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MACHINE LEARNING IN ASIC DESIGN
“When All You Have Is a Hammer Everything Looks Like a Nail” 

• ASIC design requires a lot 
of manual work

• There is need to automate 
as much as possible

• Machine Learning is a 
great technology for 
automation

2



FUNCTIONAL FLAWS CASE STUDY
• The functional flaws caused by issues related to specification is 

higher than issues related to design error
• Specifications are generally very large and error prone
• Functional flaws factors include changes in specification, incorrect 

or incomplete specification, flaws in internal and external IP Block, 
design errors

• It has been observed that functional flaws have gone up 
drastically in 2018 for design projects

3



4



5



CHALLENGES FACED IN ASIC DESIGN

• Errors are mainly due to incorrect/changing specification
• Changes must be automated

– Identifying the type of register based on its specification and 
functionality

– Correct RTL code generation based on the type of register
• Generation of SystemVerilog Assertion based on the specification

– Difficult to understand SystemVerilog Assertion
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USING MACHINE LEARNING  
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• Machine Learning (ML) is a powerful concept 
• ML can help users create IP and SoC code 
• If the specification is “formal”, one can automatically create 

design code and verification environment
• Even in case of “informal” English description, Machine 

Learning algorithms can be used for .
 Register Automation 
 SystemVerilog Assertions



MACHINE LEARNING ALGORITHM FOR 
REGISTER AUTOMATION 

8

• Predict the type of register and its functionality
• It can take description provided by the user as input and predicts 

the type of register
• Result is further processed to generate the relevant RTL code
• Python programming language and Keras Deep Learning Library 

has been used
– Keras is a high-level neural networks API, written in Python and run on the 

top of TensorFlow 
– Concepts of RNN (Recurrent Neural Networks) have been used



CATEGORIZATION OF DIFFERENT 
TYPES OF REGISTER 

Categorization into broader categories:
• Status Registers: counter registers, interrupt registers, FIFO 

exists. 
• Special Registers: paged, virtual registers, TMR, shadow registers 

etc.
• Control Register: Enumerations, FIFO, counter, lock registers can 

be categorized under these types of registers. 
• Implementation Defined: constant, reserved and registers which 

depend on external signal.
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REGISTER AUTOMATION FLOW
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OVERVIEW OF MACHINE LEARNING 
ALGORITHM  
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Machine learning 
Algorithm

Model training with 
data and 

compilation 

Using model for 
appropriate output 

prediction



DATASET CREATION
• Thousands of samples for the dataset has been created for each 

type of register
• Industry level specifications were studied and analyzed
• Technical specification which defines the functionality of the 

register
• Considering an example for the lock register
 Lock 
 Lock_r
 Lock.set
 Lock.clear
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LOCK REGISTER DATA SET SAMPLE:
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FEEDING THE TRAINING DATASET 
Lock Register Data Set:



DIFFERENT VARIABLES  FOR THE DATA 
• Seed value specification and loading of data
• Batch size, vocabulary size, embedding dimensions, maximum sequence 

length and validation split added
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TOKENIZATION AND DATA SPLITTING
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LABEL ENCODING AND OneHotEncode
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SAMPLE PLOT OF LOCK AND INTERRUPT  
REGISTER DATA
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EMBEDDING MATRIX 

19



SEQUENTIAL MODEL 
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EMBEDDING LAYER
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• Embedding Layer: This layer converts the integers into fixed sized 
dense vectors

• LSTM: It models time and sequence dependent behavior
• Softmax Layer: This layer is used for the activation of the dense 

layers



RNN (Recurrent Neural Networks)

22The Problem of Long-Term Dependencies



LONG SHORT-TERM MEMORY (LSTM)
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LONG SHORT-TERM MEMORY (LSTM)

24http://colah.github.io/posts/2015-08-Understanding-LSTMs/



TRAINING THE MODEL
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EVALUATION AND PREDICTION
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OUTPUT PREDICTION
• IDS Output (Prediction) 
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PROPERTY APPLICATION 
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RTL CODE GENERATION
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MACHINE LEARNING IN VERIFICATION 

• The SystemVerilog “Decoder Ring” has been implemented
• Converts the concurrent assertions into plain English text and 

vice-versa.
• The SVA is first parsed and converted into hierarchal form based 

on the grammar.
• The SystemVerilog assertion (SVA) grammar has been written in 

ANTLR form.
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ASSERTIONS TO ENGLISH FLOW

• Simple NLP is used to define rule based English output for every 
SystemVerilog assertion operation.

• Both the inputs, the parsed SVA and simple NLP, are fed into the 
interpreter to provide the output in plain English text

• This English is not grammatically correct.
• The bad English text is converted into the good English format 

with the help of machine learning algorithm.
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SystemVerilog Assertion “Decoder Ring”
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SystemVerilog Assertion to English
• SystemVerilog assertion given as input and the corresponding English 

output obtained.
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SystemVerilog Assertion Input:
$rose(a) |-> (a throughout b [->1]) ##1 !a
English text Output:
Whenever a goes high, a must be high until b is asserted and after 1 clock cycle, a must be low

SystemVerilog Assertion Input:
a ##1 b [*1:$] ##1 c 
English text Output:
a must be true on the first clock tick, c must be true on the last clock tick, and b must be true at 
every clock tick strictly in between the first and the last



Thank You
Any Questions?
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