design Verification Conference,
February 2007.

[13] Fabio Somenzi and Andreas Kuehlmann. Equivalence
checking. In Louis Scheffer, Luciano Lavagno, and
Grant Martin, editor, Electronic Design Automation
For Integrated Circuits Handbook. CRC Press, 2006.
ISBN:0-8493-3096-3.

