DESIGMN ARD WVERIFICATICMN™

COMFEREMCE AMD EXHIBITION

Using Machine Learning in Register
Automation and Verification

Authors:
Nikita Gulliya
Abhishek Bora
Nitin Chaudhary
Amanjyot Kaur

.' AGNISYS

SYSTEM DEVELOPMENT WITH CERTAINTY

EEEEEEEEEEEEEEE

DESIGMN ARD WVERIFICATICMN™

“When All You Have Is a Hammer Everything Looks Like a Nail’

« ASIC design requires a lot
of manual work

* There is need to automate
as much as possible

 Machine Learning is a
great technology for
automation

EEEEEEEEEEEEEEEEE

DESIGMN ARD WVERIFICATICMN™

BVCON FUNCTIONAL FLAWS CASE STUDY

« The functional flaws caused by issues related to specification is
higher than issues related to design error

« Specifications are generally very large and error prone

* Functional flaws factors include changes in specification, incorrect

or incomplete specification, flaws in internal and external IP Block,
design errors

* It has been observed that functional flaws have gone up
drastically in 2018 for design projects

TTTTTTTTTTTTTTTTTTT

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

ASIC: Root Cause of Functional Flaws

80%
m2012
70% m2014
m2016
60%
m 2018
@ 50%
]
e
o 40%
=
o
B
A 30%
20%
10%
0%
DESIGN ERROR CHAMNGES IN SPECIFICATICN INCORRECT or INCOMPLETE FLAW TN INTERMAL REUSED FLAW IN EXTERMNAL IP BLOCK or
SPECIFICATION BLOCK, CELL, MEGACELL or IP TESTBENCH

Root Cause of ASIC Functional Flaws * Multipie answers possitle

acc ﬁr - a Source: Wilson Research Group and Mentor, A Siemens Business, 2018 Functional Verification Study © Mentor Graphics Corporation I l I x

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCOIN

CONFERENCE AND EXHIBITION
R e |
e o e A e et

@ cellera)

SYSTEMS INITIATIVE

FPGA: Root Cause of Functional Flaws

Yo

80%

70%

%

5~

Design Projects

&~

DESIGN ERROR CHANGES IN SPECIFICATICN INCORRECT or INCOMPLETE
SPECIFICATION

50%
409
309
20%
.]
0%

FLAW IN INTERNAL REUSED
BLOCK, CELL, MEGACELL or IP

Root Cause of FPGA Functional Flaws

Source: Wilson Research Group and Mentor, A Siemens Business, 2018 Functional Verificabon Study

| 2012

2014
m 2016
m 2018

FLAW [N EXTERNAL [P BLOCK or
TESTBENCH

* Multiple answers possitble

© Mentor Graphics Corporation

Menlor

2019

DESIGMN ARD WVERIFICATICMN™

« Errors are mainly due to incorrect/changing specification
« Changes must be automated

— Identifying the type of register based on its specification and
functionality

— Correct RTL code generation based on the type of register
« Generation of SystemVerilog Assertion based on the specification
— Difficult to understand SystemVerilog Assertion

IIIIIIIIIIIIIIIIIII

vl USING MACHINE LEARNING

 Machine Learning (ML) is a powerful concept

ML can help users create |IP and SoC code

* |f the specification is “formal”, one can automatically create
design code and verification environment

« Even in case of “informal” English description, Machine

Learning algorithms can be used for .
d Register Automation
O SystemVerilog Assertions

IIIIIIIIIIIIIIIIIII

DDDDDDDDDDD 212 MACHINE LEARNING ALGORITHM FOR
EEEEEEEEEEEEEEEEEEE REGISTER AUTOMATION

* Predict the type of register and its functionality

|t can take description provided by the user as input and predicts
the type of register

* Result is further processed to generate the relevant RTL code

* Python programming language and Keras Deep Learning Library
has been used

— Keras is a high-level neural networks API, written in Python and run on the
top of TensorFlow

— Concepts of RNN (Recurrent Neural Networks) have been used

TTTTTTTTTTTTTTTTTTT

nnnnnnnnnnn 200 CATEGORIZATION OF DIFFERENT
EEEEEEEEEEEEEEEEEEE TYPES OF REGISTER

Categorization into broader categories:

« Status Registers: counter registers, interrupt registers, FIFO
exists.

« Special Registers: paged, virtual registers, TMR, shadow registers
etc.

« Control Register: Enumerations, FIFO, counter, lock registers can
be categorized under these types of registers.

* Implementation Defined: constant, reserved and registers which
depend on external signal.

TTTTTTTTTTTTTTTTTTT

DESIGMN ARD VE‘H‘I.F IIIIIIII

REGISTER AUTOMATION FLOW

SYSTEMS INITIATIVE

DDDDDDDD 22 OVERVIEW OF MACHINE LEARNING
ALGORITHM

11

DVEORN DATASET CREATION

* Thousands of samples for the dataset has been created for each
type of register

* Industry level specifications were studied and analyzed

« Technical specification which defines the functionality of the
register

« Considering an example for the lock register

4 Lock

d Lock r

 Lock.set

d Lock.clear

IIIIIIIIIIIIIIIIIII

12

DESIGMN ARD VEHIFICATION"

DVCON

COMFERENCE AMD EXHIBITION

Sno

9

10

Description

When KEY _FIELD in KEY_REG is set then
LOCK_FIELD of LOCK_REG can be written

When KEY_FIELD of KEY_REG is '1' then the
field of this register is readable

When KEY REG.KEY_FIELD is active then this
bit will be cleared

When KEY REG.KEY _FIELD is reset, then
write access of this field will be disabled

This field will be unlocked when KEY FIELD of

KEY_REGis 0

Read action will only take place on
LOCK_FIELD of LOCK_REG when KEY_FILED
of KEY_REG is disabled

At"1"i.e high LOCK_FIELD of LOCK_REG will

be able to read

LOCK_FIELD of LOCK_REG will be clear when

this is low

At 1'b0 LOCK_FIELD of LOCK_REG will
become readable

Whenever this bit is zero LOCK_FIELD of
LOCK REG is set to one

SYSTEMS INITIATIVE

Src Reg

LOCK_RE
G

KEY_REG

LOCK_RE
G

LOCK_RE
G

LOCK_RE
G

KEY_REG
KEY_REG
KEY_REG
KEY_REG

KEY_REG

Src Field
LOCK_FIELD
KEY_FIELD
LOCK_FIELD
LOCK_FIELD

LOCK_FIELD

KEY_FIELD
KEY_FIELD
KEY_FIELD
KEY_FIELD

KEY_FIELD

output
lock
lock_r
lock.clear
lock

lock

lock_r
lock r
lock.clear
lock_r

lock.set

Key Reg

KEY_REG
KEY_REG
KEY_REG
KEY_REG

KEY_REG

KEY_REG
KEY_REG
KEY_REG
KEY_REG

KEY_LOCK

Key Field

KEY_FIELD
KEY_FIELD
KEY_FIELD
KEY_FIELD

KEY_FIELD

KEY_FIELD
KEY_FIELD
KEY_FIELD
KEY_FIELD

KEY_FIELD

LOCK REGISTER DATA SET SAMPLE:

Lock Reg

LOCK_REG
LOCK_REG
LOCK_REG
LOCK_REG

LOCK_REG

LOCK_REG
LOCK_REG
LOCK_REG
LOCK_REG

LOCK_REG

Lock Field

LOCK_FIELD
LOCK_FIELD
LOCK_FIELD
LOCK_FIELD

LOCK_FIELD

LOCK_FIELD
LOCK_FIELD
LOCK_FIELD
LOCK_FIELD

LOCK_FIELD

13

2019

DESIGMN ARD WVERIFICATICMN™

=¥t FEEDING THE TRAINING DATASET

Lock Register Data Set:

seed = 1
np.random.seed(seed)
train = pd.read_csv("impDataTOtrainl.csv", sep="',',error_bad_lines=False,encoding = "latinl")

train.head()

Sno Description output
0 1 When KEY_FIELD in KEY_REG is set then LOCK_FIE... lock
1 2 When KEY FIELD in KEY_ REG is active then this ... lock
2 3 When KEY FIELD of KEY REG is low, then write a... lock
3 4 This field will be locked when KEY FIELD of KE... lock
4 5 Freezes pdiff signal and makes it unwriteable lock

SYSTEMS INITIATIVE

e Seed value specification and loading of data

* Batch size, vocabulary size, embedding dimensions, maximum sequence

length and validation split added

SYSTEMS INITIATIVE

Batch Size

batch_size=32

Vocab size

vocabulary size=20000

Embedding Dims

embedding size=EMBEDDING_DIM=308
Max sequence Length
MAX_SEQUENCE_LENGTH=58
VALTIDATION_SPLIT=8.8

train=train.drop(['Sno"],axis=1)

train_df=train['Description’]

y=train['output’]

15

DVCON

5V "TOKENIZATION AND DATA SPLITTING

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

Using TensorFlow backend.

from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences

Tokenizing

tokenizer = Tokenizer(num_words=vocabulary_size)
tokenizer.fit_on_texts(train_df)

sequences = tokenizer.texts_to_sequences(train_df)

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

print(‘'Shape of data tensor:', data.shape)
print('Shape of label tensor:', y.shape)

Found 196 unique tokens.
Shape of data tensor: (118, 50)
Shape of label tensor: (118,)

16

Dv-:c";s LABEL ENCODING AND OneHotEncode

For splitting training and testing data
from sklearn.model_selection import train_test_split

Output : train_df['output']

encoder = LabelEncoder()
encoder.fit(y)
encoded_Y = encoder.transform(y)
convert integers to dummy variables (i.e. one hot encoded)
¥ = np_utils.to_categorical(encoded_Y)
print(Y)

e o |

[6. ©. ©. 1. ©. ©. ©.]

[e. . ©. 1. ©. ©. ©.]

[6. . ©. 1. 8. ©. ©.]

[6. . ©. 1. ©. ©. ©.]

[e. . ©. 1. . ©. ©.]

[e. . ©. 1. ©. ©. ©.]

[e. . ©. ©. ©. ©. 1.]

[6. ©. ©. ©. ©. ©. 1.]

[e. . ©. ©. ©. ©. 1.]

[6. . ©. ©. ©. ©. 1.]

[6. . ©. ©. ©. ©. 1.]

[e. . ©. ©. ©. ©. 1.]

[e. . ©. ©. ©. ©. 1.]

[e. e. . . ©. B©. 1.]

SYSTEMS INITIATIVE

......222. SAMPLE PLOT OF LOCK AND INTERRUPT

DVCON

DV REGISTER DATA

train['output'].value_counts().plot(kind="bar")

<matplotlib.axes._subplots.AxesSubplot at ©x28e5b66f828>

20.0 1
17.5 1
15.0 1
125 1
10.0 1
75 -
5.0 -
25 1
0.0 -

lock. set
lock_r
lock.clear
intr enable
intr.status

intr_pending

X_train, X_test, y_train, y_test = train_test_split(data, Y, test_size=0.10, random_state=seed)

W
accellera
_—0) 18

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

EMBEDDING MATRIX

embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:

words not found in embedding index will be all-zeros.
embedding_matrix[i]

embedding_vector

.7490e-01
.3815e-01
.5518e-92
.8861e-01
.1750e-01
.3231e-01
.1219e-01
.4843e-082
.6368e-092
.0949e-91
.3289e-02
.8521e-01
.7605e-01
.9415e-01
.8891e-01
.5487e-01
.7166e-01
.4625e-03

.2956e-01
.3737e-01
.5628e-01
.335%e-01
.3853e-02
.9105e-01
.9994e-01
.9856e-03
.1388e-01
.5968e-02
.2823e-02
.8222e-01
.9959%e-01
.8327e-01
.3534e-02
.8226e-01
.8856e-01
.2166e-01

.4924e-01
.9130e-02
.2963e-01
.8397e-02
.9850e-02
.1841e-01
.25e1e-01
.9742e-02
.9281e-02
.9700e-01
.6946e-01
.4373e-02
.9766e-01
.5327e-01
.03e3e-01
.5458e-01
.2666e-03
.054%e-01

.0512e-01
.0607e+00
.1985e-83
.2946e-01
.0846e-01
.3934e-02
.5377e-02
.0334e-02
.12685e-061
.9184e-061
.8233e-01
.4881e-01
.7712e-02
.3275e-02
.9545e-01
.2001e-01
.3869e-01
.6366e-01

.2294e-01
.5843e-01
.9833e-01
.3167e-01
.5540e-01
.563%9e-01
.e447e-02
.8845e-01
.5642e-82
.1818e-01
.0082e-01
.2135e-01
.6210e-01
.0945e-02
.8457e-02
.@908e-01
.8698e-01
.3795e-01

.1297e-82
.0365e-01
.3689%9e-01
.481%e-01
.236le-01
.8608e-01
.3105e-01
.4464e-01
.8120e-01
.3190e-02
.3717e-01
.1545e-082
.6891e-01
.8623e-01
.482%e-082
.0261e-03
.1457e-01
.1856e-01

19

DVETIN SEQUENTIAL MODEL

UNITED STATES

o’ 20

SYSTEMS INITIATIVE

2019

DVCON EMBEDDING LAYER

« Embedding Layer: This layer converts the integers into fixed sized
dense vectors

 LSTM: It models time and sequence dependent behavior

« Softmax Layer: This layer is used for the activation of the dense
layers

embed_dim = 300 # embedding dimensions
1stm_out = 128 # number of Lstm cells

model = Sequential()

model.add(embedding layer)

model.add(LSTM(1stm_out, dropout_U=8.25, dropout_W=8.25))

#model . add(Dense(4, activation="softmax"))

model.add(Dense(7,activation="softmax"))

model.compile(loss = 'categorical crossentropy', optimizer='adam',metrics = ['accuracy'])

SYSTEMS INITIATIVE

21

2019

oviz2ii RNN (Recurrent Neural Networks)

b

b

A— A A

» A

b o o

A M— A M— A

® © ©

The Problem of Long-Ter

accellera)

2019

¢

TIX

EEEEEEEEEEEEEEE

2019

DVCORN TRAINING THE MODEL

print("Accuracy: %.2f%%" % (scores[1]*100))

Train on 1006 samples, validate on 200 samples Epoch 1/50 1006/1006
[==============================] - 13 llms/step - loss: 1.9463 - acc:
0.1981 - val loss: 1.8278 - wval acc: 0.3333 Epoch 2/50 1006/1006
[==============================] - (s 3ms/step - loss: 1.6012 - acc:
0.3679 - val loss: 1.8820 - wval acc: 0.0833 Epoch 3/50 1006/1006
[==============================] - (03 Z2ms/step - loss: 1.3465 - acc:

0.5660 - val loss: 1.4663 - val acc: 0.41¢7 Epoch 4/50 1006/100¢6
[==============================] - (3 3ms/step - loss: 1.0703 -

acc: 1.0000 - val loss: 1.1568 - wval acc: 0.7500 Epoch 50/50 1006/1006
1.0000 - wval loss: 1.1459 - wval acc: 0.7500

Accuracy: 75.00%

25

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

SYSTEMS INITIATIVE

EVALUATION AND PREDICTION

serialize model to JSON

import hS5py

model_json = model.to_json()

with open("model.json", "w") as json_file:
json_file.write(model_json)

serialize weights to HDF5

model.save_weights("model.h5")

print("Saved model to disk"™)

Saved model to disk

§ Predicting
predl=model .predict (X)

print ("CUTEUT : ' encoder.inverse transform(np.argmax(predl))) # Predict
cutput column

26

BV OUTPUT PREDICTION

UNITED STATES

e |IDS Output (Prediction)
KEY REG v

31:0 KEY_FIELD rw w 0

LOCK_REG i

lock=KEY R
EG.KEY_FIE
LD

This field will be locked when

27

SV PROPERTY APPLICATION

UNITED STATES

KEY_REG W

31:0 KEY_FIELD rw w 0

LOCK REG Wl

This field will be locked when

31:0 LOCK_FIELD rw ™w 0 |KEY_FIELD of KEY_REGis 1
{lock=KEY_REG.KEY_FIELD}

“accellera

28

SYSTEMS INITIATIVE

BV RTL CODE GENERATION

B ! iDesignSpec - NextGen

o Configuration Settings

General

..........

Qutputs

v'| RTL Wire

User-Defined Outputs
VHDL

Settings

UVM Multi Qut File ovM

Formating Verification System C alt1 alt2 System Verilog

' iDesignSpec - NextGen
File Edit Help

jg'[:c:nﬁgure :u Chip @ RegGroup D/-d Ref @ Enum (53] BusDomain

I_Tl.ll OutDir EEEBI-:::-r.:k :_' Reg h-'lemr.::r_-,r @Defiﬂe (9} Signal Check Generata

29

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

eyl MACHINE LEARNING IN VERIFICATION

« The SystemVerilog “Decoder Ring” has been implemented

« Converts the concurrent assertions into plain English text and
vice-versa.

 The SVAs first parsed and converted into hierarchal form based
on the grammar.

« The SystemVerilog assertion (SVA) grammar has been written in
ANTLR form.

30

IIIIIIIIIIIIIIIIIII

oviis ASSERTIONS TO ENGLISH FLOW

« Simple NLP is used to define rule based English output for every
SystemVerilog assertion operation.

* Both the inputs, the parsed SVA and simple NLP, are fed into the
interpreter to provide the output in plain English text

* This English is not grammatically correct.

* The bad English text is converted into the good English format
with the help of machine learning algorithm.

IIIIIIIIIIIIIIIIIII

31

(2019

SystemVerilog Assertion “Decoder Ring”

UNITED STATES

32

2019

DESIGMN ARD WVERIFICATICMN™

vl SystemVerilog Assertion to English

e SystemVerilog assertion given as input and the corresponding English
output obtained.

SystemVerilog Assertion Input:

Srose(a) |-> (a throughout b [->1]) ##1 !a

English text Output:

Whenever a goes high, a must be high until b is asserted and after 1 clock cycle, a must be low

SystemVerilog Assertion Input:

a ##1 b [*1:S] ##1 c

English text Output:

a must be true on the first clock tick, c must be true on the last clock tick, and b must be true at
every clock tick strictly in between the first and the last

SYSTEMS INITIATIVE

33

DESIGMN ARD WVERIFICATICMN™

COMFEREMCE AMD EXHIBITION

Thank You

Any Questions?

‘accellera))

EEEEEEEEEEEEEE

	Using Machine Learning in Register Automation and Verification�
	MACHINE LEARNING IN ASIC DESIGN �“When All You Have Is a Hammer Everything Looks Like a Nail” �
	FUNCTIONAL FLAWS CASE STUDY
	Slide Number 4
	Slide Number 5
	CHALLENGES FACED IN ASIC DESIGN
	USING MACHINE LEARNING
	MACHINE LEARNING ALGORITHM FOR REGISTER AUTOMATION
	� � CATEGORIZATION OF DIFFERENT TYPES OF REGISTER �
	�REGISTER AUTOMATION FLOW
	OVERVIEW OF MACHINE LEARNING ALGORITHM
	�DATASET CREATION�
	LOCK REGISTER DATA SET SAMPLE:
	�
	DIFFERENT VARIABLES FOR THE DATA
	TOKENIZATION AND DATA SPLITTING
	LABEL ENCODING AND OneHotEncode
	SAMPLE PLOT OF LOCK AND INTERRUPT REGISTER DATA
	EMBEDDING MATRIX �
	SEQUENTIAL MODEL
	EMBEDDING LAYER
	RNN (Recurrent Neural Networks)
	LONG SHORT-TERM MEMORY (LSTM)
	LONG SHORT-TERM MEMORY (LSTM)
	TRAINING THE MODEL
	EVALUATION AND PREDICTION
	OUTPUT PREDICTION
	PROPERTY APPLICATION �
	RTL CODE GENERATION
	MACHINE LEARNING IN VERIFICATION �
	ASSERTIONS TO ENGLISH FLOW
	SystemVerilog Assertion “Decoder Ring”
	SystemVerilog Assertion to English
	Slide Number 34

