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Abstract— State-of-the-art system on chip (SoC) design teams are 

being continually challenged to work at higher levels of 

productivity. The reasons why include increased design 

complexity and shrinking time-to-market windows. Functional 

verification continues to be the bottleneck in the development 

schedule, even as dynamic simulation methodologies have been 

much advanced. 

Faced with these challenges on a recent project, a group within 

ST-Ericsson decided to use formal verification to check an SoC 

assembly (that is, to do connectivity checking). This paper will 

detail the approach, the success of which depended on two key 

factors: 1) Automated creation of assertions, which in turn 

hinged on the regularity of many design features and the 

availability of specifications in machine readable form, and 2) 

Low sequential depth of the connectivity checks, which made it 

possible to achieve formal proofs at the chip level when combined 

with formal tools that can handle complete SoC designs. 

The group demonstrated that creating and verifying properties 

with formal tools required less effort than using simulation alone, 

thus allowing for expanded verification scope.  

One way the effectiveness of this approach was illustrated: 

during verification, a large number of bugs were found ranging 

from simple connectivity to interface bugs. 

Keywords—formal verification; connectivity; SoC; assembly 

I.  INTRODUCTION 

SoC assembly verification, often referred to as connectivity 

checking, is among the most time-consuming aspects of SoC 

verification. Connectivity checking asks the question: “Are all 

my design elements assembled correctly?” More precisely, it 

verifies that connections between the blocks of logic in a 

design are correct; for example, that an output port on one 

block is correctly connected to its target. But this task is not 

limited to port checking. It may also encompass pad checking, 

where complex multiplexing is likely to be employed, and 

clock checking, where it’s critical to ensure the correct clocks 

propagate to their intended destination under all modes of 

operation (mission as well as DFT modes). 
For today’s SoC designs, connectivity checking is a 

daunting assignment given the large numbers of design blocks, 
complex clock structures, configurable bus-fabrics and point-
to-point connections that can number in the thousands. This 
complexity presents an enormous challenge for the verification 

engineer, who will typically develop directed tests to toggle all 
the design signals of interest and then debug to determine why 
signal values did not transition or propagate as expected. 

SoC debug can be particularly challenging. Often, when 
running dynamically at the SoC level, the result of incorrect IP 
integration may not show up for many cycles and will manifest 
itself as an incorrect value at the SoC outputs.  Tracing this 
back to the source of the erroneous connectivity may require a 
huge amount of effort, which is only partially lessened by 
placing assertions in the IPs [1].  

SoC integration issues impact simulation bring-up time. 
Given that a high percentage of integration problems are pure 
connectivity errors [2], verification of the SoC assembly is a 
crucial step. 

Until recently, the modem group at ST-Ericsson 
approached connectivity verification via simulation. The group 
tried to write a series fairly complex testcases to toggle all 
signals between blocks in the design and then tried to track 
down reasons why certain signals didn’t toggle correctly. 
Developing the test cases and debugging them were incredibly 
time consuming processes, a fact that pushed the team to look 
for an alternative approach. 

The group began a project to perform connectivity checking 
using formal verification techniques [3]. The result was 
exhaustive verification of the SoC interconnect using formal 
verification, thus eliminating the requirement for dynamic 
testing and dramatically reducing time to coverage closure. 

Key elements of the success outlined in this paper included 
automatic property creation and an ability to analyze the 
complete design using formal verification tools. 

II. VERIFICATION APPROACHES 

There are several approaches to verifying connectivity 
using simulation. One is writing direct testcases trying to 
toggle the signals to be checked. However, setting up scenarios 
that can exercise a certain path can be time consuming, 
requiring complex and lengthy device configuration. Another 
issue with this approach is that it is difficult in simulation to 
determine when two signals are connected. Toggling source 
and destination signal at the same point in time is not sufficient 
to verify the connectivity since other signals can be involved. 
An alternative approach, one that unfortunately shares many 
problems with direct testing, is the use of constrained random 



verification. At a subsystem level, this approach is often 
inefficient. For example, toggling all signals on a bus to see 
that all bits are connected and not swapped is very difficult 
when the communicating blocks cannot be directly controlled 
and observed. 

At ST-Ericsson software driven verification addresses a 
large part of the subsystem verification. That is, software 
executing in the on-chip CPUs are used to stimulate and check 
the design. A major drawback is that the software normally 
can’t observe behavior at signal level, which makes it 
unsuitable for connectivity verification. 

There are also tools that can verify the structural 
connectivity of signals by traversing the design to determine if 
there are paths from source to destination points. This approach 
can be used for simple cases when there’s no logic or 
sequential elements in the path but are otherwise unsuitable for 
this type of verification. 

Formal verification compares favorably to these 
approaches. A big advantage is that there’s no need to develop 
testcases for toggling signals. The formal analysis will 
implicitly analyze all possible signal combinations. Formal 
proofs also remove uncertainty about whether all cases have 
been covered. Setting up the device in the correct mode is often 
straightforward since the use of constraints can bypass lengthy 
setup sequences. Furthermore, the debug process is much more 
efficient. Only the signals involved in a failure are shown and 
the sequence that leads up to the failure is often minimal. And 
there is usually no need to develop any sort of testbench. 

III. LTE MODEM DESIGN DESCRIPTION 

ST-Ericsson develops cutting-edge mobile platforms and 
semiconductors across the broad spectrum of wireless 
technologies. Digital baseband SoCs such as the 
NOVATHOR™ DB8540 consist of a multi-mode wireless 
modem combined with application processors. The SoCs are 
used in mobile handsets such as Android phones, in which the 
modem handles the digital processing for the mobile 
communication and the application processor handles the user 
interface and Android applications. The multi-mode modems 
support a wide set of mobile communication standards: GSM, 
LTE FDD/TDD, HSPA+, TD-SCDMA, EDGE. The focus for 
this paper is the modem subsystem of these SoCs, though the 
approach is valid for a broad spectrum of SoC designs. 

The modem design consists of a large number (~50) of IP 
blocks mostly performing computational functions that 
communicate through a special purpose communication 
network. A number of processors control modem functionality. 
Blocks are connected to a multi-level bus interconnect through 
which the processors can control the blocks. The bus 
interconnect is also used for high bandwidth mobile data (e.g. 
150 Mb/s LTE). The implementation language is a mix of 
VHDL and Verilog. 

The design is divided into several power domains and 
advanced dynamic clock gating is used throughout the design 
to reduce power consumption. 

The design is memory intensive and contains 400 memory 
instances. 

IV. VERIFICATION FLOW 

The first RTL verification is performed at the block level 
using coverage-driven constrained random simulation. This 
verification covers all block functionality and is tied to system 
design through reference models used in the block-level 
testbenches. 

Subsystem verification (on several levels, all the way up to 
SoC level) then focuses on these questions: 

• Are the blocks correctly connected? 

• Does the subsystem meet performance and power 
requirements? 

• Does the communication within the subsystem work? 

• Does the communication outside of the subsystem 
work? 

• Do the parts of the subsystem work together in the 
different major modes of operation (different power 
modes, mission/DFT-mode)? 

Connectivity checking is separated from the other 
verification tasks for efficiency reasons. First, it requires a 
different dedicated verification solution. Second, the 
connectivity verification should be run very early in the 
subsystem verification process. Checking such things as clocks 
and resets early is crucial since problems in these areas can 
block large parts of the overall verification task. 

Formal tools have many advantages in addressing 
connectivity verification. Such tools generally have little need 
for testbenches and are simple to set up and run checks, thus 
making formal verification fast compared to other techniques. 
Formal connectivity checking is therefore the first step in the 
subsystem verification and often run in parallel with other 
verification tasks. It is further part of the regression flow for 
each new subsystem release and typically completes long 
before other subsystem verification tasks. 

V. CONNECTIVITY PROPERTY SET 

A prerequisite for using formal property checking is having 
a complete property set, which conveniently is also required for 
verifying an SoC assembly. 

In any SoC design, various types of connectivity may exist 
that require checking. However, simple point-to-point 
connectivity is most common. 

A complex part of the interconnect is the reset and clock 
distribution, which contains logic such as muxes and clock 
gating. The implementation of this logic is distributed over the 
design and therefore not possible to verify at block level.  

A similar system-wide interconnect is implemented for the 
DFT functions such as operation of memory BIST controllers 
and the control of clock and reset distribution. 

  



 

A. Point-to-point connectivity 

A large part of the connectivity checks in general include 
the following types of point to point connectivity: 

• Unconditional point-to-point connectivity 

• Point-to-point with delay 

• Point-to-point with condition 

Figure 1.  Common types of connectivity checks 

These common types of connectivity are illustrated in 
figure 1 by the example paths: InA→OutA for unconditional 
point-to-point, InB→OutB for point-to-point with delay and 
InC→OutC for point-to-point with condition. 

There could of course be many more unique types of 
combinations of the above. Most often the connectivity is 
between a point on the top level of the chip and a port on a 
block some levels of hierarchy below. This allows the path of 
the check to propagate through multiple blocks, which 
inherently tests connectivity at many nodes in the design. 
Typically the form of the property is simple and so is a good 
candidate for automation. 

 

B. Reset connectivity 

After integration it’s crucial to verify that resets are 
working. Setting up simulations for this can be very time 
consuming. 

Formal verification of the reset function can verify that 
reset signals are correctly connected (i.e., that the reset source 
controls the correct block/subsystem reset). It can also verify 
the correct reset values on the outputs of a block/subsystem. 
With a single reset this is of course not a difficult simulation 
problem. But in today’s complex SoCs with many power and 
clock domains and complex IPs with separate resets, this 
becomes a non-trivial task. 

Assuming there is no logic involved, resets can be treated 
as any other point-to-point connectivity checking. However, 
there can be multiple reset sources controlling a block’s reset. 
For example, the reset source can be a combination of input 
pins, power on resets, software controlled resets and other 
functional resets. The reset sources are then combined through 
some logic to control a block’s reset. Formal verification of this 
logic is no more difficult than connectivity checking. What is 
required is identifying all reset sources, the points that should 
be controlled by each reset source and finally the function of 
the reset logic, such as muxing for separate control of reset 
during DFT modes. After that, it is a simple matter of writing 
assertions that check that when a reset source is activated, the 
reset on a block is also activated. 

The method assumes that resets are asynchronously 
activated, which is the normal case. If resets are clocked—for 
example, software-activated resets crossing a clock domain—it 
becomes more complex. Either the sequential behavior is not 
verified or clocks must be set up and the sequential behavior 
must be described in assertions or constraints. 

In addition to checking the connectivity of resets, the 
verification is easily extended to check the reset value of all 
outputs. For example, when a subsystem reset is activated, the 
output signals of all blocks should take the values according to 
the specification. This can become more complex and also 
more important when the design has multiple power regions 
and multiple resets. However, as long as the expected values 
are specified, it is fairly simple to write the properties. 

C. Clock connectivity 

Clocks are the next logical step in verification. The function 
that should be verified is that the correct clock waveform is 
applied to the destination block when the clock is enabled. This 
also verifies that the correct clock enabler and correct clock 
source is used, that any clock gates are opened and that the 
clock is propagated to the block. 

Consider an example. A clock source that is always on is 
distributed to a number of blocks, each having a clock gate 
controlling whether that block should have a clock. The clock 
gate is controlled individually for each block by registers. In 
this case, an assertion could be written that checks that the 
block clock is identical to the common clock source when the 
clock control register has enabled the block clock. This case is 
similar to conditional point-to-point connectivity checking, but 
the clock gate is often a sequential element, implemented with 
a latch on the enable signal.  

The checking could be done without considering the 
sequential behavior by checking the paths separately. That is, 
by moving from clock source to clock gate, from clock enable 
register to clock gate enable port, from clock gate output to 
block clock. These checks would not involve any sequential 
behavior. However, it is fairly simple to check the combined 
behavior with assertions, thereby catching bugs such as 
polarity inversion of the clock gating signal. 

The clocking scheme could of course be more complex, 
perhaps involving more signals controlling the clock gating, in 
which case these conditions must also be incorporated into the 
assertion. 

In the ST-Ericsson modem design, the clocking architecture 
is quite complex due to the aggressive power saving 
requirements. It involves every block in the design. There are a 
large number of clocks, each with a number of sources that 
dynamically determine if a clock should be running or not. 

The integration aspects of the clock design have been 
formally verified on subsystem level. At block-level the 
functionality of the clock control blocks have been fully proven 
formally. Formal techniques have become the preferred 
solution for verification of the clocking functionality, in part 
because of the critical nature of the function and also because 
the alternatives, direct test cases or constrained random test, are 
needlessly complex. 



At subsystem level, the clocking verification consists of 
checking that the different sources are connected through the 
hierarchy and combined correctly to turn on the individual 
clocks. Although this verification is similar to the previously 
described connectivity verification, it involves both sequential 
behavior and logic functions. The formal verification also 
requires a number of constraints, partly to bypass a complex 
startup sequence such as powering up PLLs and partly to 
separate DFT mode from mission mode. 

Some of the clock properties can be reused from the block 
level verification since that verification is also done formally. 
The reuse, however, does require some changes to the clock 
properties. It will of course simplify the reuse if the block level 
properties are developed with hierarchical reuse in mind. 

D. DFT connectivity 

A large part of the DFT functionality is contained in the 
memory BIST logic. Control of the memory BIST functionality 
is achieved through the use of global control signals and DFT 
control registers. This control is suitable for formal 
connectivity checking. 

DFT scan and BIST modes require clock gates and resets to 
be controlled differently than mission mode. This control is via 
top-level signals and DFT control registers. The verification of 
this control can be included in the clock and reset verification 
described earlier, though in some cases it requires constraints 
for analyzing the design separately in DFT mode. 

One example of DFT functionality that can be easily 
included is where DFT modes override the mission mode clock 
to force clock gates open. Both the connectivity of the DFT 
control signals and the correct function of the clock gating can 
be verified in this way. 

Building upon the formal connectivity checking, it is 
possible to check other simple logic functions in a similar way. 
One example is the BIST end status signal. Each memory BIST 
controller raises this signal when it has completed the memory 
test. The end signals from all memory BISTs are then 
combined into a single global end signal that is simply the 
AND function of all the separate end signals. Verifying this 
function using subsystem-level simulation is very time 
consuming since it requires sequencing all the individual BIST 
end signals. With formal verification, it is simply a matter of 
capturing the AND logic in the form of a property. 

VI. SPECIFICATIONS 

The efficiency of creating the connectivity properties 
depends to a large degree on the specifications, especially on 
how easy it is to use the specification as input to the scripts that 
generate the connectivity properties. This reuse can be 
achieved either through using file formats that are machine 
readable, such as spreadsheets or XML files, or by having 
clearly specified rules that can be applied to the whole design, 
such as “all clock gates must be opened when the dft_clk_force 
signal is activated”. 

 The specifications used at ST-Ericsson for connectivity 
verification consist of a number of different sources. Most are 
architectural specifications of the design and are listed below.  

The remainder of this section describes these specifications and 
how they are used in connectivity checking. 

• Integration spreadsheets 

• Port lists 

• Memory lists 

• Hierarchy description 

• Architecture specification 

• Clocking architecture 

• Power domains 

• DFT architecture 

• DFT configuration register description 

These specifications are considered golden for connectivity 
verification. 

Integration spreadsheets describe subsystem connectivity. 
The subsystem can consist of a large number of blocks and the 
spreadsheet describes where each block-port is connected. One 
verified subsystem has 3,500 point-to-point connections 
described in this way. 

During integration the spreadsheet is used as input for 
generating the subsystem RTL. Here the connectivity check 
verifies that the integration process has been performed 
correctly. This connectivity check might seem superfluous 
since both RTL and properties are generated from the same 
source. Yet there are several reasons why this makes sense. 
The generated interconnect can have bugs due to the generator 
scripts. The interconnect generation is also done at several 
levels; a generated subsystem is instantiated in another 
subsystem, which is also generated.  Thus there is a danger of 
cross-hierarchy bugs. Furthermore, design changes might be 
done without regenerating the design from the specification, for 
example when implementing ECOs. 

Another specification is the port list which describes all 
subsystem- and block-level ports and includes data types, clock 
region and the reset values on all outputs. The architecture 
specification combined with the port lists are used to generate 
properties that check that block and subsystem outputs have 
correct reset values when the corresponding reset input is 
activated. This verifies the integration as well as the block 
design. 

Memory lists in spreadsheet form and hierarchy 
descriptions in XML form are used to create properties— for 
example, power and retention control of the memories—that 
verify system-wide connectivity to all memory IPs. 

An alternative or complementary approach for specification 
is to embed the information in the design. This might seem 
contradictory to the goal of verifying the design, but there is 
information needed for verification that is not the subject to be 
verified. One example is finding the hierarchical path to all 
memory instances, which is required for checking that power 
control signals are connected to all memory instances. These 
paths are not subject to verification, so taking this information 



from the RTL design does not decrease the verification value 
of the connectivity. 

The hierarchical paths could be extracted from an XML 
hierarchy file or from the RTL design. A simple method is to 
ensure that all memories in the design use a consistent naming 
scheme that allows identification of memories by their instance 
or entity names. Memory list and path information can then be 
automatically extracted from the RTL design database. 

It’s not only the quality and form of the specification that 
affect the effort needed to create the connectivity checking 
properties. The regularity/consistency of the design also has a 
big influence. 

In large SoC designs, the different subsystems and blocks 
are often developed by different design teams that might have 
different design styles and solutions. This can make 
connectivity verification very time consuming. Enforcing 
common design styles and design solutions is therefore very 
important. One example of this is how the memory BIST is 
connected. There are eight large subsystems in the modem 
design that use memory BISTs. If each subsystem used a 
different way of connecting the BIST through the hierarchy 
(even though they comply to the same BIST design rules) the 
connectivity effort would be eight times larger. 

In the ST-Ericsson modem design, this is solved by 
generating the BIST structure so that it is identical for all 
blocks in the design and also by enforcing how the control 
signals are connected through the hierarchy. 

VII. AUTOMATIC CREATION OF PROPERTIES 

Connectivity checks are usually very regular and repetitive 
in nature and lend themselves easily to script generation of the 
properties. There are advantages to automatically generating 
the properties. One is that there is less editing when design 
changes happen, such as alterations in the design hierarchy. It 
is also possible to make the input files to the generator in a 
compact readable format, making it much easier to review. 

Example 1. Connectivity generator input file 

{check} CDR connection N0-N4, Main PLL 

{src}      $syscon_main_pll_cdr_entity 

{srcports} tst_pll_pf_n0, 

           tst_pll_pf_n1, 

           tst_pll_pf_n2, 

           tst_pll_pf_n3, 

           tst_pll_pf_n4, 

           tst_pll_pf_enable 

{dst}      $syscon_main_pll_entity 

{dstports} N0,N1,N2,N3,N4,ENABLE 

{tag}      main_pll_n_ctrl 

Here’s one example of the input to a generator script 
describing a number of connections between two blocks in a 
compact format. This input file is manually written based on a 
specification of the corresponding functionality. The file 
describes the path to two blocks (dst, src), which are variables 
defined elsewhere. Next comes a list of the source port names 
(srcports) and a list of the corresponding port names on the 
destination block (dstports). The tag field describes a 
precondition, defined elsewhere, so the connectivity is only 

checked when this condition is set. From this file, six 
conditional point-to-point connectivity assertions are 
generated. The input file is much more compact and easier to 
review than the generated SystemVerilog assertions. 

In the previous example, the input file was created just to 
provide data for checking connectivity. An alternative example 
is shown below. Here, the input file is used both for generating 
the RTL interconnect code and the data required for 
connectivity checking. The example is an extract from a 
spreadsheet file used to describe block-to-block connectivity, 
with each line describing two block-ports that should be 
connected. It also describes when ports are to be left 
unconnected or tied-off to a constant. 

Example 2. Connectivity and integration spreadsheet file 

cpu.paddrdbg[11..2];db.paddr[11..2]    

cpu.paddrdbg31     ;db.paddr[31]       

ac.prdata[31..0]   ;pb0.ac_prd[31..0]  

ac.psel_vec_a      ;pb0.ac_evec_psel   

cpu.rstreq         ;_to_open           

cpu.nopwrdwn       ;_to_open           

cpu.addr[31..12]   ;_to_constant ;(OTHERS => '0')   

cpu.addrv          ;_to_constant ;'0'  

 

The compactness of these formats is important. It is in 
principle possible to directly write the assertions without using 
any generator, but when the complete property set consists of 
10,000 properties the result could be 100,000 lines of code and 
10 MB of text. Without automation, the maintenance of such a 
property set is of course costly.         

VIII. CONSIDERATIONS FOR FORMAL 

Usually one would not consider running formal verification 
at the SoC level to check functional behavior; formal is usually 
a method that is targeted at block level verification [4].  The 
main concern is the size of the state space the formal tool needs 
to consider, which is both a function of the RTL design and the 
properties. With connectivity checking, the properties are 
usually trivial, often with little or no temporal element. Also by 
their nature, they typically involve only narrow slices of the 
design under test, allowing the formal tools to consider just a 
fraction of the total SoC state when attempting to prove the 
properties. As a result, formal verification can be readily 
deployed at the SoC level. 

While connectivity properties are usually simple, there are 
a few things to consider when writing them. The examples 
below will be using SystemVerilog assertions (SVA) [5] but 
for formal connectivity checking, both PSL and SVA can be 
used. The syntax and semantics are very similar and the 
concepts exemplified here are useful in both languages. 

A. Point-to-point properties 

Assertions are clocked and as SoC designs contain many 
clocks, it must be determined which clock to use for each 
assertion. This can, however, be simplified. For combinational 
connectivity checks, the relationship between clocks is not 
relevant and therefore all clocks can be considered to be 
identical. This allows all properties to be setup to use the same 
clock, and thus to drive all clocks in the design. 



 

Figure 2.  Design example used in the assertions below 

The following example shows how a simple point-to-point 
connectivity check can be written in SVA using the design 
example in figure 2.  It is simply an equivalence check of the 
two ports referenced using hierarchical dot notation. The 
example assumes that a default assertion clock has been 
defined (see example 7). 

Example 3. Point to point connectivity check through hierarchy 

assert_in1__blockb_port1: 

  assert property ( 

    dut.in1 == dut.a.b.port1 

  ); 

Conditional point-to-point connectivity is another common 
property. Conditional connectivity is simply a precondition for 
the equivalence check. This assumes that only combinational 
logic is involved. Often the condition may be used in many 
properties, so separating the condition from the property is 
generally a good idea. In the following example, also based on 
the design example in figure 2, the condition is described 
separately so it can be easily reused. 

Example 4. Conditional point to point connectivity check 

assign select2 = ( 

 (dut.c1 == 1) && 

 (dut.c2 == 1) 

); 

assert_select2_in2__b_port2: assert property ( 

  select2 |-> dut.in2 == dut.a.b.port2  

); 

An alternative method to implement this property would be 
to consider the condition to be static during the whole analysis. 
This can be done by using a constraint to set the design in the 
correct condition for the analysis of the interconnect.  

When just some of the property set requires this constraint 
and other properties don’t—for example, to separate DFT and 
mission mode—these must be analyzed in separate runs. The 
advantage of analyzing the modes separately is that the 
properties might be simpler to describe since they may not 
have to describe both modes of behavior. A disadvantage is 
that other modes must be analyzed in separate runs. There is 
also a risk of over-constraining the design, thereby missing 
verification of valid behavior. 

An unconditional point-to-point property is simply an 
equivalence check and at first sight may be considered to be 
sufficient to check the connectivity of two nodes. However, 
this property would miss one common type of error: that a 
signal is mistakenly tied off to 0 or 1.  In such a case, the 
equivalence still holds, so another type of property is needed. 
One simple solution is to add cover properties verifying that 
the involved signals can toggle.  

Checking that the signals are not tied off in a conditional 
property must be done differently. A simple cover statement 
might not work since potentially the condition can toggle in the 
same cycle and cause the checked signal to toggle. A typical 
example of this would be a signal that has different behavior in 
DFT mode vs. mission mode, effectively having a mux on the 
signal controlled by the DFT mode condition. Just changing the 
mux select signal will toggle the output while the input to the 
mux might still be tied off. 

The cover property for a conditional property should 
therefore be described differently. The following example 
shows how this can be accomplished by requiring that the 
condition is stable when the signal to be checked toggles. 

Example 5. Conditional tie-off check 

cover_select2_b_port2_rose: cover property ( 

  select2 && $stable(select2) &&  

  $rose(dut.a.b.port2) 

); 

cover_select2_b_port2_fell: cover property ( 

  select2 && $stable(select2) &&  

  $fell(dut.a.b.port2) 

); 

It would be possible to write such a property as an assertion 
rather than a cover property, but this may require use of 
liveness [5]. Liveness properties can be checked using formal 
techniques but may be more challenging to prove and debug. 
So the decision was made to express these conditional checks 
as cover properties. 

B. Connectivity and combinational logic 

Reset logic can also be checked. But in a case where there 
are several reset sources which can cause a blocks reset to be 
activated, a simple equivalence property cannot be used. The 
following example illustrates how this can be written using 
implication instead of equivalence. 

Example 6. Reset connectivity check with multiple sources 

assert_reset1_blocka_rst: assert property ( 

  dut.reset1 == 0 |-> dut.a.b.c.blocka.rstn == 0 

); 

assert_reset2_blocka_rst: assert property ( 

  dut.reset2 == 0 |-> dut.a.b.c.blocka.rstn == 0 

); 

Reset output values of blocks can also be checked. The 
following example is a complete SVA property file that defines 
property clocks, sets input resets through constraints, checks 
output values and also shows how the checker module is bound 
to the DUT using the SVA bind-construct. 



Example 7. Reset value check 

module reset_checker ( input ref_clk ); 

  default clocking ref_clock @(posedge ref_clk);  

  endclocking 

 

  // constraints: reset inputs are active 

  assume property (dut.core_rst_n == 0); 

  assume property (dut.dbg_rst_n  == 0); 

 

  // assertions: check output values during reset 

  assert_rst_mem_m0_awsize: 

    assert property ( dut.mem_m0_awsize == 0); 

 

  assert_rst_mem_m0_awvalid: 

    assert property ( dut.mem_m0_awvalid == 0); 

endmodule 

 

// Bind tester module to the DUT 

bind dut reset_checker i_reset_checker (.*); 

The reset checking is an example of checking simple logic 
functions. Another example that was previously mentioned is 
to verify the global BIST end signal. Again, this combines the 
verification of connectivity with logic functions. 

Example 8. Verifying a global logic function 

assert global_bend: assert property ( 

  dut.global_bend == ( 

    dut.a.b.c.bend  && 

    dut.a.x.i1.bend && 

    dut.b.bend 

  ) 

); 

C. Sequential properties 

The examples discussed so far have not included any 
sequential behavior. One example involving sequential logic is 
checking reset connectivity through reset synchronizers (i.e., 
two flip-flops in series synchronizing a reset signal). The reset 
source and reset destination are therefore not combinationally 
connected, so checking the connectivity involves sequential 
behavior. This can be verified formally, but there are also some 
simplifications that can be made. 

Even when the connectivity checks include sequential 
behavior, the check is normally not verifying the exact 
sequential behavior. The connectivity might check that the 
release of reset reaches the destination, but usually it is not 
relevant how long time this takes in relationship to other 
clocks. So a reasonable simplification is to assume that all 
clocks are identical thereby avoiding the work to define the 
exact relationship between all clocks. In ST-Ericsson’s modem 
design, approximately 200 clocks would otherwise have to be 
set up individually. 

Clock connectivity checking can in principle be performed 
in the same way as other connectivity checks, but there is one 
additional aspect to consider. Normally it must be specified 
which clock each assertion is clocked on. To be able to check 
each part of a clock waveform, the assertion clock must be 
faster than the clock to be checked. If the assertion clock 
frequency is double the frequency of the checked clock, then 

each clock phase can be checked. It is therefore not sufficient 
to use the highest speed clock in the design to clock 
connectivity assertions that are checking the clock waveform. 
One solution is to create a “virtual” clock for the assertions. 
This is a clock that is not present in the design under test, but is 
created for the formal tool and for which the appropriate 
frequency can be specified. 

Another aspect of clocking is that there are usually clocks 
that are generated by on-chip PLLs. The behavior of PLL 
models cannot be analyzed by the formal tool as they are not 
modeled as synthesizable RTL, which is a prerequisite for the 
formal analysis. However, the tool automatically identifies the 
clock outputs of the models and treats them as clocks in the 
analysis.  

Likewise, derived clocks—gated clocks or clock dividers— 
are identified automatically. However, in this case the tool can 
analyze the behavior, so no simplifications are needed here. 

D. Reviewing properties 

Formal verification quality is only as good as the 
specification—that is, the properties. The properties can of 
course also have bugs, such as using the wrong signals or 
conditions. These bugs are usually easy to find since the formal 
tool will find counter examples. However, when the checks are 
sequential, it is much easier to describe the wrong behavior in 
the properties and the formal tool might not find any counter 
examples. The process of writing sequential assertions should 
therefore involve some way of reviewing the behavior of the 
assertions. 

The method used at ST-Ericsson is to let the formal tool create 
waveform examples of the assertions (sanity waveforms) and 
review these. This is usually enough for connectivity checks, 
since the sequential behavior is usually very simple. If the 
sequential behavior is more complex, then a single example 
waveform might not be enough to show the full behavior of the 
assertion. Other techniques must then be used. These may 
include writing cover properties based on the assertion code to 
show that the intended sequence is possible and using the 
formal tool to create waveforms to review the sequences. 
Another technique often used to debug properties is to modify 
the properties so that they’re known to fail and then review the 
counter example waveform created by the tool. 

E. Testbenches and binding properties 

Formal verification of connectivity requires very little in 
the form of testbenches. There is usually no need to define 
scenarios or testcases and go through a lengthy configuration 
phase of the DUT to reach the state where the connectivity can 
be verified. This means that the time from when the design is 
ready to begin verification to the first results can be much 
shorter than for other verification approaches. 

What is required for formal verification is to develop the 
properties and a method to attach the properties to the DUT. 
The examples shown above are all based on two 
SystemVerilog features to attach the properties to the DUT; the 
bind-construct and hierarchical paths. The bind-construct 
allows a module to be instantiated at any point in the design 
without modifying the RTL of the design. In example 7, the 
bind-construct has been used to attach a module containing the 



properties, to the top level of the DUT. Hierarchical paths 
allow access to any ports in the design through hierarchical dot 
notation from within the properties as illustrated in the 
examples. 

Connectivity checking usually involves listing all endpoints 
to be checked and creating assertions for each port-pair. In 
some circumstances a substantially simpler method can be 
used. The SystemVerilog bind construct can be used to 
automatically attach assertions to the endpoint. 

 

 

Figure 3.  Automatic binding of checkers to all clk_gate instances 

For example, consider a goal of verifying that in one mode, 
controlled by a single top-level control signal, all clock gates in 
the design are opened (see figure 3). One method to verify this 
is to use an assertion as previously described, but that would 
require listing all clock gates in the design. However, if you use 
a design style where all clock gates are implemented by 
instantiating the same module, you can use the bind construct 
to attach a checker module to all instances of that clock gate 
module without listing them. 

In the bind statement, one port is then connected to the top-
level control signal and another port to the local port on the 
clock gate module. In the attached checker module, a 
connectivity assertion is used to check that the top-level control 
signals always have the same value as the local port, thereby 
verifying the connectivity. 

F. Black boxing 

The RTL code used in formal connectivity checking is the 
same that is used for simulation based verification. However, 
there are usually parts of the code that can’t be analyzed by the 
formal tool such as behavioral memory models, PLL models 
etc. This has little impact on the formal connectivity 
verification since the functions of these blocks are not 
involved. The solution for the formal tool is to exclude these 
behavioral models from the analysis, also referred to as black 
boxing. This means that the tool considers the content of the 
modules to be empty and the output of the modules can take 
any value at any time. The tool identifies behavioral constructs 
and will automatically black-box the corresponding modules. 

This technique can also be used to reduce runtime of the 
formal tools. If there are no connectivity endpoints or through 

points inside a subsystem, it is possible to tell the tool to black 
box that complete subsystem. This can in some cases improve 
tool performance and also be used to carve up the property set 
into tranches, enabling the verification to be performed in 
multiple passes or phases if required. However, this also 
introduces the risk that assertions might fail on behaviors that 
are not possible since the design is under-constrained due to 
outputs of the black-boxed parts. (There is no risk of getting 
false proofs.)  

IX. RESULTS 

Since the introduction of formal connectivity verification, 
several ST-Ericsson projects have succeeded in verifying the 
connectivity exhaustively using formal methods. That is, all 
connectivity has been verified and all properties proven 
formally. 

During the verification a large number of bugs were caught. 
In a project with a new design, approximately 100 bugs were 
found ranging from simple connectivity to interface bugs. In a 
subsequent project with the same structural design but 
upgraded functionality the number of bugs found was down to 
40. 

Among the key elements of the success of the approach: 

• Due to the large number of connections to be verified, 
it is crucial to be able to automate the creation of 
assertions. 

• The regularity of many design features such as 
interconnect, clocking, reset, DFT control, memories, 
memory BISTs, and the enforcement of consistent 
design solutions makes compact specifications and 
automation possible. 

• The specifications are created in machine readable 
form such as spreadsheets and XML files. 

• It is possible to verify the connectivity checks using 
formal tools on the full design. This depends to a large 
degree on the low sequential depth of the connectivity 
checks. 

• Formal tools are available that could handle complete 
designs, both in terms of size and design style. 

These factors should not be difficult to achieve in other 
SoC projects. Many of them are likely to be fulfilled already 
since they contribute to overall efficiency, pursuit of which is 
not limited to connectivity checking.  

The creation of properties was achieved to a large degree 
through automatic methods using scripts to parse and translate 
the specifications.  Previously, the properties were manually 
created requiring several man months of effort. The automatic 
approach takes just a few seconds to generate hundreds of 
properties, saving time in both the development and 
maintenance of properties. The scripts are also re-usable and 
extendable for future projects. 

Table 1 summarizes the properties used for two different 
subsystems. The table differentiates between assertions created 
automatically and semi-automatically (created automatically 



but edited manually). The need to edit manually was due to 
lack of information in the machine readable specifications or 
too many special cases. 

 

TABLE I.  PROPERTIES SUMMARY 

Property Set 

Number Of Properties 

Automatic 

created 

Assertions 

Semi-

automatic 

created 

Assertions 

Manually 

created 

Constraints 

System I 
Mission 3500 800 130 

DFT 1600 300 0 

System II 
Mission 6500 0 75 

DFT 0 0 0 

The success of the method made it possible to widen the 
scope of verification during the project, thereby verifying 
substantially more properties than was initially planned. Due to 
the widened scope, it is not possible to directly compare the 
effort to implement formal verification versus that to just 
proceed with simulation-based verification.  However, the time 
to develop and verify these properties is certainly much shorter 
than that generally expended when verifying using simulation. 

The clock connectivity required most time per assertion to 
write as the checkers are more challenging. But it is also in this 
area that simulation has most problems. The clocking is a 
system-wide behavior that has a large number of cases. 
Covering this using functional coverage and constrained 
random simulation would be very time consuming. Using an 
assertion language for checking would be a good choice even if 
using a simulation-based verification approach for clock 
connectivity checking. However, with the formal alternative, 
you avoid the large task of finding scenarios that complete the 
coverage goal. 

Before analysis the property set is sorted into groups, where 
the members of each group share common constraints, and 
separate formal runs are then applied to each group.  For the 
complete modem design, it takes a few hours to run the proofs 
of one property group while the complete set might be run 
overnight. 

It is also important to stress that expertise in formal 
verification methods is not so important for this type of 
verification. The team that implemented these methods at ST-
Ericsson were by no means experts in formal verification. The 
successful approach employed at ST-Ericsson should therefore 
not be difficult to reproduce. 

Most of the formal verification has been performed using 
Mentor Graphics’ Questa

®
 Formal product but the techniques 

described in this paper are fairly tool-independent and have 
been used with other formal tools. 

X. CONCLUSIONS 

The verification of SoC assemblies is a challenging process 
due to the number of blocks, point-to-point connections and 
complexity of clock structures. ST-Ericsson has successfully 
approached this using formal verification methods, achieving 
an efficient verification flow that is to a large degree automated 
and has proven to catch bugs efficiently. Indeed, thousands of 
properties have been proven and hundreds of bugs caught using 
this method. 

Creating and proving connectivity properties is not difficult 
and doesn’t require extensive experience of formal verification. 
However, given the amount of properties, automation of 
property creation is important. Achieving this is facilitated by 
machine-readable specifications. When ST-Ericsson started to 
deploy formal connectivity verification, a part of the 
specifications were machine-readable while others were not. 
Over time this has been improved substantially as the 
awareness of the upside of formal techniques increased the 
need for machine-readable specifications and consistent design 
solutions. The slowest improvement to achieve has been 
consistent design solutions. This is natural and due to the high 
cost of changing design solutions and the time it takes to unify 
solutions over multiple sites and design teams. 

The awareness of formal verification has increased since 
deployment of formal connectivity verification and it has 
become a part of the verification toolbox even outside the area 
of connectivity verification. In the future, a natural 
development might be to extend connectivity to also verify the 
communication protocols used at the system level. 
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