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“When All You Have Is a Hammer Everything Looks Like a Nail’

« ASIC design requires a lot
of manual work

* There is need to automate
as much as possible

 Machine Learning is a
great technology for
automation
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BVCON FUNCTIONAL FLAWS CASE STUDY

« The functional flaws caused by issues related to specification is
higher than issues related to design error

« Specifications are generally very large and error prone

* Functional flaws factors include changes in specification, incorrect

or incomplete specification, flaws in internal and external IP Block,
design errors

* It has been observed that functional flaws have gone up
drastically in 2018 for design projects
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ASIC: Root Cause of Functional Flaws
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FPGA: Root Cause of Functional Flaws
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« Errors are mainly due to incorrect/changing specification
« Changes must be automated

— Identifying the type of register based on its specification and
functionality

— Correct RTL code generation based on the type of register
« Generation of SystemVerilog Assertion based on the specification
— Difficult to understand SystemVerilog Assertion
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vl USING MACHINE LEARNING

 Machine Learning (ML) is a powerful concept

ML can help users create |IP and SoC code

* |f the specification is “formal”, one can automatically create
design code and verification environment

« Even in case of “informal” English description, Machine

Learning algorithms can be used for .
d Register Automation
O SystemVerilog Assertions
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DDDDDDDDDDD 212 MACHINE LEARNING ALGORITHM FOR
EEEEEEEEEEEEEEEEEEE REGISTER AUTOMATION

* Predict the type of register and its functionality

|t can take description provided by the user as input and predicts
the type of register

* Result is further processed to generate the relevant RTL code

* Python programming language and Keras Deep Learning Library
has been used

— Keras is a high-level neural networks API, written in Python and run on the
top of TensorFlow

— Concepts of RNN (Recurrent Neural Networks) have been used
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nnnnnnnnnnn 200 CATEGORIZATION OF DIFFERENT
EEEEEEEEEEEEEEEEEEE TYPES OF REGISTER

Categorization into broader categories:

« Status Registers: counter registers, interrupt registers, FIFO
exists.

« Special Registers: paged, virtual registers, TMR, shadow registers
etc.

« Control Register: Enumerations, FIFO, counter, lock registers can
be categorized under these types of registers.

* Implementation Defined: constant, reserved and registers which
depend on external signal.
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REGISTER AUTOMATION FLOW
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DDDDDDDD 22 OVERVIEW OF MACHINE LEARNING
ALGORITHM
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DVEORN DATASET CREATION

* Thousands of samples for the dataset has been created for each
type of register

* Industry level specifications were studied and analyzed

« Technical specification which defines the functionality of the
register

« Considering an example for the lock register

4 Lock

d Lock r

 Lock.set

d Lock.clear
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Sno

9

10

Description

When KEY _FIELD in KEY_REG is set then
LOCK_FIELD of LOCK_REG can be written

When KEY_FIELD of KEY_REG is '1' then the
field of this register is readable

When KEY REG.KEY_FIELD is active then this
bit will be cleared

When KEY REG.KEY _FIELD is reset, then
write access of this field will be disabled

This field will be unlocked when KEY FIELD of

KEY_REGis 0

Read action will only take place on
LOCK_FIELD of LOCK_REG when KEY_FILED
of KEY_REG is disabled

At"1"i.e high LOCK_FIELD of LOCK_REG will

be able to read

LOCK_FIELD of LOCK_REG will be clear when

this is low

At 1'b0 LOCK_FIELD of LOCK_REG will
become readable

Whenever this bit is zero LOCK_FIELD of
LOCK REG is set to one
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=¥t FEEDING THE TRAINING DATASET

Lock Register Data Set:

seed = 1
np.random.seed(seed)
train = pd.read_csv("impDataTOtrainl.csv", sep="',',error_bad_lines=False,encoding = "latinl")

train.head()

Sno Description output
0 1 When KEY_FIELD in KEY_REG is set then LOCK_FIE... lock
1 2 When KEY FIELD in KEY_ REG is active then this ... lock
2 3 When KEY FIELD of KEY REG is low, then write a... lock
3 4 This field will be locked when KEY FIELD of KE... lock
4 5 Freezes pdiff signal and makes it unwriteable lock
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e Seed value specification and loading of data

* Batch size, vocabulary size, embedding dimensions, maximum sequence

length and validation split added

SYSTEMS INITIATIVE

# Batch Size

batch_size=32

# Vocab size

vocabulary size=20000

# Embedding Dims

embedding size=EMBEDDING_DIM=308
# Max sequence Length
MAX_SEQUENCE_LENGTH=58
VALTIDATION_SPLIT=8.8

train=train.drop([ 'Sno"],axis=1)

train_df=train[ 'Description’]

y=train[ 'output’]
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Using TensorFlow backend.

from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences

# Tokenizing

tokenizer = Tokenizer(num_words=vocabulary_size)
tokenizer.fit_on_texts(train_df)

sequences = tokenizer.texts_to_sequences(train_df)

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

print(‘'Shape of data tensor:', data.shape)
print('Shape of label tensor:', y.shape)

Found 196 unique tokens.
Shape of data tensor: (118, 50)
Shape of label tensor: (118,)
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Dv-:c";s LABEL ENCODING AND OneHotEncode

# For splitting training and testing data
from sklearn.model_selection import train_test_split

# Output : train_df[ 'output']

encoder = LabelEncoder()
encoder.fit(y)
encoded_Y = encoder.transform(y)
# convert integers to dummy variables (i.e. one hot encoded)
¥ = np_utils.to_categorical(encoded_Y)
print(Y)
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......222. SAMPLE PLOT OF LOCK AND INTERRUPT

DVCON

DV REGISTER DATA

train[ 'output'].value_counts().plot(kind="bar")

<matplotlib.axes._subplots.AxesSubplot at ©x28e5b66f828>

20.0 1
17.5 1
15.0 1
125 1
10.0 1
75 -
5.0 -
25 1
0.0 -

lock. set
lock_r
lock.clear
intr enable
intr.status

intr_pending

X_train, X_test, y_train, y_test = train_test_split(data, Y, test_size=0.10, random_state=seed)
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EMBEDDING MATRIX

embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:

# words not found in embedding index will be all-zeros.
embedding_matrix[i]

embedding_vector

.7490e-01
.3815e-01
.5518e-92
.8861e-01
.1750e-01
.3231e-01
.1219e-01
.4843e-082
.6368e-092
.0949e-91
.3289e-02
.8521e-01
.7605e-01
.9415e-01
.8891e-01
.5487e-01
.7166e-01
.4625e-03

.2956e-01
.3737e-01
.5628e-01
.335%e-01
.3853e-02
.9105e-01
.9994e-01
.9856e-03
.1388e-01
.5968e-02
.2823e-02
.8222e-01
.9959%e-01
.8327e-01
.3534e-02
.8226e-01
.8856e-01
.2166e-01

.4924e-01
.9130e-02
.2963e-01
.8397e-02
.9850e-02
.1841e-01
.25e1e-01
.9742e-02
.9281e-02
.9700e-01
.6946e-01
.4373e-02
.9766e-01
.5327e-01
.03e3e-01
.5458e-01
.2666e-03
.054%e-01

.0512e-01
.0607e+00
.1985e-83
.2946e-01
.0846e-01
.3934e-02
.5377e-02
.0334e-02
.12685e-061
.9184e-061
.8233e-01
.4881e-01
.7712e-02
.3275e-02
.9545e-01
.2001e-01
.3869e-01
.6366e-01

.2294e-01
.5843e-01
.9833e-01
.3167e-01
.5540e-01
.563%9e-01
.e447e-02
.8845e-01
.5642e-82
.1818e-01
.0082e-01
.2135e-01
.6210e-01
.0945e-02
.8457e-02
.@908e-01
.8698e-01
.3795e-01

.1297e-82
.0365e-01
.3689%9e-01
.481%e-01
.236le-01
.8608e-01
.3105e-01
.4464e-01
.8120e-01
.3190e-02
.3717e-01
.1545e-082
.6891e-01
.8623e-01
.482%e-082
.0261e-03
.1457e-01
.1856e-01
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DVCON EMBEDDING LAYER

« Embedding Layer: This layer converts the integers into fixed sized
dense vectors

 LSTM: It models time and sequence dependent behavior

« Softmax Layer: This layer is used for the activation of the dense
layers

embed_dim = 300 # embedding dimensions
1stm_out = 128 # number of Lstm cells

model = Sequential()

model.add(embedding layer)

model.add(LSTM(1stm_out, dropout_U=8.25, dropout_W=8.25))

#model . add(Dense(4, activation="softmax"))

model.add(Dense(7,activation="softmax"))

model.compile(loss = 'categorical crossentropy', optimizer='adam',metrics = ['accuracy'])

SYSTEMS INITIATIVE
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oviz2ii RNN (Recurrent Neural Networks)
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print("Accuracy: %.2f%%" % (scores[1]*100))

Train on 1006 samples, validate on 200 samples Epoch 1/50 1006/1006
[==============================] - 13 llms/step - loss: 1.9463 - acc:
0.1981 - val loss: 1.8278 - wval acc: 0.3333 Epoch 2/50 1006/1006
[==============================] - (s 3ms/step - loss: 1.6012 - acc:
0.3679 - val loss: 1.8820 - wval acc: 0.0833 Epoch 3/50 1006/1006
[==============================] - (03 Z2ms/step - loss: 1.3465 - acc:

0.5660 - val loss: 1.4663 - val acc: 0.41¢7 Epoch 4/50 1006/100¢6
[==============================] - (3 3ms/step - loss: 1.0703 -

acc: 1.0000 - val loss: 1.1568 - wval acc: 0.7500 Epoch 50/50 1006/1006
1.0000 - wval loss: 1.1459 - wval acc: 0.7500

Accuracy: 75.00%

25
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EVALUATION AND PREDICTION

# serialize model to JSON

import hS5py

model_json = model.to_json()

with open("model.json", "w") as json_file:
json_file.write(model_json)

# serialize weights to HDF5

model.save_weights("model.h5")

print("Saved model to disk"™)

Saved model to disk

§ Predicting
predl=model .predict (X)

print ("CUTEUT : ' encoder.inverse transform(np.argmax(predl))) # Predict
cutput column
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BV OUTPUT PREDICTION

UNITED STATES

e |IDS Output (Prediction)
KEY REG v

31:0 KEY_FIELD rw w 0

LOCK_REG i

lock=KEY R
EG.KEY_FIE
LD

This field will be locked when
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SV PROPERTY APPLICATION

UNITED STATES

KEY_REG W

31:0 KEY_FIELD rw w 0

LOCK REG Wl

This field will be locked when

31:0 LOCK_FIELD rw ™w 0 |KEY_FIELD of KEY_REGis 1
{lock=KEY_REG.KEY_FIELD}

“accellera
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BV RTL CODE GENERATION

B ! iDesignSpec - NextGen

o Configuration Settings

General

..........

Qutputs

v'| RTL Wire

User-Defined Outputs
VHDL

Settings

UVM Multi Qut File ovM

Formating Verification System C alt1 alt2 System Verilog

' iDesignSpec - NextGen
File Edit Help

jg'[:c:nﬁgure :u Chip @ RegGroup D/-d Ref @ Enum (53] BusDomain

I_Tl.ll OutDir EEEBI-:::-r.:k :_' Reg h-'lemr.::r_-,r @Defiﬂe (9} Signal Check Generata
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eyl MACHINE LEARNING IN VERIFICATION

« The SystemVerilog “Decoder Ring” has been implemented

« Converts the concurrent assertions into plain English text and
vice-versa.

 The SVAs first parsed and converted into hierarchal form based
on the grammar.

« The SystemVerilog assertion (SVA) grammar has been written in
ANTLR form.

30
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oviis  ASSERTIONS TO ENGLISH FLOW

« Simple NLP is used to define rule based English output for every
SystemVerilog assertion operation.

* Both the inputs, the parsed SVA and simple NLP, are fed into the
interpreter to provide the output in plain English text

* This English is not grammatically correct.

* The bad English text is converted into the good English format
with the help of machine learning algorithm.
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SystemVerilog Assertion “Decoder Ring”

UNITED STATES
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vl SystemVerilog Assertion to English

e SystemVerilog assertion given as input and the corresponding English
output obtained.

SystemVerilog Assertion Input:

Srose(a) |-> (a throughout b [->1]) ##1 !a

English text Output:

Whenever a goes high, a must be high until b is asserted and after 1 clock cycle, a must be low

SystemVerilog Assertion Input:

a ##1 b [*1:S] ##1 c

English text Output:

a must be true on the first clock tick, c must be true on the last clock tick, and b must be true at
every clock tick strictly in between the first and the last

SYSTEMS INITIATIVE
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Thank You

Any Questions?
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