
Using Formal Techniques to Verify System on Chip
Reset Schemes

Kaowen Liu, Penny Yang
Design Technology Division

MediaTek Inc.
HsinChu, Taiwan

Kaowen.Liu@mediatek.com
Penny.Yang@mediatek.com

Jeremy Levitt, Matt Berman, Mark Eslinger
Design & Verification Technology

Mentor Graphics
Fremont, U.S.A.

Jeremy_Levitt@mentor.com
Matt_Berman@mentor.com
Mark_Eslinger@mentor.com

Abstract - Complete verification of SoC (System on Chip)
reset is a fundamental requirement and, in practice, a
prerequisite to ensure correct operation. Today’s large
SoC designs integrate many design IP (Intellectual
Property) blocks, each with its own implementation of
reset. This is a significant challenge for design teams, since
there is little or no standardization of block level reset
circuitry. Moreover, system level reset strategies become
increasingly complex as they combine various sources of
reset.

SoC designs have multiple sources of reset, such as power-
on reset, hardware reset, software reset, and watchdog
timer reset. Simulation alone cannot efficiently verify all
reset scenarios. We present a highly automated
methodology using Formal verification, instead of
simulation, to completely verify reset schemes without the
significant manual effort required for simulation-based
verification.

Adding to the challenge of reset verification are the
fundamental differences in the way an X-State is
interpreted in RTL (Register Transfer Level) simulation
versus how it is treated by synthesis tools. Synthesis
interprets X as don’t care; RTL simulation interprets X as
unknown. This difference can result in silicon that behaves
differently than observed during simulation of the RTL.
Our methodology combines Formal techniques with
automatically generated SystemVerilog assertions to detect
X-States that result from bugs in the reset and general
design logic.

Increasingly, Formal verification techniques are being
employed to supplement simulation-based verification in
targeted areas. At MediaTek, we have found that SoC
reset validation is an area where Formal technology is
more efficient than simulation-based verification
methodologies. Along with Mentor Graphics, we have

developed and deployed Formal applications that design
teams can use without knowledge of SVA (SystemVerilog
Assertion) or Formal techniques.

Keywords—Formal Verification; Reset Scheme; SoC;
SVA

I. INTRODUCTION
When real silicon comes back, it is the most exciting

moment to watch as the chip is powered on and starts to work
as expected with the first basic test pattern. It can also be the
most frustrating moment if the chip doesn’t work and the
design team realizes that the design bug could have been found
in the early RTL (Register Transfer Level) simulation stage.

Mike Turpin’s paper [3] in 2003 raised awareness of X
issues in the design flow and how X-bugs can be missed by
RTL simulation and equivalence checking. To avoid X-bugs,
designers are supposed to follow good RTL coding guidelines.
Unfortunately, even though designers try their best to avoid X
related issues, we still see X-bugs in real chips. These silicon
bugs reflect the challenges we face with the traditional
simulation-based verification methodologies used in the design
flow at MediaTek.

The purpose of this paper is to discuss how Formal
techniques can be applied at the RTL verification stage to
detect design bugs in reset schemes and initialization that result
in X-States which cause errors in silicon. Although simulation-
based verification is capable of detecting these design bugs, it
is time consuming and requires a significant manual effort. We
show how to efficiently tackle this verification challenge using
Formal techniques.

Formal technology has tremendous promise to supplement
traditional simulation-based methodologies, but the technology
has its own challenges: among them, how to generate correct
SVA (SystemVerilog Assertion)? Instead of educating design
teams about Formal techniques and teaching them how to write
and debug SVA, the DT (Design Technology) division in

MediaTek has developed several Formal applications which
automatically generate SVA for specific targeted areas. The DT
division has been doing this since 2010. In this paper, the SVA
generated to addresses reset scheme validation and X-State
detection is discussed in detail.

II. GLOBAL RESET VERIFICATION

A. Global Reset is Complicated and Needs to Be Verified
SoC designs have multiple sources of global reset, such as

power-on reset, hardware reset, software reset and watchdog
timer reset. These are top-level signals that should be
connected to all asynchronous resets in the design, i.e., all
asynchronous resets in the design should be asserted when the
global reset is asserted. Unfortunately, a missing reset
connection, or one that is blocked from propagating due to the
mode of operation of the design, can easily go undetected. It is
hard for simulation to verify all reset scenarios, to verify that
every source of reset propagates to all the intended storage
elements in the design under all the proper conditions.

B. Watchdog Reset Verification
Taking watchdog reset verification as an example, a

directed test, specially crafted to verify if the watchdog reset
operation works correctly, needs to trigger the watchdog reset
condition in the middle of the simulation and check if both (1)
the watchdog reset has been propagated to the intended flip-
flops and (2) verify that the design can resume normal
operation mode after that. While checking that the design
resumes normal operation mode is fairly straightforward,
verifying in simulation whether the watchdog reset has actually
been propagated to every intended flip-flop is very tedious,
since there are a lot of flip-flops to check. And, if the watch
dog reset is not correctly connected to a flip-flop, the directed
test will still pass as long as the reset value happens to match
the value on the unconnected flop at the point in simulation
when the watchdog reset operation occurs. Thus, a passing test
does not mean that the watchdog reset has been verified.
Without completely verifying that the watchdog reset has been
propagated to every intended flip-flop, simulation-based
watchdog reset verification is incomplete, and bugs may still
sneak into the design, cause system failures in lab testing, and
require a silicon re-spin to fix.

C. Applying Formal to Verify Global Reset Is More Efficient
Global reset failures can be caused by missing or wrong

reset connections, design bugs residing in the logic between the
global reset source and the reset pin of the intended storage
element, sequencing errors – there are many potential sources.
Instead of crafting simulation-based tests (directed or
constrained random) for all possible scenarios to verify that the
global reset is correctly propagated to the intended storage
elements and indeed resets them, it is much more efficient to
add SVA on the reset pins of the intended storage elements and
let the Formal engine prove that these local reset pins will be
asserted whenever the designated global reset condition is met.
An example SVA is shown as the following.

global_reset_check: assert property

(@($global_clock) `GLOBAL_RESET |-> ##`DELAY _rst);

`GLOBAL_RESET defines the global reset condition
which is in the form of an SVA expression. This is the
antecedent of the implication. `DELAY is determined by the
actual cycle delay between the global reset condition being
satisfied and the local reset signal being asserted. To eliminate
unnecessary false firings, a maximum delay could be used
when the exact cycle delay between the global reset condition
being satisfied and the local reset signal being asserted is not
critical. “_rst” is the signal which is directly connected to the
local reset pin of the intended storage element. Our objective is
to verify the connectivity and logic between the global reset
and the local reset pin of the intended storage element, thus, by
not leaving any logic between the “_rst” signal and the reset
pin of the intended storage element, we let the Formal engine
verify the entire path. The same is true of the
`GLOBAL_RESET part: except for the required signals and
expression which make up the global reset condition, we
should leave as much design logic as possible for the Formal
engine to verify.

III. X-STATE DETECTION

A. X-optimism in RTL Simulation Can Hide Design Bugs
The Verilog X value can be intentionally used by designers

to express a don’t-care for logic synthesis in order to achieve a
better netlist, although it does not necessarily generate the
minimum netlist as discussed in [3], and in RTL simulation to
express don’t-care/wildcard in casex/casez comparison. It can
also be unintentionally introduced by designers through a
design bug, and represents unknown in RTL simulation.

 Design teams mostly rely on RTL simulation to
functionally verify their design, before they send their design
further downstream in the design flow. As shown in [3], RTL
simulation treats an X value optimistically by just taking one
if/case branch, and that means design bugs can be hidden by
the X-optimism of RTL simulation. Gate level simulation may
expose some X issues but it is not applicable for regression
testing because of its low performance. Equivalence checking
tools are mainly relied upon to verify that the gate level netlist
is correct, but they verify that the RTL and the gate level netlist
match under synthesis semantics; they do not consider the
behavior of X values in simulation. Thus, an effective and
efficient way to detect unintentionally introduced X values in
RTL is needed.

B. Design Bugs Cause X-State
Designers can easily unintentionally introduce X-States.

Here is an example which shows how a design bug caused an
X-State:

reg [9:0] w_slot;

assign y_data = w_slot[x_select[3:0]];

In the above RTL code, the designer used a 4-bit x_select
selector to select one element from the w_slot vector which has
10 elements, and then assigns the value of the selected element
to y_data. As long as the 4-bit x_select selector ranges between
0 and 9, y_data is assigned to a deterministic value from one

element of the w_slot vector (assuming that the selected
element already has a deterministic value). However, the
designer negligently allowed the 4-bit x_select selector’s value
to exceed 9, the upper bound of w_slot vector’s index, and
y_data ended up assigned to an X-State.

Here is another example which shows how a design bug
caused an X-State:

always @(posedge clock)

begin

 if (update && select)

 reg_to_be_read <= data;

end

To save silicon space, designers use filp-flops without reset
circuitry. In the above RTL code, reg_to_be_read starts off at
time zero in an X-State before it is assigned a deterministic
value from data when update==1’b1 and select==1’b1. In
RTL simulation, it is hard to prove that reg_to_be_read will
always be in a deterministic state before it is read when the
design is in a normal operation mode.

These X-State values may or may not cause test failures in
RTL simulation depending on factors such as whether the X-
State is masked out by simulation X-optimism or if the test
checkers compare the propagated X.

C. Resettable Flip-Flop Should Not Output X-State After
Initialization Is Completed
It is acceptable for an X-State to persist in a design for a

while, as long as it does not break the design’s normal
operation. For example, the shift register shown in Figure 1
may contain an X-State even after the design’s reset sequence
is completed. As data is fed into the shift register, the content
of this shift register will gradually become deterministic. As
long as the reader of the shift register starts to read the shift
register after its data has become deterministic, the X-State
causes no harm to the design. Actually, to accommodate a
variety of design needs, this is a common design practice.

On the other hand, every synchronous digital design relies

on its reset sequence to put itself into a known initial state
where all FSM (Finite State Machine) and control registers are
at the predefined start point intended by the designers. Thus, all
resettable flip-flops should be in a known state, either 1’b1 or
1’b0, after the reset sequence is completed. This is, of course,
usually done by asserting/de-asserting the reset pin. The

following is an example SVA property to assert that all
resettable flip-flops are in a known state.

x_check: assert property
(@(posedge _clk) ((^_reg) !== 1’bX) |=> ((^_reg) !== 1’bX));

IV. FORMAL VERIFICATION FLOW
Increasingly, Formal verification techniques are being

employed to supplement simulation-based verification in
targeted areas. At MediaTek, we have found that SoC reset
validation is an area where the strengths of Formal verification
techniques can be more efficient than simulation-based
verification methodologies. In the past, we relied upon directed
tests, which we knew had limited coverage. With constrained
random simulation, the manual effort required to verify SoC
reset schemes with assertions and coverage is high. Thus, we
developed Formal solutions with Mentor Graphics to
automatically generate SVA to tackle various verification
targets. Furthermore, these solutions are push-button, so that
design teams can benefit from them without any knowledge of
SVA or Formal techniques. With this new approach, we
leverage the strength of Formal verification techniques to
exhaustively explore all possible conditions with respect to
SoC reset schemes.

Figure 2 shows the Formal Verification Flow for Global
Reset Verification and X-State Detection.

A. Global Reset Verification
1) Generate reset checks: Use Questa Formal’s

“generate_reset_checks” application to parse the design’s RTL
code and search for all asynchronous reset signals. As shown in
Figure 3, SystemVerilog assertions (global_reset_checks.sv)
are automatically created to verify that the global reset is
correctly connected to all asynchronous reset signals in the SoC.

Figure 1 - Shift Register
Figure 2 - The Formal Verification Flow

Reader

2) Formal compile, verify and debug: Use Questa Formal
to prove or fire the global reset SystemVerilog assertions. The
Formal results can be listed in the GUI as Figure 4 shows.
And the debug waveform, schematic and source code are
shown in Figure 5.

Figure 4 - Formal Results of Each Property

Figure 5 - Debug with Waveform, Schematic and Source Code

B. X-State Detection
1) Generate X checks: Use Questa Formal’s

“generate_x_checks” application to parse the design RTL code
and search for all asynchronous reset flip-flops, synchronous
reset flip-flops, registers with enable and primary outputs as
Figure 6 shows. Asynchronous reset flip-flops should never be
in an X-State once the reset assertion/de-assertion procedure is
completed. The other three types of design elements should be
checked under proper conditions, such as reset with the active
clock edge, or the enable condition with the active clock edge.
The corresponding SystemVerilog assertions (x_checks.sv, as
Figure 7 shows) are automatically created to detect any
propagation of unknown values after the registers have been
initialized.

asynchronous reset DFF:
always @(posedge clk or negedge rstn)
 if (~rstn) reg <= …;
synchronous reset DFF:
always @(posedge clk)
 if (rst) reg <= …;
registers with enable:
always @(posedge clk)
 if (enable_expression) reg <= …;
primary outputs:
output po1, po2;

Figure 6 - The Classification of Registers and Primary Outputs in X-Checks

Figure 3 - Global Reset Checks

module global_reset_checks ();
`define GLOBAL_RESET \
 this_signal_must_be_defined_by_the_user
`define DELAY 0
`define CHECK_GLOBAL_RESET_MACRO(_rst) \
 @($global_clock) `GLOBAL_RESET |-> \
 ## `DELAY _rst

// GLOBAL_RESET checks for async reset used by
// 1 register:
// my_dut.A0.o
wire async_reset_id0 = ((! my_dut.A0.arst_n) === 1'b1);
global_reset_check_id0: assert property
(`CHECK_GLOBAL_RESET_MACRO(async_reset_id0));

…………

// FILE: ./questa_sva_global_reset_checks.sv
// GENERATED: Wed Oct 19 16:00:00 2012
// 2 distinct async reset signals
// 2 registers with async reset
endmodule

module X_check_s #(parameter WIDTH = 1) (
 input _clk,
 input [WIDTH-1:0] _reg);

x_check : assert property
 (@(posedge _clk) ((^_reg) !== 1'bX) |=> ((^_reg) !== 1'bX));

…
endmodule

Figure 7 - The Format of X Checks

2) Formal compile, verify and debug: Use Questa Formal
to fire the assertions with X. The GUI mode of Questa Formal
can be used to debug the firing as we described previously in
section “A. Global Reset Verification”. For our designers who
are accustomed to using Verdi [5], we automatically extract a
waveform and an rc file so that the firing can be debugged in
the environment they are most familiar with, as displayed in
Figure 8.

V. RESULTS AND SUMMARY
The global reset verification and X-State detection

methodologies described above have been deployed on
multiple projects at MediaTek. They have caught many design
bugs and proven to be of immense value.

A. Results of Global Reset Verification
The design under verification is an SOC with 3738047

register bits. With Questa Formal version 10.1b, 14835
assertions were generated in 61 minutes, compiled in 6.5 hours
and analyzed in 2.3 hours without any inconclusive checker.
14373 assertion properties were proven, 462 assertion
properties were fired, and 248 bugs were found among 3
different sources. Most of the firings were due to connection
bugs. However, some firings were caused by the design’s
testing logic.

TABLE I highlights the results of using the global reset
verification flow on our SoC design. It is also impressive
progress that Questa Formal 10.1b, compared to previous
versions, can prove a whole SoC size design in hours without
any inconclusive properties.

TABLE I - RESULTS OF GLOBAL RESET VERIFICATION ON THE SOC
Design size 3738047 register bits

SVA 14835 assertions

Run time
gen_sva: 61 min
compile: 6.5 hr
prove: 2.3 hr

Formal result
fired: 462
proven: 14373
inconclusive: 0

Bug 248 connection errors from 3 modules

.

B. Results of X-State Detection
X-State Detection flow can be applied at different levels in

the design hierarchy. Here, 3 designs under verification are
shown for demonstration purposes. The smallest one has 2357
register bits; 319 assertions were generated and they were
completed within 1 minute, with 2 bugs found out of 24 firings.
The medium size design has 14136 register bits; 1874
assertions were generated and they were completed in 48
minutes, with 2 bugs found out of 38 firings. The largest design
has 167632 register bits; 19907 assertions were generated and
they were completed in 4 hours and 20 minutes, with 6 bugs
found out of 195 firings.

TABLE II contains the results from the application of the
X-State detection flow to three designs with different sizes.
TABLE II - RESULTS OF X-STATE DETECTION IN DIFFERENT DESIGN SCALES

Design size
(Register bit) SVA Firing Bug Run time

2357	 319	 24	 2	 1 min	

14136 1874 38 2 48 min

167632 19907 195 6 4 hr 20 min

 From the results, we can approximately see the trend of run
time versus design size as Figure 9 shows. A module-level
design can be done in minutes and is easier to debug. As design
and SVA size become larger, the run time becomes longer, so
we recommend applying the X-State detection flow on module-
level designs for shorter run time and easier debugging.

Figure 9 - The Trend of Run Time versus Design Size in X-State Detection

VI. CONCLUSION
This paper presents highly automated methodologies using

Formal techniques to verify the correctness of global reset
schemes and perform X-State detection, without the large
amount of manual effort required by simulation-based
verification. The methodologies described above have been
deployed on multiple projects at Mediatek. They have caught

Figure 8 - Debug Formal Results with Verdi

design bugs which would have been missed by the existing
verification practices. As the results show, we have found that
SoC reset validation is one of those areas where the strengths
of Formal techniques can be more efficient than simulation-
based verification methodologies. The Global Reset
Verification flow is able to complete in hours, without any
inconclusive properties, on an SoC size design with Questa
Formal 10.1b. To shorten the run time and facilitate debugging,
we recommend applying the X-State Detection flow on
module-level designs. In summary, the application of Formal
techniques and automatically generated SVA to verify reset
schemes enables design teams to gain much greater confidence
in their designs with less effort.

VII. FUTURE WORK
Formal verification techniques have proven themselves to

be a good way to supplement simulation-based verification
methodologies. There are many other areas, similar to reset
scheme verification, where the application of Formal
verification techniques looks promising. We will keep working
on different topics. Our goal is to reduce manual effort, raise
the degree of automation, and achieve higher verification
confidence.

ACKNOWLEDGMENT
We would like to thank Whitney Huang from MediaTek for

initiating the request of the Global Reset Verification flow,
Joseph Hou from MediaTek for giving comments to enhance
this flow, Chunyi Lin for providing the data and help with
checking design issues and intentions, and Roger Sabbagh for
his help with the writing.

REFERENCES
[1] Lionel Bening, “A Two-State Methodology for RTL Logic Simulation”,

Proceeding 36th Design Automation Conference, June 1999.
[2] Lionel Bening and Harry Foster, Principles of Verifiable RTL Design,

Kluwer Academic Publishers, May 2001.
[3] Mike Turpin, “The Dangers of Living with an X (bugs hidden in your

Verilog)”, Version 1.1, October 2003,
http://www.arm.com/files/pdf/Verilog_X_Bugs.pdf

[4] Questa® Formal User Guide, version 10.1b, 2012.
[5] SpringSoft VerdiTM Automated Debug System

http://www.springsoft.com/products/verdi

