
Using Formal Applications to Create Pristine

IPs

Lee Burns

Elec Engr Principal

Cypress Semiconductor

425-787-4461

Lynnwood, WA 98087

lbrn@cypress.com

David Crutchfield

CAD Engr Sr Principal

Cypress Semiconductor

859 977 7555

Lexington, KY 40507

daac@cypress.com

Bob Metzler

Elec Engr Principal

425-985-6221

Lynnwood, WA 98087

technobob@foxinternet.net

Hithesh Velkooru

CAD Engr Sr

Cypress Semiconductor

859 977 7581

Lexington, KY 40507

hitr@cypress.com

Abstract- The search for a technology that can have the benefits of rapid and exhaustive verification led us to Formal

verification methodologies. This paper will focus on the use of such methodologies within Cypress to improve IP quality

throughout the design and verification cycle. At that point of time we did not have Formal expertise in our team.
Fortunately, a shift in the industry to automate Formal verification techniques into applications was occurring at the
same time. These applications give the benefits of Formal verification without forcing a steep learning curve, enabling

non-experts to take advantage of exhaustive Formal analysis. In this paper we will describe how we leveraged Formal-
based applications to expedite some high-value verification tasks and how we brought down the verification cycle time to
hours from weeks. Additionally, we will present how we integrated Formal applications within our existing Verification

Management System to seamlessly enable these tools for our engineers saving countless hours of training.

I. INTRODUCTION

With any library of reusable IP, it is imperative to fully verify each configuration of an IP without sacrificing time

to market or quality. Traditional functional simulation methods are unable to satisfy quality requirements within all

configurations along with delivery requirements. At Cypress the desire was to leverage Formal applications to

achieve quality in different areas of the design cycle and reduce development effort. The targeted areas for Formal

applications were register behavioral verification, intra-IP and inter-IP connectivity verification, mining unreachable

code, and coverage closure. We evaluated Formal verification tools in the market, chose the tool that would fit

efficiently into our existing digital verification infrastructure, and provided an immediate impact for our verification

teams.

Before integrating Formal applications, simulation based verification was required for verifying pin-constrained

IO pad multiplexing and on-chip bus connectivity. This typically took 7-8 weeks to get reliable simulation results on

mailto:lbrn@cypress.com
mailto:daac@cypress.com
mailto:hitr@cypress.com

a design consisting of approximately 50K logic gates. The Formal based application we leveraged requires as input a

CSV formatted file containing connectivity information. This CSV specification typically takes 1-2 days to create.

However, through automation, this specification can be generated from our existing design database that contains all

sorts of information including connectivity. Overall, with automation, and by leveraging Formal applications,

verification run times can be reduced to a few minutes.

Coverage closure is an important indicator in our IP verification process and is required. Mining out unreachable

RTL code can be very time consuming and involves a substantial amount of manual work. Usually, for a small to

medium IP, one week is required for identifying dead code. Through a Formal application we were able to generate

exclusions within few minutes to hours of time. This application also generates information that could help in

writing tests for uncovered RTL. By integrating this application into our Verification Management System we are

able to automate generation of exclusions for unreachable items from coverage criteria in conjunction with

functional simulation regressions in a single run.

For register verification we previously relied exclusively on UVM test benches using UVM_REG. Typically this

would take four to six weeks for writing tests and debugging the test bench for an IP with approximately 50K logic

gates. The Formal application that aids in this verification task takes only a few days for setup including creation of

a CSV formatted file describing the registers and their access policies and configuration variables. This application

tests to make sure that there are no corner-case bugs hiding between configuration schemas and access policies. The

results are impressive considering run time is less than one day. We are able to find issues that would take a very

long time for a constrained random simulation to find.

Along with these applications we found a Formal application that could point out critical problems in the RTL

early in the design process and also point out to the verification team where potential problems might exist. This

application complements the functions of a Linting tool with checks for coverage closure issues, functional impact

of ‘X’s and common design errors.

We experienced significant benefits once these Formal applications were integrated into our existing Verification

Management System making usage seamless to our verification engineers. We are able to leverage existing design

database and automation software to create inputs for Formal applications and integrate outputs of Formal

verification and simulation based verification. Implementation of each Formal application discussed will be detailed

below along with results and issues encountered to this point.

II. DEFINITION OF TERMS

CPU Central Processing Unit

CSV Comma Separated Value. A text file format wherein fields are delineated by commas.

FPGA Field Programmable Gate Array

IP Intellectual Property, refers to reusable design

IP-XACT XML format that defines and describes designs in a standard way

LSF Platform Load Sharing Facility – Workload management platform, job scheduler, for distributed

HPC environments

PLD Programmable Logic Device

Questa VM Questa Verification Management – Functionality within Questa SIM that offers a wide variety of

features for managing the regression. These features are built upon the UCDB

Questa VRM Questa Verification Run Management – Mentor’s tool for launching verification tasks within a

regression

RTL Register Transfer Level. Design abstraction which models a synchronous digital circuit with

regards to digital signal flow between hardware registers

SOC System-on-a-chip

UVM Universal Verification Methodology

VMS Verification Management System – Internally developed tool for gathering design and test bench

file information, compilation arguments, simulation arguments and test information, launching

each task, and collecting regression information and status

XML Extensible Markup Language

III. VERIFICATION MANAGEMENT SYSTEM

Years ago Cypress developed VMS (Verification Management System) to manage logic verification regressions

across the entire company. Along with the VMS tool, the project created a standard for design and test bench

organization, specification of tool arguments, test list creation, regression status reports, and coverage information.

VMS leverages Mentor Graphics’ Questa VRM (Verification Run Management) tool to launch compilation and

simulation jobs through a load sharing facility (LSF), and to generate and merge functional coverage information.

Having a standardized verification environment is important in cases where new techniques are desired. These

techniques or methodologies can be developed and propagated easily throughout the company without burdening

verification engineers who are focused on design and product delivery. In the context of this paper the intent was to

introduce Formal verification applications within an existing infrastructure to improve IP quality. Each section will

highlight the steps through VMS used to take advantage of Formal applications.

IV. CONNECTIVITY CHECKS

The Questa Formal connectivity checker is an application that converts a CSV or XML connection specification

into System Verilog assertions. These assertions are fed into Questa Formal Property checking along with the

design for validate the assertions are true. The assertion generator supports simple wired connections, conditional

connections, and connections with clock-cycle delays. So it is really more than just a connectivity checker, as it can

be used to:

 Check signal connections at any level of implementation intra-module, inter-module, or inter-IP.

 Check the function of any combinatorial logic with a truth table.

 Check the function of a state machine, pipeline logic, etc.

Of course we can check all of these things with simulation, but Formal may be a better choice if:

 Your testbench is not ready for use.

 You don’t have time to develop a reference model/scoreboard.

 Your specification is written to emphasize how functional blocks are connected; this is likely true at the

chip level, and may apply at the IP level. It really depends on what the IP does and how the RTL code is

implemented.

A. Implementation

The Questa Formal connectivity flow consists of generating property assertions from a user provided input

specification, in the form of a CSV file, followed by execution of Questa Formal property verification on the

generated assertions. If all assertions are properly verified to pass then all connections are considered valid. As

VMS is responsible for design management and compilation for all verification tasks, the system was modified to

include Questa Formal tool execution. Fig. 1 provides the implemented flow.

VMS

Design

RTL
Compile Design

Generate

Connectivity

Assertions

Property

Results

Compile

Assertions

Connectivity

Spec
PropertyCheck

Figure 1: VMS Connectivity Check Flow

For connectivity verification, VMS provides an input mechanism for the connectivity specification and uses a

Questa Formal application, qconnect, to generate connectivity assertions. Once created, the assertions are compiled

for usage in Questa Formal as properties to be verified. The process of compiling design RTL is the same as that of

functional verification and can simply feed the Questa Formal step. Note that a test bench is not required in this

flow.

B. Results

VMS, using the Questa Formal connectivity checking application, was targeted for connectivity checks at the chip

level, as well as, verifying portions of a PLD-like IP. Only results from IP connectivity verification are covered

here. The IP in this case contains islands of programmable logic, joined by programmable interconnect. This type

of IP is difficult to verify with the traditional UVM approach, as it would require a complicated reference model and

loads of time to write tests. Writing UVM tests to exhaustively verify an FPGA would be a monumental task.

Given the nature of the IP, the block functional specification is largely written in structural terms. Thus it was

straightforward to get from functional specification to connectivity specification. This connectivity specification

was used to verify:

 the user-programmable routing blocks

 the connections between the routing block instances and the programmable logic blocks.

A typical CSV routing specification looks like this (#s define comments):

Format specifier: type,src,dest,cond,delay are MG keywords

type,src,dest,cond,delay

top_block.route_in[0] --> top_block.route_out[0] (when route is enabled, async mode)

cond,top_block.route_in[0],top_block.route_out[0],(top_block.route_cfg && !top_block.sync)

top_block.route_in[0] --> top_block.route_out[0] (when route is enabled,1 clock cycle delay)

cond_dly,top_block.route_in[0],top_block.route_out[0],(top_block.route_cfg && top_block.sync),1

‘b0 --> top_block.route_out[0] (tied low when routing is disabled)

cond_tied_low,top_block.route_out[10],top_block.disable[10]

Above, ‘route_cfg’ enables the routing path and ‘sync’ determines if pipelining is enabled for the path. Other

connection types are supported but were not used for this IP. The complete list is: connect, connect_dly,

connect_inv, connect_allsame, cond, cond_inv, cond_allsame, cond_dly, mcond_dly, mutex, cond_mutex,

tied_high, cond_tied_high, tied_low, and cond_tied_low. Once the CSV specification is written, it is simply

provided to VMS as input for the connectivity checking flow.

Below is one of the connectivity checks from a routing CSV file:

type,src,dest,cond,delay

cond,s40udbtk_route.ext_route_left_horz_in[0],

 s40udbtk_route.udbpair_route_left_horz_out[0],

 (s40udbtk_route.csr_route_lho_cfg0_lho0sel==0)

 && !s40udbtk_route.csr_private_pipeline_md

The generated SV code is:

// ---

// Row Number: 15

// type: cond

// src: s40udbtk_route.ext_route_left_horz_in[0]

// dest: s40udbtk_route.udbpair_route_left_horz_out[0]

// cond: (s40udbtk_route.csr_route_lho_cfg0_lho0sel==0) &&

 // !s40udbtk_route.csr_private_pipeline_md

// ---

check_cond #(.width(`WidthParam_0))

CHECK_COND_FROM_s40udbtk_route_ext_route_left_horz_in_0_TO_s40udbtk_route_udbpair_route_left_ho

rz_out_0 (

.cond((s40udbtk_route.csr_route_lho_cfg0_lho0sel == 0) &&

 !s40udbtk_route.csr_private_pipeline_md),

.src(s40udbtk_route.ext_route_left_horz_in[0]),

.dest(s40udbtk_route.udbpair_route_left_horz_out[0])

);

// Signal Name : s40udbtk_route.ext_route_left_horz_in[0]

`define WidthParam_0 1

module check_cond #(parameter width = 1) (

 input logic [width-1:0] src , dest ,

 input logic cond

);

 connectivity_assert : assert property (@($global_clock)

 cond |-> src == dest

);

endmodule : check_cond

Using the Formal connectivity application we completed the routing verification in one week. This was a savings

of four person-weeks compared to our estimate of the simulation approach, which likely would not have yielded full

coverage in the allotted time. Using the Formal connectivity application we discovered a major bug that would have

been difficult to detect using IP-level simulation. Further, given the projects schedule constraints it is unlikely that

we would have identified the bug before tapeout had we only used simulations.

TABLE I

CONNECTIVITY CHECK SUMMARY FOR PLD

Block Route Inputs Route Outputs
Control

Register Bits

Lines in

CSV File

Formal

Runtime

(minutes)

1 408 308 962 5266 2

2 408 308 962 5266 2

3 312 256 786 5127 2

4 312 256 786 5127 2

The strengths of using the Formal connectivity check are:

 Short runtimes

 Short learning curve: the user does not need to know anything about Formal assertions to get started.

 No testbench required!

 Through using Formal methods, verification starts sooner, and shortens the overall schedule. Also, bugs are

found sooner, which may prevent hours of debug through functional simulations.

 Filling in simulation coverage gaps by targeting regions of code with Formal techniques.

The main areas of concern for Formal connectivity are:

1. Knowing when to use it: Blocks that are defined structurally (like PLD IPs or SOCs) and complex

combinatorial logic blocks are good candidates.

2. Understanding how you will combine your Formal results and your simulation results to decide when your

coverage goals are achieved: There is currently no standard way of combining Formal and simulation

coverage. In simulation we chose to exclude module code coverage for each routing block instance

because we had all paths tested by Formal. This may not be the right choice for every project.

3. Creating the connectivity specification without reading the RTL code: We always test to the Cypress

specification. As we increase our use of Formal we are finding that we need to write better IP

specifications.

4. Maintaining strict code modularity: We also need to write better RTL code. Modules should only contain

the code necessary to implement a specific behavior. This allows us to use Formal techniques to divide

and conquer.

5. Automating the generation of the connectivity specification:

a. For IPs, design churn leads to verification churn. Automating verification tasks will minimize the

schedule impact of design changes. We chose not to automate the CSV file generation for the

PLD IP because we expect that the routing blocks would be the same in future revisions.

b. For SOCs, it is possible to achieve a push-button flow from chip specification to proven IP

integration, which eliminates the need for many chip-level simulations.

V. COVERAGE EXCLUSIONS

Coverage closure is a critical component in IP verification. With any IP, it is not unusual to exclude coverage for

lines or portions of code that cannot be reached due to configuration constraints placed on the design. In such cases

unreachable RTL code must be indentified and coverage exclusions created and passed to the simulator for

calculating accurate coverage. Mining out unreachable code is a significant pain point if done manually. It can take

a week or more initially, with additional time to vet and maintain manual exclusions every time the code changes to

ensure that all exclusions are still valid. An automated process is required.

A. Implementation

Mentor’s Questa Formal tool provides the CoverCheck application, which takes in design files and automatically

generates the applicable exclusions for unreachable code within a relatively short amount of time. While this is a

very important step forward, it is necessary to apply exclusions on final coverage in a second step. As the VMS tool

is responsible for managing design compilation, launching all functional tests, and merging coverage, it follows that

it should seamlessly integrate coverage exclusions to achieve the highest end coverage possible, without user

interaction. Through integration of this application into VMS, several flows have been identified that users within

Cypress can use for generation and application of coverage exclusions.

The first method, as shown in Fig. 2, is to run CoverCheck on the compiled design, generate exclusions and then

apply them to coverage results from the regression executed. This can be considered the general purpose flow as

user interaction is not required.

VMS

Design

RTL
Compilation CoverCheck

Sim 1

Exclusions

Sim 2

Sim N

Adjust

Coverage

Merged

Coverage

Final

Coverage

Figure 2: General Purpose Coverage Exclusion Flow

In this flow CoverCheck is being executed without any prior coverage information being provided. Without

coverage input CoverCheck must exhaustively search all coverage space mining for unreachable code, which can be

time consuming. However, this step may only need to be executed once and exclusions applied on subsequent runs

to close coverage. Fig. 3 highlights the slightly modified flow of providing exclusions for subsequent runs.

VMS

Design

RTL
Compilation

Sim 1

Exclusions

Sim 2

Sim N

Adjust

Coverage

Merged

Coverage

Final

Coverage

Figure 3: Coverage Exclusion Without CoverCheck

Here, exclusions are generated in a previous run and applied in subsequent runs eliminating the need for

additional executions of CoverCheck.

The last flow proposed switches the order slightly by seeding CoverCheck with known coverage. Fig. 4 presents

this flow.

VMS

Design

RTL
Compilation

CoverCheck

Sim 1

Exclusions

Sim 2

Sim N

Adjust

Coverage

Merged

Coverage

Final

Coverage

Figure 4: Post Simulation Exclusion Generation

By executing CoverCheck after an initial regression run, unreachable code space can be minimized by code found

to be covered through previously written tests. This can greatly reduce run times for CoverCheck as mining is not as

exhaustive. As with Figs. 2 and 3, once exclusions have been identified they can be applied directly through VMS

to eliminate the need for executing CoverCheck in subsequent runs. Fig. 4 presents the preferred flow when tests

are available. In cases where coverage investigation is just beginning and tests are few then the flow of Fig. 2 is

useful for eliminating unreachable code before developing a regression suite.

B. Results

Below are results from executing CoverCheck on one IP. There were a total of 17783 unreachable items with

regards to code coverage. Manually detecting each of these would take several weeks of functional simulation

iterations. In this case the total elapsed time was approximately 1 hour.

CoverCheck Summary

Coverage Type Active Unreachable Witness Inconclusives

Branch 96525 8489 82998 5038

Condition 1082 22 400 660

Expression 31714 1517 14991 15206

FSM 1114 0 10 1104

States 388 0 4 384

Transitions 726 0 6 720

Statement 91522 7577 80343 3602

Toggle 72074 178 58715 13181

Coverbin 0 0 0 0

Total 294031 17783 237457 38791

--------- Process Statistics ----------

Elapsed Time (s): 3619

-------------- kblue01:0 --------------

Total CPU Time (s): 3011

Memory Used (MB): 12372

While the tool is useful for quickly identifying unreachable code, we did discover a fairly significant limitation.

As mentioned previously, the desire is to create quality reusable IP. Typically, for an IP to be reusable, it must also

be highly parameterized, enabling multiple configurations, depending on the application. Therefore, exclusions

generated for a highly configurable IP, must be valid for all legal combinations of parameters. For functional

simulations, parameters are “floated” during compilation and set at simulation time through parameter options.

CoverCheck currently only uses default parameter values during compilation unless overridden with the –G switch.

The parameters are fixed for a given execution of CoverCheck. It is unable to accept valid ranges for parameters

and generate exclusions for unreachable RTL that is common for all settings. Without automation, a user is required

to manually launch CoverCheck with each parameter option, merge results once all combinations have been

Formally verified or manually categorize exclusions based on configurations. This is too cumbersome for a user to

manage and reduces the benefit of Formal coverage exclusion generation significantly. After understanding the

need, Mentor Graphics is investigating an enhancement to CoverCheck for allowing parameter ranges as an input to

the tool. This is not a trivial issue to overcome and Mentor has not promised to resolve it. The need exists for

Questa Formal to automatically iterate runs across all parameter ranges and combinations. Fig. 5 attempts to capture

the intent.

Figure 5: Iterative Exclusion Generation Through Configuration Parameters

Shown here is an enhancement to Questa Formal that would automate the selection of configurations for mining

unreachable coverage for each. After every configuration is checked for unreachable code, the exclusions generated

from each run would need to be categorized into configuration groups or into a set of shared exclusions. These

exclusions would then be applied as shown in Figs 2-4 for each individual configuration run before merging results.

Despite the current limitation, we have found the tool useful for implementation specific exclusions by specifying

the parameter values that will be assigned at a chip level. Once we can generate the superset of exclusions, we will

be able to take this a step further for vaulted IP and be better able to ensure full code coverage can be achieved.

VI. REGISTER CHECKS

At Cypress, design registers are verified using UVM test benches with UVM_REG. Typically this takes four to

six weeks for writing tests and debugging the test bench for an IP with approximately 50K ASIC gates.

RegisterCheck, the Formal application in Questa Formal, takes a few days for setup and a couple of hours to

generate properties and verify them. The setup includes creating a CSV formatted file that describes the registers

and their access policies, as well as, configuring design variables. Questa Formal RegisterCheck uses Formal

methods to verify memory mapped registers in the digital design. From a top level, RegisterCheck takes in a register

specification file and a configuration file, generates assertions accordingly and formally verifies them. The register

specification contains register information, such as, register name, register address, register width, register access,

reset value, various fields, and access policy. The config file contains information to configure a particular

RegisterCheck run. It may contain details related to interface ports, register specification format, interface type, and

base addresses.

A. Implementation

IP-XACT is not used for requirements specifications within Cypress. Instead CSV register specifications are

created from an internal specification database. Perl scripts were developed to automate conversion from our

internal specification database to the required RegisterCheck UVM format or CSV. An example section from a

CSV file containing one register with four fields is shown below.

Register Name,Register Description,Register Address,Register Width,Register Access,Register

Reset Value,Register Reset Mask,Field Name,Field Description,Field Offset,Field Width,Field

Access,Field Reset Value,Field Reset Mask,Field Is Covered,Field Is

Reserved,.memmap_write_internal

botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel0,"comment",0,2,RW,0x0,0xffffffff,,,

botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel1,"comment",2,2,RW,0x0,0xffffffff,,,

botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel2,"comment",4,2,RW,0x0,0xffffffff,,,

botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel3,"comment",6,2,RW,0x0,0xffffffff,,,

The first line of the register specification sets formatting for all register properties provided.

The user must also create a control file that identifies AHB signals, hierarchical location of register variables, and

the naming scheme for register variables:

-ra

-register u_csr_bctl.$register_$field

-interface amba_ahb

-base_addr 0x00000000

-spec_type uvm

-signal_match nocase,prefix,postfix

-interface_port hready_in = mmio_hready

-interface_port hselx = mmio_hsel

-interface_port hwrite = mmio_hwrite

-interface_port haddr = mmio_haddr

-interface_port hwdata = mmio_hwdata

-interface_port htrans = mmio_htrans

-interface_port hsize = mmio_hsize

-interface_port hmaster = mmio_hmaster

-interface_port hprot = mmio_hprot

-interface_port hburst = mmio_hburst

-interface_port hmastlock = mmio_hmastlock

-interface_port prot_mode = protection_mode

-interface_port hrdata = mmio_hrdata

-interface_port hready_out = mmio_hready_out

-interface_port hresp = mmio_hresp

-interface_port hresetn = rst_hf_act_n

-interface_port hclk = clk_sys

In this example, ‘u_csr_bctl’ is the instance name of the register block.

Fig. 6 shows the RegisterCheck flow within VMS. An input mechanism exists for providing the register

specification (CSV). The typical design compilation flow within VMS is utilized in combination with a user

provided register specification to enable Formal register checking.

RegisterCheck

VMS

Design

RTL
Compilation

Formal

Verification

Register

Assertions

Register

Spec

(CSV)

Assertion

Generation

Figure 6: RegisterCheck Flow in VMS

As in the case of connectivity checks, a test bench is not needed to accomplish register verification, providing a

much faster quality check on a portion of the design.

B. Results

Traditionally, functional verification through UVM tests would be used on the PLD IP for register verification.

This IP has thousands of registers. With the maximum configuration selected through SV parameters, the PLD

would have 2,781 registers, for a total of 27,105 register fields. In total, around 55,000 AHB accesses would be

required to fully verify all register properties, assuming that the average register used 16 of the available 32 bits.

Simulation runtime would likely be more than 50 CPU hours.

RegisterCheck was used to verify a small subset of registers in a PLD-like IP. This work was a proof-of-concept

exercise to drive development of a fully automated flow. In this case the register CSV specification contained ten

register fields. The Questa Formal runtime on a single CPU was 108 minutes, where 32 minutes was consumed for

compilation and 76 minutes for proving the properties.

RegisterCheck has the potential to eliminate simulation-based verification of register properties. In order to

achieve the full benefit, design and verification teams should consider the following steps before developing IPs:

 The design team must standardize on register variable naming rules. One way to promote standardized

naming is through automated register generation from the same specification provided to RegisterCheck.

 Develop a fully automated flow to get from a register specification to a format supported by RegisterCheck.

Companies using IP-XACT to define IPs will have no trouble with this step. Others will need to spend a

few weeks of coding to work out the kinks.

In the case of the PLD IP several issues were encountered while using RegisterCheck:

 Runtimes were too long. During evaluation 7.6 minutes per register field was seen. Assuming linear

scaling it would take 205998 CPU minutes, or 143 CPU days to verify of 27,105 register fields! Likely

this could be reduced significantly through performance profiling to understand bottlenecks, but not

enough time was allocated for this during the evaluation. Based on other Formal work for this IP, it is

likely that clever black boxing could reduce the runtime by approximately 20x. Through efficiency gains

it may be possible to verify the IP with the maximum design parameters.

 The PLD block has some ‘unique’ register access modes that involved address aliasing, address ganging,

and other access modes intended to reduce the programming time. RegisterCheck was unable to

understand these access modes. Further investigation with Mentor on these access modes would be

needed.

 Each register RTL module used a different naming convention for the register variables.

 The AHB slave for this IP did not support wait state insertion for write operations. A netlist constraint

telling Questa Formal to assume that HREADY was always active was used to work around this issue.

 Constraints were added to disable scan mode, and to prevent certain resets after initialization.

 The AHB implementation in this case had a minor ‘improvement’ over the standard that implemented some

enhanced security, causing there to be an extra AHB signal from what RegisterCheck assumed. To work

around this issue we edited the generated checker module so that the extra AHB signal was held low.

VII. QUALITY CHECKS

 A requirement for developing quality IP is to perform Lint checks to catch minor coding issues and check for

coding style directives. Questa Formal AutoCheck certifies quality of a design using Formal methods and is a

complementary tool to Linting. While this application cannot replace Linting completely, it can mine out bugs that

can go unnoticed through functional verification at a very early stage in the verification flow. This tool can be used

by the designer immediately after the design is ready. The setup is very simple and performance can be improved

by configuring various options. The application generates assertions automatically and verifies those using Formal

methods. A debug data base is generated by default, which can help pinpoint bugs in the source code. It creates a

synthesized netlist and does sequential analysis. When used, AutoCheck, performs initialization checks like

uninitialized registers and X propagation, functional issue checks like combinational loops, case statement checks,

arithmetic checks, bus checks, FSM checks, and coverage reachability checks like unreachable logic, unreachable

FSM states and transitions, and register stuck at constant values. These checks can greatly improve IP quality at an

earlier stage of design.

C. Implementation

Like the other Formal apps, AutoCheck was integrated into VMS making it easy to launch within an understood

environment. Once the design code is ready, the user will simply launch VMS with an additional option to enable

AutoCheck. Fig. 7 shows the integration of AutoCheck into VMS.

AutoCheck

VMS

Design

RTL
Compilation

Formal

Verification

AutoCheck

Assertions

Assertion

Generation

Figure 7: AutoCheck Flow in VMS

VMS utilizes the typical design compilation step followed by AutoCheck. The user can configure the run by

enabling and disabling various checks, and improve performance through black boxing, simplifying the clock, and

varying hierarchy levels. The tool generates assertions and Formally verifies them. Generated logs files will

contain information about all the checks performed.

D. Results

Executing AutoCheck on one particular IP tool took approximately 72 minutes and consumed 8GB of memory.

Below are results from this execution.

AutoCheck Summary

Check Evaluations Found Waived

ARITH_OVERFLOW_SUB OFF OFF OFF

ARITH_OVERFLOW_VAL OFF OFF OFF

ARITH_ZERO_DIV 0 0 0

ARITH_ZERO_MOD 0 0 0

ASSIGN_IMPLICIT_CONSTANT 73446 0 0

BLOCK_UNREACHABLE 8680 1690 0

BUS_MULTIPLY_DRIVEN 2 2 0

BUS_UNDRIVEN 2 2 0

BUS_VALUE_CONFLICT 2 2 0

CASE_DEFAULT OFF OFF OFF

CASE_DUPLICATE 7023 0 0

CASE_FULL 0 0 0

CASE_PARALLEL 0 0 0

CLK_DELAY 9069 0 0

CLK_IN_DATA 96074 0 0

COMBO_LOOP 32806 114 0

DECLARATION_UNDRIVEN 17495 0 0

DECLARATION_UNUSED 17495 36 0

FSM_DEADLOCK 388 0 0

FSM_LIVELOCK 388 0 0

FSM_STUCK_BIT 146 0 0

FSM_UNREACHABLE_STATE 388 0 0

FSM_UNREACHABLE_TRANS 388 0 0

FUNCTION_INCOMPLETE_ASSIGN OFF OFF OFF

INDEX_ILLEGAL 489 0 0

INDEX_UNREACHABLE 0 0 0

INIT_X_UNRESOLVED 9067 9067 0

LATCH_INFERRED OFF OFF OFF

LOGIC_UNDRIVEN 17495 0 0

LOGIC_UNUSED 786 71 0

ONE_COLD 0 0 0

ONE_HOT 0 0 0

PORT_UNDRIVEN 32547 0 0

PORT_UNUSED 32547 31 0

REG_MIXED_ASSIGNS 18495 0 0

REG_MULTIPLY_DRIVEN 9069 0 0

REG_NO_RESET OFF OFF OFF

REG_RACE OFF OFF OFF

REG_STUCK_AT 14595 0 0

REG_TOGGLE_VIOLATION 3248 0 0

REG_VARIABLE_ARESET 18649 0 0

RESET_HIGH_LOW 0 0 0

RESET_SYNC_ASYNC 0 0 0

SLIST_INCOMPLETE 4076 0 0

X_ASSIGN_REACHABLE 11 2 0

AC Total 424866 11017 0

Given that this IP was a proven IP there were no major issues highlighted that were not already understood.

However, the RTL quality could definitely be improved in the areas indicated by the tool, enabling a smoother

synthesis flow. Based on results, Cypress plans to enhance Linting checks by incorporating AutoCheck within the

design and verification flow going forward for all projects.

CONCLUSION

The goal of this effort was to provide design and verification engineers access to Formal applications through an

understood environment. This would equip engineers with industry proven verification techniques to provide better

IP quality without forcing them to fully understand the Formal techniques being used. While the implementation

within Cypress’ Verification Management System has been completed, there is still much work to do in proving out

the usefulness of these applications. For instance, in generating coverage exclusions through CoverCheck, the

obstacle of highly configurable IP through parameters has to be resolved to achieve maximum benefit. The same

could be said for all other applications where this applies. Furthermore, execution time of RegisterCheck has to be

reduced to make this application viable on large register sets. The task can be broken into smaller groupings of

registers and other performance improvements need to be investigated, such as, black boxing and Formal profiling.

ConnectivityCheck looks to be a very beneficial tool for making sure interconnects are honored based on provided

specifications. Functional simulations to validate these connections can take weeks or months to create and execute,

whereas, Formal can prove them in hours. In an environment where automation can be implemented based on the

specification the return can be quite significant.

Lastly, AutoCheck for enhanced Linting of Design RTL can be very beneficial. This is realized in having checks

that the designer can execute before handing the IP off for verification. Better quality at the handoff point will

eliminate cycles of learning and shorten the schedule to delivery.

