
Using Formal Verification to Exhaustively Verify
SoC Assemblies

by
Mark Handover Kenny Ranerup

Applications Engineer ASIC Consultant
Mentor Graphics Corp. ST-Ericsson

Sponsored By:

2 of 18

Agenda
• Introduction
• SoC Assembly Verification
• ST-Ericsson’s SoC Assembly Verification Approach
• Types of Checking
• Connectivity Specifications
• Keys to success
• Results & Conclusions

Sponsored By:

3 of 18

Introduction
• We will discuss a project at ST-Ericsson for which Formal

verification was successfully deployed in the task of SoC
Assembly verification

• We will describe the methods used and the types of
checking employed

• We will present results and conclusions including the
elements that led to successful deployment

Sponsored By:

4 of 18

SoC Assembly Verification
• SoC assembly verification is the process of checking that

blocks of logic are correctly connected

• Traditionally verified using Dynamic Approach
– Constructing a set of simulation stimuli to toggle source

nodes and observe the behavior at the destination
– Challenges

• Likely requires directed approach not Constrained Random
• Requires huge number of tests and potentially many test

environments
• Creating and managing test suites
• Observability & debug

Sponsored By:

5 of 18

SoC Assembly Verification
• Static Approach

– Using Formal tools to exhaustively check all connectivity
in the SoC

– Challenges
• Requires the creation of the property set
• Running Formal on SoC

– Benefits
• Simplified debug
• No requirement to create tests
• Time to Results

Sponsored By:

6 of 18

ST-Ericsson Project
• ST-Ericsson modem subsystem

– ~ 50 IP blocks, VHDL and Verilog implementation
– Several processors, bus interconnect, 400 memory

instances
– Multi-Power domains, clock gating

• General Verification Approach
– Constrained Random and software driven verification

• Connectivity checking Verification
– Traditionally has used directed tests

• Bugs seen here have a large impact on other verification tasks
• Time consuming and considerable effort involved

Sponsored By:

7 of 18

ST-Ericsson Project
• Looked to deploy formal for connectivity checking to

improve throughput and results
– IP connectivity, Reset, Clocking and DFT checks

• Connectivity Specifications
– Many types

• Integration spreadsheet
• Port lists
• Memory lists
• Architecture specification

– Created and used for both SoC Construction/generating
RTL and for verification

– Scripted for auto-generation of properties

Sponsored By:

8 of 18

Types of Checks
• Many types of connectivity checks can be performed

– IP Connectivity
• Unconditional Point to Point
• Point to Point With Delay
• Point to Point With Condition

– Resets
• Reset source correctly controls the correct block reset
• Correct reset values appear on outputs of blocks/subsystems

– DFT
• Memory BIST control & BIST status checking, Clocking, Resets

– Clocks
• Clock is successfully applied to destination when enabled

Sponsored By:

9 of 18

Specifications and property
generation
• Automation of the property set is a key requirement

– Specification has to facilitate automation
– Scripts written to create properties from specification

• Specification Example 1
{check} CDR connection N0-N4, Main PLL
{src} $syscon_main_pll_cdr_entity
{srcports} tst_pll_pf_n0,

tst_pll_pf_n1,
tst_pll_pf_n2,
tst_pll_pf_n3,
tst_pll_pf_n4,
tst_pll_pf_enable

{dst} $syscon_main_pll_entity
{dstports} N0,N1,N2,N3,N4,ENABLE
{tag} main_pll_n_ctrl

Sponsored By:

10 of 18

Specifications and property
generation
• Specification Example 2

– Allows for generating RTL and Verification of the
connectivity

– Compact formal allows for greater readability

cpu.paddrdbg[11..2] ;db.paddr[11..2]
cpu.paddrdbg31 ;db.paddr[31]
ac.prdata[31..0] ;pb0.ac_prd[31..0]
ac.psel_vec_a ;pb0.ac_evec_psel
cpu.rstreq ;_to_open
cpu.nopwrdwn ;_to_open
cpu.addr[31..12] ;_to_constant ;(OTHERS => '0')
cpu.addrv ;_to_constant ;'0'

Sponsored By:

11 of 18

Connectivity Property Examples
• Property examples

– Port connectivity

assert_in1__blockb_port1:

assert property (
dut.in1 == dut.a.b.port1

);

assign select = ((dut.c1 == 1) && (dut.c2 == 1));

assert_select_in2__b_port2:

assert property
select |-> dut.in2 == dut.a.b.port2

);

{check} DUT, Block B
{src} $DUT
{srcports} in2
{dst} $BlockB
{dstports} Port2
{tag} select

Sponsored By:

12 of 18

Connectivity Property Examples
• Reset Connectivity

– Multiple reset sources to a block

assert_reset1_blocka_rst:

assert property (

dut.reset1 == 0 |->

!dut.a.b.c.blocka.rstn

);

assert_reset2_blocka_rst:

assert property (

dut.reset2 == 0 |->

!dut.a.b.c.blocka.rstn

);

DUT
Block A

Block B

rstn
reset2

reset1

Sponsored By:

13 of 18

Connectivity Property Examples
• Reset Value check

module reset_checker (input ref_clk);

default clocking ref_clock @(posedge ref_clk);

endclocking

assume property (dut.core_rst_n == 0);

assume property (dut.dbg_rst_n == 0);

assert_rst_mem_m0_awsize:

assert property (dut.mem_m0_awsize == 0);

assert_rst_mem_m0_awvalid:

assert property (dut.mem_m0_awvalid == 0);

endmodule

bind dut reset_checker i_reset_checker (.*);

Sponsored By:

14 of 18

Connectivity Property Examples
• Verifying a global logic function

– MBIST status signals are combined from all controllers to
a global output port using AND or OR logic.

• This is very difficult to verify in simulation.

assert_global_bend: assert property (
dut.global_bend == (

dut.a.b.c.bend &&

dut.a.x.i1.bend &&

dut.b.bend
)

);

MBIST

MBIST
global_bend

Sponsored By:

15 of 18

Connectivity Property Examples
• Design Regularity

– Can take advantage of regularity to greatly simplify
property generation

– Use SystemVerilog bind statement to bind checker
module to all instances thereby avoid listing all instance
paths.

– bind clk_gate checker i_checker(.*);

Sponsored By:

16 of 18

Results and Conclusions
• ST- Ericsson have successfully developed an approach and

deployed connectivity checking using formal verification
– Exhaustive verification of SoC assemblies

• New design project
– 100+ bugs were found

• Simple connectivity to interface bugs
– Property set for project included

• 3500+ automatically generated properties
• 300+ semi automated properties
• 100+ manually created constraints

• Subsequent project, same structural design but with some
new functionality, 40 bugs found

Sponsored By:

17 of 18

Results and Conclusions
• Keys to success

– Automation
• Its essential that the Connectivity specifications lend themselves

to automation of properties
– SoC’s will generate thousands of checks to be verified

– Design regularity and consistency
– Considerations for Formal

• Application doesn’t require high level of Formal competence
– Properties are typically simple

• SoC’s will contain blocks which are non-friendly to formal tools
• ST-Ericsson continue to use and develop formal based

connectivity checking

Sponsored By:

18 of 18

THANK YOU

	Using Formal Verification to Exhaustively Verify SoC Assemblies
	Agenda
	Introduction
	SoC Assembly Verification
	SoC Assembly Verification
	ST-Ericsson Project
	ST-Ericsson Project
	Types of Checks
	Specifications and property generation
	Specifications and property generation
	Connectivity Property Examples
	Connectivity Property Examples
	Connectivity Property Examples
	Connectivity Property Examples
	Connectivity Property Examples
	Results and Conclusions
	Results and Conclusions
	Thank you

