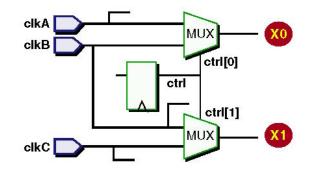
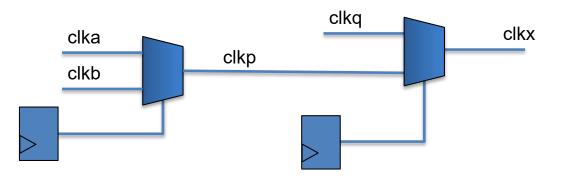


Using Modal Analysis to Increase Clock Domain Crossing (CDC) Analysis Efficiency and Accuracy

Kurt Takara, Mentor Graphics, A Siemens Business Gargi Sharma, Mentor Graphics, A Siemens Business Ajay Thadhlani, Barefoot Networks, Bhrugurajsinh Chudasama, Barefoot Networks

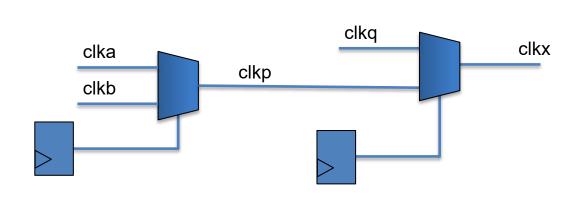


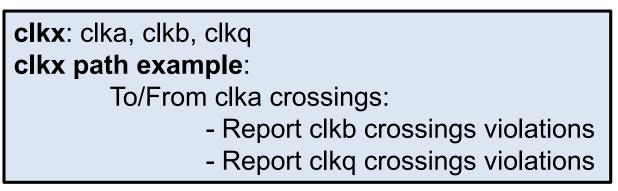
Clock Muxing Pessimism



- Assume clkA, clkB, clkC are asynchronous
- Pessimistically, assume the mux ctrl signal will dynamically switch
 - Mux outputs cannot be considered synchronous to either inputs
 - Mux outputs are considered new asynchronous clock groups and
- Pessimistically, five clock groups identified: clkA, clkB, clkC, X0, X1.

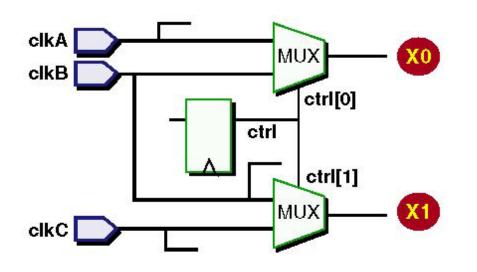
Options for Controlling Clock Muxing


- Configuration options
 - 1. Multiple SDC files to specify unique configurations
 - 2. Infer new asynchronous clock domains at mux outputs
 - Pessimistic approach appropriate for dynamic clock switching
 - 3. Multi-mode analysis
 - Single-configuration modal method
 - Multi-configuration modal method



Que sta CD

Single-Configuration Modal Method



- For single-configuration modal methods, the mux outputs will be associated with multiple clocks
- Optimistically consider one crossing violation per CDC path => missed paths
- Pessimistically consider multiple crossings per CDC path => noisy

Multi-Configuration Modal Method

- For static clock mode scenarios, the mux outputs will be associated with only one of the input clocks at any given configuration
- CDC analysis considers legal operational modes

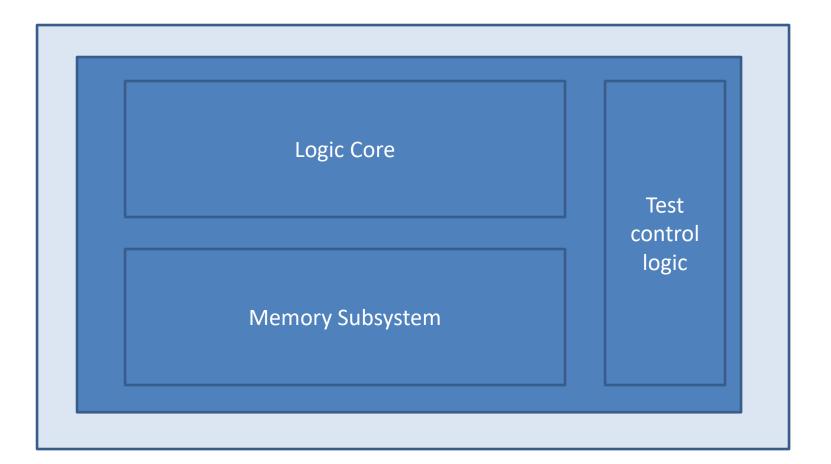
Modal Analysis Methods

Single-configuration Method

- Run once
- Better performance
- Configure for optimism or pessimism
 - Will not consider legal modes for clock mux interdependence
 - Optimistic mode will miss CDC scenarios
 - Pessimistic mode does not scale to large designs

Multiple-configuration method

- Run multiple times
- Parallelize for performance
- Higher accuracy
 - Considers legal modes only for clock mux interdependence
 - Aggregation of results enables
 compare/contrast between modes
 - Every path can be correlated to specific operational modes


Modal Analysis Methodology

- Phase 1: Design setup
 - Automatically detect clock configuration registers
 - Calculate design configuration permutations & combinations
 - Identify all possible operational modes
 - Designers determine legal/illegal operational configurations
- Phase 2: CDC analysis
 - Runs CDC analysis on all legal operational modes
 - Aggregates mode-specific CDC results
- Phase 3: CDC Debug
 - Designers review aggregated results, then compare and contrast the good and bad synchronization structures for CDC paths across different operational modes

Example Design

Que sta CD

Example Design

- Primary clocks
 - 2 functional clocks
 - JTAG/MBIST clock
 - 2 SCAN clocks
 - 2 SCAN clock chain clocks
- Test four major modes
 - Functional
 - MBIST
 - Shift
 - Capture

Design Clock Configuration

- Initially, 182 asynchronous clock domains identified
 - 7 primary clocks
 - 175 muxed clocks
- Divided into 4 legal modes:

Mission mode

cdc mode mode_0 -set *.blkDftCtrl.DFT__BIST_MODE_i.DFT_MRK_BUF.Z 1'b0 -set *.blkDftCtrl.DFT_SCAN_EN.Q 1'b0 -set *.blkDftCtrl.dftScanCtrl.DFT_SCAN_MODE 1'b0
Shift mode
cdc mode mode_1 -set *.blkDftCtrl.DFT__BIST_MODE_i.DFT_MRK_BUF.Z 1'b0 -set *.blkDftCtrl.DFT_SCAN_EN.Q 1'b1 -set *.blkDftCtrl.dftScanCtrl.DFT_SCAN_MODE 1'b1
Capture mode TDF
cdc mode mode_2 -set *.blkDftCtrl.DFT__BIST_MODE_i.DFT_MRK_BUF.Z 1'b0 -set *.blkDftCtrl.DFT_SCAN_EN.Q 1'b0 -set *.blkDftCtrl.dftScanCtrl.DFT_SCAN_MODE 1'b1
BIST_mode
cdc mode mode 3 -set *.blkDftCtrl.DFT_BIST_MODE_i.DFT_MRK_BUF.Z 1'b1 -set *.blkDftCtrl.DFT_SCAN_EN.Q 1'b0 -set *.blkDftCtrl.dftScanCtrl.DFT_SCAN_MODE 1'b1
BIST_mode
cdc mode mode 3 -set *.blkDftCtrl.DFT_BIST_MODE_i.DFT_MRK_BUF.Z 1'b1 -set *.blkDftCtrl.DFT_SCAN_EN.Q 1'b0 -set *.blkDftCtrl.dftScanCtrl.DFT_SCAN_MODE 1'b1
BIST_mode

Design Operation Modes

• Modal analysis resolved all muxed clocks

	Primary Clocks	Muxed Clocks	Total Clocks
Normal Analysis	7	175	182
Modal Analysis	7		182

Normal vs. Modal Comparison

	Correct CDC paths	Incorrect CDC paths	Total CDC paths
Normal CDC Analysis	4	12161	12165
Modal Analysis (aggregated results)	16	9860	9876
Modal Analysis (results per configuration)	4	2132-2944	2136-2948

	Run time
Normal CDC Analysis	8m 26s
Modal Analysis (aggregated results)	8m 43s

Benefits of Modal Analysis

- Captures the modal nature of the design
 - Legal operational modes become well-defined and explicitly specified
 - Avoids misinterpretation of the specification
- Reduces complexity and "pessimism"
 - Avoids a huge number of violations
 - Groups results per operational modes of the design.
 - Eliminates pessimistic results due to clock grouping pessimism
- Improves multi-mode analysis accuracy
 - Enables analysis of the correlation between design modes
 - Designers easily see commonalities and differences between modes
 - Designers quickly identify design issues and CDC bugs
 - Without the aggregation of results, designers would review the N mode results separately which would increase the review time by up to N times.

Thank you!

• Questions?

