
Using Formal to Exhaustively
Determine Unsafe Clock Ratios
Between Asynchronous Blocks

Eric Hendrickson, Verification Lead; Jet Propulsion Laboratory
Bill Au, Account Technology Manager; Mentor, A Siemens Business

Richard Llaca, Sr. Application Eng; Mentor, A Siemens Business
Joe Hupcey III, Verification Product Technologist; Mentor, A.S.B.

A Typical DUT

• Controllers & instruments can operate at different clock rates
• Supported duty cycles & phases in each block can also differ
• Most blocks can’t “backpressure” their input data flow

The Verification Challenge
• How to verify the range of allowable clock ratios between any two

blocks to determine if their correct operation is maintained?

• i.e. How to make sure a source block isn’t over- or underclocking the
receiving block?

• Double bonus:
– Duty cycles and phases can be different
– “Back pressure” signaling mechanisms are NOT supported

(so we can’t rely on “handshaking” to save us!)

The Simulation-Based Approach

• Parameterized, scripted battery of directed tests

• Starting with the “middle” clock frequency:
– Set successively faster and slower clock signals
– Move to larger deltas of clock duty cycles and clock phases

• The outputs of the tests are monitored for data coherency –
i.e. keep checking the outputs until the data flow turns into garbage

Big Problem with the Sim-Based Flow:
Checking All “Process Corners” is Impossible

• Legal, possible permutations of clock frequency, duty cycle,
and phase relationships, is practically infinite

• What’s the minimum number of tests we need to run?

Bottom Line
•The simulation flow would still let deadlocks “escape” even in designs
that we were sure had been thoroughly analyzed and tested
•Only expensive, late-in-the-game system tests would save the day

Testbench Setup

Theory of Operation
• Overall clocking relationship for permissible clock ratios need to be understood as well as

permissible range of clock frequencies.
• DUT now includes generated clocks as part of COI of design.
• Use testbench constraints to generate clocks as part of the DUT.
• Constraints are a combination of SVA assumptions and testbench counters
• Counters will determine clock ratio frequency for source and destination clocks
• Counter thresholds that reset the counter are left as unconstrained inputs

– When a threshold is selected, SVA constraint keeps it static through the entire analysis time
– Overall threshold SVA constraint describes permissible range of ratios between source and

destination clock
• Formal engine will select a static counter threshold for each clock ratio

Theory of Operation cont.
• Ex: Basic FIFO crossing that supports multiple clock ratios between domains A and

B
– Fundamental goal: Prove data going across a FIFO that supports multiple clock ratios is

preserved
– clockdomain A can be 50-200mhz, 50mhz increments, 4 ratios
– clockdomain B can be 500-700mhz, 50mhz increments, 5 ratios
– Simulation would be required to test 20 static clock configurations to be tested
– Ratios simplify to 1-4 for A, 10-14 for B
– We invert the ratios to determine the relationship of possible values for clkA and clkB relative to

one another
• If clkA ratio is 2, and clkB ratio is 10, then tb_clk should cause counterA to reset when it hits 10-

1, and counterB to reset when it hits 2-1. Waveform explaining this relationship below.

Theory of Operation (cont)

Pseudocode
//constraints

cntr_threshold > min_ratio && cntr_threshold < max_ratio;

$stable(cntr_threshold);

logic testbench_clk; //fastest running testbench clock, set by the formal tool

logic testbench_rst; //testbench reset

logic [4:0] cntr_threshold;

logic clk_polarity;

logic [4:0] clk_counter;

always_ff(@posedge testbench_clk)

if(testbench_rst)

…

else begin

clk_counter <= (clk_counter < cntr_threshold - 1) ? clk_counter + 5’d1 : 5’d0;

clk_polarity <= (clk_counter == cntr_threshold - 1) ? !clk_polarity : clk_polarity

end

Results from jWire
• 3 bugs found

– Reset of uninitialized flop was missing
– Inactivity reset counter in the jWire Rx was causing data corruption right after poweron
– Odd bit widths of parallel data into serdes interface would cause a polarity inversion on one of the

reconstruction clocking bits on b2b transactions
• Run times expected

– 6-700 properties, many parameterized cover properties for state space completeness.
– 5-6 hours of run time on reduced design (parameterized bitwidth, fifo depth) to achieve full proof.
– 10+ hours on bitwidths of 8 or higher for serdes implementation
– For higher bitwidths, bug hunting flow may be more appropriate

• Conclusion
– This type of proof is good for mission critical interfaces and blocks that can be parameterized to achieve

simpler complexity.
– Long run times can be expected, but when counter examples are found, they tend to be extreme corner

cases that would’ve eventually failed in silicon that would’ve been extremely difficult to find in simulation.

Summary

• With this formal-based approach, we are able to discover the limits of the
clock ratios in days vs. weeks

• Leveraging the “non-determinism” property of formal analysis enables us
to effectively sweep all possible inputs in parallel

• Exhaustive nature of the results significantly reduces risk!

• We expect to yield significant savings in whole system RTL simulations,
through to final production tests on the flight hardware

	Using Formal to Exhaustively Determine Unsafe Clock Ratios Between Asynchronous Blocks
	A Typical DUT
	The Verification Challenge
	The Simulation-Based Approach
	Big Problem with the Sim-Based Flow:�Checking All “Process Corners” is Impossible
	Testbench Setup
	Theory of Operation
	Theory of Operation cont.
	Theory of Operation (cont)
	Pseudocode
	Results from jWire
	Summary

