
Using Formal Verification to Exhaustively Verify

SoC Assemblies

Kenny Ranerup

ST-Ericsson

Lund, Sweden

Kenny.Ranerup@stericsson.com

Mark Handover

Mentor Graphics Corp.

Newbury, UK

Mark_Handover@mentor.com

Abstract— State-of-the-art system on chip (SoC) design teams are

being continually challenged to work at higher levels of

productivity. The reasons why include increased design

complexity and shrinking time-to-market windows. Functional

verification continues to be the bottleneck in the development

schedule, even as dynamic simulation methodologies have been

much advanced.

Faced with these challenges on a recent project, a group within

ST-Ericsson decided to use formal verification to check an SoC

assembly (that is, to do connectivity checking). This paper will

detail the approach, the success of which depended on two key

factors: 1) Automated creation of assertions, which in turn

hinged on the regularity of many design features and the

availability of specifications in machine readable form, and 2)

Low sequential depth of the connectivity checks, which made it

possible to achieve formal proofs at the chip level when combined

with formal tools that can handle complete SoC designs.

The group demonstrated that creating and verifying properties

with formal tools required less effort than using simulation alone,

thus allowing for expanded verification scope.

One way the effectiveness of this approach was illustrated:

during verification, a large number of bugs were found ranging

from simple connectivity to interface bugs.

Keywords—formal verification; connectivity; SoC; assembly

I. INTRODUCTION

SoC assembly verification, often referred to as connectivity

checking, is among the most time-consuming aspects of SoC

verification. Connectivity checking asks the question: “Are all

my design elements assembled correctly?” More precisely, it

verifies that connections between the blocks of logic in a

design are correct; for example, that an output port on one

block is correctly connected to its target. But this task is not

limited to port checking. It may also encompass pad checking,

where complex multiplexing is likely to be employed, and

clock checking, where it’s critical to ensure the correct clocks

propagate to their intended destination under all modes of

operation (mission as well as DFT modes).
For today’s SoC designs, connectivity checking is a

daunting assignment given the large numbers of design blocks,
complex clock structures, configurable bus-fabrics and point-
to-point connections that can number in the thousands. This
complexity presents an enormous challenge for the verification

engineer, who will typically develop directed tests to toggle all
the design signals of interest and then debug to determine why
signal values did not transition or propagate as expected.

SoC debug can be particularly challenging. Often, when
running dynamically at the SoC level, the result of incorrect IP
integration may not show up for many cycles and will manifest
itself as an incorrect value at the SoC outputs. Tracing this
back to the source of the erroneous connectivity may require a
huge amount of effort, which is only partially lessened by
placing assertions in the IPs [1].

SoC integration issues impact simulation bring-up time.
Given that a high percentage of integration problems are pure
connectivity errors [2], verification of the SoC assembly is a
crucial step.

Until recently, the modem group at ST-Ericsson
approached connectivity verification via simulation. The group
tried to write a series fairly complex testcases to toggle all
signals between blocks in the design and then tried to track
down reasons why certain signals didn’t toggle correctly.
Developing the test cases and debugging them were incredibly
time consuming processes, a fact that pushed the team to look
for an alternative approach.

The group began a project to perform connectivity checking
using formal verification techniques [3]. The result was
exhaustive verification of the SoC interconnect using formal
verification, thus eliminating the requirement for dynamic
testing and dramatically reducing time to coverage closure.

Key elements of the success outlined in this paper included
automatic property creation and an ability to analyze the
complete design using formal verification tools.

II. VERIFICATION APPROACHES

There are several approaches to verifying connectivity
using simulation. One is writing direct testcases trying to
toggle the signals to be checked. However, setting up scenarios
that can exercise a certain path can be time consuming,
requiring complex and lengthy device configuration. Another
issue with this approach is that it is difficult in simulation to
determine when two signals are connected. Toggling source
and destination signal at the same point in time is not sufficient
to verify the connectivity since other signals can be involved.
An alternative approach, one that unfortunately shares many
problems with direct testing, is the use of constrained random

verification. At a subsystem level, this approach is often
inefficient. For example, toggling all signals on a bus to see
that all bits are connected and not swapped is very difficult
when the communicating blocks cannot be directly controlled
and observed.

At ST-Ericsson software driven verification addresses a
large part of the subsystem verification. That is, software
executing in the on-chip CPUs are used to stimulate and check
the design. A major drawback is that the software normally
can’t observe behavior at signal level, which makes it
unsuitable for connectivity verification.

There are also tools that can verify the structural
connectivity of signals by traversing the design to determine if
there are paths from source to destination points. This approach
can be used for simple cases when there’s no logic or
sequential elements in the path but are otherwise unsuitable for
this type of verification.

Formal verification compares favorably to these
approaches. A big advantage is that there’s no need to develop
testcases for toggling signals. The formal analysis will
implicitly analyze all possible signal combinations. Formal
proofs also remove uncertainty about whether all cases have
been covered. Setting up the device in the correct mode is often
straightforward since the use of constraints can bypass lengthy
setup sequences. Furthermore, the debug process is much more
efficient. Only the signals involved in a failure are shown and
the sequence that leads up to the failure is often minimal. And
there is usually no need to develop any sort of testbench.

III. LTE MODEM DESIGN DESCRIPTION

ST-Ericsson develops cutting-edge mobile platforms and
semiconductors across the broad spectrum of wireless
technologies. Digital baseband SoCs such as the
NOVATHOR™ DB8540 consist of a multi-mode wireless
modem combined with application processors. The SoCs are
used in mobile handsets such as Android phones, in which the
modem handles the digital processing for the mobile
communication and the application processor handles the user
interface and Android applications. The multi-mode modems
support a wide set of mobile communication standards: GSM,
LTE FDD/TDD, HSPA+, TD-SCDMA, EDGE. The focus for
this paper is the modem subsystem of these SoCs, though the
approach is valid for a broad spectrum of SoC designs.

The modem design consists of a large number (~50) of IP
blocks mostly performing computational functions that
communicate through a special purpose communication
network. A number of processors control modem functionality.
Blocks are connected to a multi-level bus interconnect through
which the processors can control the blocks. The bus
interconnect is also used for high bandwidth mobile data (e.g.
150 Mb/s LTE). The implementation language is a mix of
VHDL and Verilog.

The design is divided into several power domains and
advanced dynamic clock gating is used throughout the design
to reduce power consumption.

The design is memory intensive and contains 400 memory
instances.

IV. VERIFICATION FLOW

The first RTL verification is performed at the block level
using coverage-driven constrained random simulation. This
verification covers all block functionality and is tied to system
design through reference models used in the block-level
testbenches.

Subsystem verification (on several levels, all the way up to
SoC level) then focuses on these questions:

• Are the blocks correctly connected?

• Does the subsystem meet performance and power
requirements?

• Does the communication within the subsystem work?

• Does the communication outside of the subsystem
work?

• Do the parts of the subsystem work together in the
different major modes of operation (different power
modes, mission/DFT-mode)?

Connectivity checking is separated from the other
verification tasks for efficiency reasons. First, it requires a
different dedicated verification solution. Second, the
connectivity verification should be run very early in the
subsystem verification process. Checking such things as clocks
and resets early is crucial since problems in these areas can
block large parts of the overall verification task.

Formal tools have many advantages in addressing
connectivity verification. Such tools generally have little need
for testbenches and are simple to set up and run checks, thus
making formal verification fast compared to other techniques.
Formal connectivity checking is therefore the first step in the
subsystem verification and often run in parallel with other
verification tasks. It is further part of the regression flow for
each new subsystem release and typically completes long
before other subsystem verification tasks.

V. CONNECTIVITY PROPERTY SET

A prerequisite for using formal property checking is having
a complete property set, which conveniently is also required for
verifying an SoC assembly.

In any SoC design, various types of connectivity may exist
that require checking. However, simple point-to-point
connectivity is most common.

A complex part of the interconnect is the reset and clock
distribution, which contains logic such as muxes and clock
gating. The implementation of this logic is distributed over the
design and therefore not possible to verify at block level.

A similar system-wide interconnect is implemented for the
DFT functions such as operation of memory BIST controllers
and the control of clock and reset distribution.

A. Point-to-point connectivity

A large part of the connectivity checks in general include
the following types of point to point connectivity:

• Unconditional point-to-point connectivity

• Point-to-point with delay

• Point-to-point with condition

Figure 1. Common types of connectivity checks

These common types of connectivity are illustrated in
figure 1 by the example paths: InA→OutA for unconditional
point-to-point, InB→OutB for point-to-point with delay and
InC→OutC for point-to-point with condition.

There could of course be many more unique types of
combinations of the above. Most often the connectivity is
between a point on the top level of the chip and a port on a
block some levels of hierarchy below. This allows the path of
the check to propagate through multiple blocks, which
inherently tests connectivity at many nodes in the design.
Typically the form of the property is simple and so is a good
candidate for automation.

B. Reset connectivity

After integration it’s crucial to verify that resets are
working. Setting up simulations for this can be very time
consuming.

Formal verification of the reset function can verify that
reset signals are correctly connected (i.e., that the reset source
controls the correct block/subsystem reset). It can also verify
the correct reset values on the outputs of a block/subsystem.
With a single reset this is of course not a difficult simulation
problem. But in today’s complex SoCs with many power and
clock domains and complex IPs with separate resets, this
becomes a non-trivial task.

Assuming there is no logic involved, resets can be treated
as any other point-to-point connectivity checking. However,
there can be multiple reset sources controlling a block’s reset.
For example, the reset source can be a combination of input
pins, power on resets, software controlled resets and other
functional resets. The reset sources are then combined through
some logic to control a block’s reset. Formal verification of this
logic is no more difficult than connectivity checking. What is
required is identifying all reset sources, the points that should
be controlled by each reset source and finally the function of
the reset logic, such as muxing for separate control of reset
during DFT modes. After that, it is a simple matter of writing
assertions that check that when a reset source is activated, the
reset on a block is also activated.

The method assumes that resets are asynchronously
activated, which is the normal case. If resets are clocked—for
example, software-activated resets crossing a clock domain—it
becomes more complex. Either the sequential behavior is not
verified or clocks must be set up and the sequential behavior
must be described in assertions or constraints.

In addition to checking the connectivity of resets, the
verification is easily extended to check the reset value of all
outputs. For example, when a subsystem reset is activated, the
output signals of all blocks should take the values according to
the specification. This can become more complex and also
more important when the design has multiple power regions
and multiple resets. However, as long as the expected values
are specified, it is fairly simple to write the properties.

C. Clock connectivity

Clocks are the next logical step in verification. The function
that should be verified is that the correct clock waveform is
applied to the destination block when the clock is enabled. This
also verifies that the correct clock enabler and correct clock
source is used, that any clock gates are opened and that the
clock is propagated to the block.

Consider an example. A clock source that is always on is
distributed to a number of blocks, each having a clock gate
controlling whether that block should have a clock. The clock
gate is controlled individually for each block by registers. In
this case, an assertion could be written that checks that the
block clock is identical to the common clock source when the
clock control register has enabled the block clock. This case is
similar to conditional point-to-point connectivity checking, but
the clock gate is often a sequential element, implemented with
a latch on the enable signal.

The checking could be done without considering the
sequential behavior by checking the paths separately. That is,
by moving from clock source to clock gate, from clock enable
register to clock gate enable port, from clock gate output to
block clock. These checks would not involve any sequential
behavior. However, it is fairly simple to check the combined
behavior with assertions, thereby catching bugs such as
polarity inversion of the clock gating signal.

The clocking scheme could of course be more complex,
perhaps involving more signals controlling the clock gating, in
which case these conditions must also be incorporated into the
assertion.

In the ST-Ericsson modem design, the clocking architecture
is quite complex due to the aggressive power saving
requirements. It involves every block in the design. There are a
large number of clocks, each with a number of sources that
dynamically determine if a clock should be running or not.

The integration aspects of the clock design have been
formally verified on subsystem level. At block-level the
functionality of the clock control blocks have been fully proven
formally. Formal techniques have become the preferred
solution for verification of the clocking functionality, in part
because of the critical nature of the function and also because
the alternatives, direct test cases or constrained random test, are
needlessly complex.

At subsystem level, the clocking verification consists of
checking that the different sources are connected through the
hierarchy and combined correctly to turn on the individual
clocks. Although this verification is similar to the previously
described connectivity verification, it involves both sequential
behavior and logic functions. The formal verification also
requires a number of constraints, partly to bypass a complex
startup sequence such as powering up PLLs and partly to
separate DFT mode from mission mode.

Some of the clock properties can be reused from the block
level verification since that verification is also done formally.
The reuse, however, does require some changes to the clock
properties. It will of course simplify the reuse if the block level
properties are developed with hierarchical reuse in mind.

D. DFT connectivity

A large part of the DFT functionality is contained in the
memory BIST logic. Control of the memory BIST functionality
is achieved through the use of global control signals and DFT
control registers. This control is suitable for formal
connectivity checking.

DFT scan and BIST modes require clock gates and resets to
be controlled differently than mission mode. This control is via
top-level signals and DFT control registers. The verification of
this control can be included in the clock and reset verification
described earlier, though in some cases it requires constraints
for analyzing the design separately in DFT mode.

One example of DFT functionality that can be easily
included is where DFT modes override the mission mode clock
to force clock gates open. Both the connectivity of the DFT
control signals and the correct function of the clock gating can
be verified in this way.

Building upon the formal connectivity checking, it is
possible to check other simple logic functions in a similar way.
One example is the BIST end status signal. Each memory BIST
controller raises this signal when it has completed the memory
test. The end signals from all memory BISTs are then
combined into a single global end signal that is simply the
AND function of all the separate end signals. Verifying this
function using subsystem-level simulation is very time
consuming since it requires sequencing all the individual BIST
end signals. With formal verification, it is simply a matter of
capturing the AND logic in the form of a property.

VI. SPECIFICATIONS

The efficiency of creating the connectivity properties
depends to a large degree on the specifications, especially on
how easy it is to use the specification as input to the scripts that
generate the connectivity properties. This reuse can be
achieved either through using file formats that are machine
readable, such as spreadsheets or XML files, or by having
clearly specified rules that can be applied to the whole design,
such as “all clock gates must be opened when the dft_clk_force
signal is activated”.

 The specifications used at ST-Ericsson for connectivity
verification consist of a number of different sources. Most are
architectural specifications of the design and are listed below.

The remainder of this section describes these specifications and
how they are used in connectivity checking.

• Integration spreadsheets

• Port lists

• Memory lists

• Hierarchy description

• Architecture specification

• Clocking architecture

• Power domains

• DFT architecture

• DFT configuration register description

These specifications are considered golden for connectivity
verification.

Integration spreadsheets describe subsystem connectivity.
The subsystem can consist of a large number of blocks and the
spreadsheet describes where each block-port is connected. One
verified subsystem has 3,500 point-to-point connections
described in this way.

During integration the spreadsheet is used as input for
generating the subsystem RTL. Here the connectivity check
verifies that the integration process has been performed
correctly. This connectivity check might seem superfluous
since both RTL and properties are generated from the same
source. Yet there are several reasons why this makes sense.
The generated interconnect can have bugs due to the generator
scripts. The interconnect generation is also done at several
levels; a generated subsystem is instantiated in another
subsystem, which is also generated. Thus there is a danger of
cross-hierarchy bugs. Furthermore, design changes might be
done without regenerating the design from the specification, for
example when implementing ECOs.

Another specification is the port list which describes all
subsystem- and block-level ports and includes data types, clock
region and the reset values on all outputs. The architecture
specification combined with the port lists are used to generate
properties that check that block and subsystem outputs have
correct reset values when the corresponding reset input is
activated. This verifies the integration as well as the block
design.

Memory lists in spreadsheet form and hierarchy
descriptions in XML form are used to create properties— for
example, power and retention control of the memories—that
verify system-wide connectivity to all memory IPs.

An alternative or complementary approach for specification
is to embed the information in the design. This might seem
contradictory to the goal of verifying the design, but there is
information needed for verification that is not the subject to be
verified. One example is finding the hierarchical path to all
memory instances, which is required for checking that power
control signals are connected to all memory instances. These
paths are not subject to verification, so taking this information

from the RTL design does not decrease the verification value
of the connectivity.

The hierarchical paths could be extracted from an XML
hierarchy file or from the RTL design. A simple method is to
ensure that all memories in the design use a consistent naming
scheme that allows identification of memories by their instance
or entity names. Memory list and path information can then be
automatically extracted from the RTL design database.

It’s not only the quality and form of the specification that
affect the effort needed to create the connectivity checking
properties. The regularity/consistency of the design also has a
big influence.

In large SoC designs, the different subsystems and blocks
are often developed by different design teams that might have
different design styles and solutions. This can make
connectivity verification very time consuming. Enforcing
common design styles and design solutions is therefore very
important. One example of this is how the memory BIST is
connected. There are eight large subsystems in the modem
design that use memory BISTs. If each subsystem used a
different way of connecting the BIST through the hierarchy
(even though they comply to the same BIST design rules) the
connectivity effort would be eight times larger.

In the ST-Ericsson modem design, this is solved by
generating the BIST structure so that it is identical for all
blocks in the design and also by enforcing how the control
signals are connected through the hierarchy.

VII. AUTOMATIC CREATION OF PROPERTIES

Connectivity checks are usually very regular and repetitive
in nature and lend themselves easily to script generation of the
properties. There are advantages to automatically generating
the properties. One is that there is less editing when design
changes happen, such as alterations in the design hierarchy. It
is also possible to make the input files to the generator in a
compact readable format, making it much easier to review.

Example 1. Connectivity generator input file

{check} CDR connection N0-N4, Main PLL

{src} $syscon_main_pll_cdr_entity

{srcports} tst_pll_pf_n0,

 tst_pll_pf_n1,

 tst_pll_pf_n2,

 tst_pll_pf_n3,

 tst_pll_pf_n4,

 tst_pll_pf_enable

{dst} $syscon_main_pll_entity

{dstports} N0,N1,N2,N3,N4,ENABLE

{tag} main_pll_n_ctrl

Here’s one example of the input to a generator script
describing a number of connections between two blocks in a
compact format. This input file is manually written based on a
specification of the corresponding functionality. The file
describes the path to two blocks (dst, src), which are variables
defined elsewhere. Next comes a list of the source port names
(srcports) and a list of the corresponding port names on the
destination block (dstports). The tag field describes a
precondition, defined elsewhere, so the connectivity is only

checked when this condition is set. From this file, six
conditional point-to-point connectivity assertions are
generated. The input file is much more compact and easier to
review than the generated SystemVerilog assertions.

In the previous example, the input file was created just to
provide data for checking connectivity. An alternative example
is shown below. Here, the input file is used both for generating
the RTL interconnect code and the data required for
connectivity checking. The example is an extract from a
spreadsheet file used to describe block-to-block connectivity,
with each line describing two block-ports that should be
connected. It also describes when ports are to be left
unconnected or tied-off to a constant.

Example 2. Connectivity and integration spreadsheet file

cpu.paddrdbg[11..2];db.paddr[11..2]

cpu.paddrdbg31 ;db.paddr[31]

ac.prdata[31..0] ;pb0.ac_prd[31..0]

ac.psel_vec_a ;pb0.ac_evec_psel

cpu.rstreq ;_to_open

cpu.nopwrdwn ;_to_open

cpu.addr[31..12] ;_to_constant ;(OTHERS => '0')

cpu.addrv ;_to_constant ;'0'

The compactness of these formats is important. It is in
principle possible to directly write the assertions without using
any generator, but when the complete property set consists of
10,000 properties the result could be 100,000 lines of code and
10 MB of text. Without automation, the maintenance of such a
property set is of course costly.

VIII. CONSIDERATIONS FOR FORMAL

Usually one would not consider running formal verification
at the SoC level to check functional behavior; formal is usually
a method that is targeted at block level verification [4]. The
main concern is the size of the state space the formal tool needs
to consider, which is both a function of the RTL design and the
properties. With connectivity checking, the properties are
usually trivial, often with little or no temporal element. Also by
their nature, they typically involve only narrow slices of the
design under test, allowing the formal tools to consider just a
fraction of the total SoC state when attempting to prove the
properties. As a result, formal verification can be readily
deployed at the SoC level.

While connectivity properties are usually simple, there are
a few things to consider when writing them. The examples
below will be using SystemVerilog assertions (SVA) [5] but
for formal connectivity checking, both PSL and SVA can be
used. The syntax and semantics are very similar and the
concepts exemplified here are useful in both languages.

A. Point-to-point properties

Assertions are clocked and as SoC designs contain many
clocks, it must be determined which clock to use for each
assertion. This can, however, be simplified. For combinational
connectivity checks, the relationship between clocks is not
relevant and therefore all clocks can be considered to be
identical. This allows all properties to be setup to use the same
clock, and thus to drive all clocks in the design.

Figure 2. Design example used in the assertions below

The following example shows how a simple point-to-point
connectivity check can be written in SVA using the design
example in figure 2. It is simply an equivalence check of the
two ports referenced using hierarchical dot notation. The
example assumes that a default assertion clock has been
defined (see example 7).

Example 3. Point to point connectivity check through hierarchy

assert_in1__blockb_port1:

 assert property (

 dut.in1 == dut.a.b.port1

);

Conditional point-to-point connectivity is another common
property. Conditional connectivity is simply a precondition for
the equivalence check. This assumes that only combinational
logic is involved. Often the condition may be used in many
properties, so separating the condition from the property is
generally a good idea. In the following example, also based on
the design example in figure 2, the condition is described
separately so it can be easily reused.

Example 4. Conditional point to point connectivity check

assign select2 = (

 (dut.c1 == 1) &&

 (dut.c2 == 1)

);

assert_select2_in2__b_port2: assert property (

 select2 |-> dut.in2 == dut.a.b.port2

);

An alternative method to implement this property would be
to consider the condition to be static during the whole analysis.
This can be done by using a constraint to set the design in the
correct condition for the analysis of the interconnect.

When just some of the property set requires this constraint
and other properties don’t—for example, to separate DFT and
mission mode—these must be analyzed in separate runs. The
advantage of analyzing the modes separately is that the
properties might be simpler to describe since they may not
have to describe both modes of behavior. A disadvantage is
that other modes must be analyzed in separate runs. There is
also a risk of over-constraining the design, thereby missing
verification of valid behavior.

An unconditional point-to-point property is simply an
equivalence check and at first sight may be considered to be
sufficient to check the connectivity of two nodes. However,
this property would miss one common type of error: that a
signal is mistakenly tied off to 0 or 1. In such a case, the
equivalence still holds, so another type of property is needed.
One simple solution is to add cover properties verifying that
the involved signals can toggle.

Checking that the signals are not tied off in a conditional
property must be done differently. A simple cover statement
might not work since potentially the condition can toggle in the
same cycle and cause the checked signal to toggle. A typical
example of this would be a signal that has different behavior in
DFT mode vs. mission mode, effectively having a mux on the
signal controlled by the DFT mode condition. Just changing the
mux select signal will toggle the output while the input to the
mux might still be tied off.

The cover property for a conditional property should
therefore be described differently. The following example
shows how this can be accomplished by requiring that the
condition is stable when the signal to be checked toggles.

Example 5. Conditional tie-off check

cover_select2_b_port2_rose: cover property (

 select2 && $stable(select2) &&

 $rose(dut.a.b.port2)

);

cover_select2_b_port2_fell: cover property (

 select2 && $stable(select2) &&

 $fell(dut.a.b.port2)

);

It would be possible to write such a property as an assertion
rather than a cover property, but this may require use of
liveness [5]. Liveness properties can be checked using formal
techniques but may be more challenging to prove and debug.
So the decision was made to express these conditional checks
as cover properties.

B. Connectivity and combinational logic

Reset logic can also be checked. But in a case where there
are several reset sources which can cause a blocks reset to be
activated, a simple equivalence property cannot be used. The
following example illustrates how this can be written using
implication instead of equivalence.

Example 6. Reset connectivity check with multiple sources

assert_reset1_blocka_rst: assert property (

 dut.reset1 == 0 |-> dut.a.b.c.blocka.rstn == 0

);

assert_reset2_blocka_rst: assert property (

 dut.reset2 == 0 |-> dut.a.b.c.blocka.rstn == 0

);

Reset output values of blocks can also be checked. The
following example is a complete SVA property file that defines
property clocks, sets input resets through constraints, checks
output values and also shows how the checker module is bound
to the DUT using the SVA bind-construct.

Example 7. Reset value check

module reset_checker (input ref_clk);

 default clocking ref_clock @(posedge ref_clk);

 endclocking

 // constraints: reset inputs are active

 assume property (dut.core_rst_n == 0);

 assume property (dut.dbg_rst_n == 0);

 // assertions: check output values during reset

 assert_rst_mem_m0_awsize:

 assert property (dut.mem_m0_awsize == 0);

 assert_rst_mem_m0_awvalid:

 assert property (dut.mem_m0_awvalid == 0);

endmodule

// Bind tester module to the DUT

bind dut reset_checker i_reset_checker (.*);

The reset checking is an example of checking simple logic
functions. Another example that was previously mentioned is
to verify the global BIST end signal. Again, this combines the
verification of connectivity with logic functions.

Example 8. Verifying a global logic function

assert global_bend: assert property (

 dut.global_bend == (

 dut.a.b.c.bend &&

 dut.a.x.i1.bend &&

 dut.b.bend

)

);

C. Sequential properties

The examples discussed so far have not included any
sequential behavior. One example involving sequential logic is
checking reset connectivity through reset synchronizers (i.e.,
two flip-flops in series synchronizing a reset signal). The reset
source and reset destination are therefore not combinationally
connected, so checking the connectivity involves sequential
behavior. This can be verified formally, but there are also some
simplifications that can be made.

Even when the connectivity checks include sequential
behavior, the check is normally not verifying the exact
sequential behavior. The connectivity might check that the
release of reset reaches the destination, but usually it is not
relevant how long time this takes in relationship to other
clocks. So a reasonable simplification is to assume that all
clocks are identical thereby avoiding the work to define the
exact relationship between all clocks. In ST-Ericsson’s modem
design, approximately 200 clocks would otherwise have to be
set up individually.

Clock connectivity checking can in principle be performed
in the same way as other connectivity checks, but there is one
additional aspect to consider. Normally it must be specified
which clock each assertion is clocked on. To be able to check
each part of a clock waveform, the assertion clock must be
faster than the clock to be checked. If the assertion clock
frequency is double the frequency of the checked clock, then

each clock phase can be checked. It is therefore not sufficient
to use the highest speed clock in the design to clock
connectivity assertions that are checking the clock waveform.
One solution is to create a “virtual” clock for the assertions.
This is a clock that is not present in the design under test, but is
created for the formal tool and for which the appropriate
frequency can be specified.

Another aspect of clocking is that there are usually clocks
that are generated by on-chip PLLs. The behavior of PLL
models cannot be analyzed by the formal tool as they are not
modeled as synthesizable RTL, which is a prerequisite for the
formal analysis. However, the tool automatically identifies the
clock outputs of the models and treats them as clocks in the
analysis.

Likewise, derived clocks—gated clocks or clock dividers—
are identified automatically. However, in this case the tool can
analyze the behavior, so no simplifications are needed here.

D. Reviewing properties

Formal verification quality is only as good as the
specification—that is, the properties. The properties can of
course also have bugs, such as using the wrong signals or
conditions. These bugs are usually easy to find since the formal
tool will find counter examples. However, when the checks are
sequential, it is much easier to describe the wrong behavior in
the properties and the formal tool might not find any counter
examples. The process of writing sequential assertions should
therefore involve some way of reviewing the behavior of the
assertions.

The method used at ST-Ericsson is to let the formal tool create
waveform examples of the assertions (sanity waveforms) and
review these. This is usually enough for connectivity checks,
since the sequential behavior is usually very simple. If the
sequential behavior is more complex, then a single example
waveform might not be enough to show the full behavior of the
assertion. Other techniques must then be used. These may
include writing cover properties based on the assertion code to
show that the intended sequence is possible and using the
formal tool to create waveforms to review the sequences.
Another technique often used to debug properties is to modify
the properties so that they’re known to fail and then review the
counter example waveform created by the tool.

E. Testbenches and binding properties

Formal verification of connectivity requires very little in
the form of testbenches. There is usually no need to define
scenarios or testcases and go through a lengthy configuration
phase of the DUT to reach the state where the connectivity can
be verified. This means that the time from when the design is
ready to begin verification to the first results can be much
shorter than for other verification approaches.

What is required for formal verification is to develop the
properties and a method to attach the properties to the DUT.
The examples shown above are all based on two
SystemVerilog features to attach the properties to the DUT; the
bind-construct and hierarchical paths. The bind-construct
allows a module to be instantiated at any point in the design
without modifying the RTL of the design. In example 7, the
bind-construct has been used to attach a module containing the

properties, to the top level of the DUT. Hierarchical paths
allow access to any ports in the design through hierarchical dot
notation from within the properties as illustrated in the
examples.

Connectivity checking usually involves listing all endpoints
to be checked and creating assertions for each port-pair. In
some circumstances a substantially simpler method can be
used. The SystemVerilog bind construct can be used to
automatically attach assertions to the endpoint.

Figure 3. Automatic binding of checkers to all clk_gate instances

For example, consider a goal of verifying that in one mode,
controlled by a single top-level control signal, all clock gates in
the design are opened (see figure 3). One method to verify this
is to use an assertion as previously described, but that would
require listing all clock gates in the design. However, if you use
a design style where all clock gates are implemented by
instantiating the same module, you can use the bind construct
to attach a checker module to all instances of that clock gate
module without listing them.

In the bind statement, one port is then connected to the top-
level control signal and another port to the local port on the
clock gate module. In the attached checker module, a
connectivity assertion is used to check that the top-level control
signals always have the same value as the local port, thereby
verifying the connectivity.

F. Black boxing

The RTL code used in formal connectivity checking is the
same that is used for simulation based verification. However,
there are usually parts of the code that can’t be analyzed by the
formal tool such as behavioral memory models, PLL models
etc. This has little impact on the formal connectivity
verification since the functions of these blocks are not
involved. The solution for the formal tool is to exclude these
behavioral models from the analysis, also referred to as black
boxing. This means that the tool considers the content of the
modules to be empty and the output of the modules can take
any value at any time. The tool identifies behavioral constructs
and will automatically black-box the corresponding modules.

This technique can also be used to reduce runtime of the
formal tools. If there are no connectivity endpoints or through

points inside a subsystem, it is possible to tell the tool to black
box that complete subsystem. This can in some cases improve
tool performance and also be used to carve up the property set
into tranches, enabling the verification to be performed in
multiple passes or phases if required. However, this also
introduces the risk that assertions might fail on behaviors that
are not possible since the design is under-constrained due to
outputs of the black-boxed parts. (There is no risk of getting
false proofs.)

IX. RESULTS

Since the introduction of formal connectivity verification,
several ST-Ericsson projects have succeeded in verifying the
connectivity exhaustively using formal methods. That is, all
connectivity has been verified and all properties proven
formally.

During the verification a large number of bugs were caught.
In a project with a new design, approximately 100 bugs were
found ranging from simple connectivity to interface bugs. In a
subsequent project with the same structural design but
upgraded functionality the number of bugs found was down to
40.

Among the key elements of the success of the approach:

• Due to the large number of connections to be verified,
it is crucial to be able to automate the creation of
assertions.

• The regularity of many design features such as
interconnect, clocking, reset, DFT control, memories,
memory BISTs, and the enforcement of consistent
design solutions makes compact specifications and
automation possible.

• The specifications are created in machine readable
form such as spreadsheets and XML files.

• It is possible to verify the connectivity checks using
formal tools on the full design. This depends to a large
degree on the low sequential depth of the connectivity
checks.

• Formal tools are available that could handle complete
designs, both in terms of size and design style.

These factors should not be difficult to achieve in other
SoC projects. Many of them are likely to be fulfilled already
since they contribute to overall efficiency, pursuit of which is
not limited to connectivity checking.

The creation of properties was achieved to a large degree
through automatic methods using scripts to parse and translate
the specifications. Previously, the properties were manually
created requiring several man months of effort. The automatic
approach takes just a few seconds to generate hundreds of
properties, saving time in both the development and
maintenance of properties. The scripts are also re-usable and
extendable for future projects.

Table 1 summarizes the properties used for two different
subsystems. The table differentiates between assertions created
automatically and semi-automatically (created automatically

but edited manually). The need to edit manually was due to
lack of information in the machine readable specifications or
too many special cases.

TABLE I. PROPERTIES SUMMARY

Property Set

Number Of Properties

Automatic

created

Assertions

Semi-

automatic

created

Assertions

Manually

created

Constraints

System I
Mission 3500 800 130

DFT 1600 300 0

System II
Mission 6500 0 75

DFT 0 0 0

The success of the method made it possible to widen the
scope of verification during the project, thereby verifying
substantially more properties than was initially planned. Due to
the widened scope, it is not possible to directly compare the
effort to implement formal verification versus that to just
proceed with simulation-based verification. However, the time
to develop and verify these properties is certainly much shorter
than that generally expended when verifying using simulation.

The clock connectivity required most time per assertion to
write as the checkers are more challenging. But it is also in this
area that simulation has most problems. The clocking is a
system-wide behavior that has a large number of cases.
Covering this using functional coverage and constrained
random simulation would be very time consuming. Using an
assertion language for checking would be a good choice even if
using a simulation-based verification approach for clock
connectivity checking. However, with the formal alternative,
you avoid the large task of finding scenarios that complete the
coverage goal.

Before analysis the property set is sorted into groups, where
the members of each group share common constraints, and
separate formal runs are then applied to each group. For the
complete modem design, it takes a few hours to run the proofs
of one property group while the complete set might be run
overnight.

It is also important to stress that expertise in formal
verification methods is not so important for this type of
verification. The team that implemented these methods at ST-
Ericsson were by no means experts in formal verification. The
successful approach employed at ST-Ericsson should therefore
not be difficult to reproduce.

Most of the formal verification has been performed using
Mentor Graphics’ Questa

®
 Formal product but the techniques

described in this paper are fairly tool-independent and have
been used with other formal tools.

X. CONCLUSIONS

The verification of SoC assemblies is a challenging process
due to the number of blocks, point-to-point connections and
complexity of clock structures. ST-Ericsson has successfully
approached this using formal verification methods, achieving
an efficient verification flow that is to a large degree automated
and has proven to catch bugs efficiently. Indeed, thousands of
properties have been proven and hundreds of bugs caught using
this method.

Creating and proving connectivity properties is not difficult
and doesn’t require extensive experience of formal verification.
However, given the amount of properties, automation of
property creation is important. Achieving this is facilitated by
machine-readable specifications. When ST-Ericsson started to
deploy formal connectivity verification, a part of the
specifications were machine-readable while others were not.
Over time this has been improved substantially as the
awareness of the upside of formal techniques increased the
need for machine-readable specifications and consistent design
solutions. The slowest improvement to achieve has been
consistent design solutions. This is natural and due to the high
cost of changing design solutions and the time it takes to unify
solutions over multiple sites and design teams.

The awareness of formal verification has increased since
deployment of formal connectivity verification and it has
become a part of the verification toolbox even outside the area
of connectivity verification. In the future, a natural
development might be to extend connectivity to also verify the
communication protocols used at the system level.

ACKNOWLEDGMENT

We thank the reviewers at ST-Ericsson and Mentor
Graphics for their insightful comments and suggestions.

REFERENCES

[1] N. Bamford, Rekha K Bangalore, E. Chapman, H. Chavez, R. Dasari
and Y. Lin, “Challenges in System on Chip Verification”, 7th
International Workshop on Microprocessor Test and Verification

[2] S.K. Roy, “Top Level SOC Interconnectivity Verification using Formal
Techniques”, 8th International Workshop on Microprocessor Test and
Verification

[3] P.Yeung, H.Foster, “Planning Formal Verification Closure”, Mentor
Graphics World-Wide Web Page [Online]. Available
http://www.mentor.com/products/fv/0-In_fv

[4] H. Foster, L. Loh, R Baham, V. Singhal, “Guidelines for creating a
formal verification testplan”, In Proc. DVCon 2006

[5] IEEE Standard for SystemVerilog - Unified Hardware Design,
Specification, and Verification Language, IEEE Std.1800-2009

