
Using Formal Applications to
Create Pristine IPs

Lee Burns, Cypress Semiconductor
David Crutchfield, Cypress Semiconductor

Bob Metzler
Hithesh Velkooru, Cypress Semiconductor

Agenda
• Why use Formal apps
• Starting point for introduction of Formal apps
• Implementation of Formal apps in the flow

– Connectivity Checks
– Coverage Closure
– Register Verification
– Code Quality

• Usage and results

3/1/2022 David Crutchfield, Cypress Semiconductor 2

Verification Pain Points -
Connectivity

• Function routing through an IP
• Programmable interconnect
• Exhaustive verification is time consuming

3/1/2022 David Crutchfield, Cypress Semiconductor 3

Verification Pain Points -
Connectivity

• Chip level interconnect
• Fully verified IP
• Exhaustive verification of all connections is time

consuming

3/1/2022 David Crutchfield, Cypress Semiconductor 4

Main Clock Domain

Sub
Clock

Domain

CPU

AMBA AHB/AXIArbiter

Bridge

AMBA APB

UART

Slave IF

GPIO

Slave IF

PCI
Express

PHY

Bridge

Memory
DMA

Master IF

Custom
Core

PHY

Slave IF

Protocol

PHY

Master IF

Ethernet

PHY

Master IF

USB

PHY

SlaveIFMaster IF

CPU

Master IF

Verification Pain Points -
Coverage

• Goal is 100% code and functional coverage
• Mining for unreachable code is time consuming

– Iterative process
• Develop tests
• Review coverage
• Consult IP owner
• Create exclusions
• Develop more tests

– Repeated with code changes

3/1/2022 David Crutchfield, Cypress Semiconductor 5

Verification Pain Points -
Registers

• Functional simulation using UVM_REG is time
consuming
– Read and understand spec
– Not all bits are used within a register (requires non-

contiguous masking)
– Develop tests
– Debug results
– 4-6 weeks for 50K design

3/1/2022 David Crutchfield, Cypress Semiconductor 6

Verification Pain Points –
Code Quality

• Design team does minimal testing
– No formal test bench / may not compile

• Verification finds simple issues
– Locked state machine
– Combinational loop
– Logic contention
– Cycles of code quality

3/1/2022 David Crutchfield, Cypress Semiconductor 7

IP Release / No
Verification

Verification
Finds Simple

Issue

Existing Verification System

3/1/2022 David Crutchfield, Cypress Semiconductor 8

• VMS – Verification Management System
• Established a standard approach to:

– Design and test bench organization
– Specification of tools arguments
– Test list creation
– Regression status / coverage

dut.files, tb.files,
vms.cfg, test-list,
command-line,
pre/post scripts

UCDB, HTML,
Reports, logs,
email, waves,

debug, test-lists
VMS_RUN

INPUT OUTPUT

Existing Verification System

3/1/2022 David Crutchfield, Cypress Semiconductor 9

• VMS manages compilation and simulation jobs through
Mentor’s Questa VRM (Verification Run Management)

• VMS needs to provide
– Additional steps for Formal applications
– Additional inputs to feed Formal applications
– Standard interface for Functional and Formal verification

dut.files, tb.files,
vms.cfg, test-list,
command-line,
pre/post scripts

UCDB, HTML,
Reports, logs,
email, waves,

debug, test-lists
VMS_RUN

INPUT OUTPUT

Connectivity Checks

3/1/2022 David Crutchfield, Cypress Semiconductor 10

• Two new steps in VMS:
– Generate connectivity properties
– Verify properties with Formal tool (Questa PropertyCheck)

• New input to VMS: Connectivity spec (CSV)
• If all properties pass then connections are true
• No test bench required

Coverage Closure (Flow 1)

3/1/2022 David Crutchfield, Cypress Semiconductor 11

• One new step in VMS:
– Generate exclusions with Formal tool (Questa CoverCheck)

• Exhaustive search for unreachable code (time consuming)
• Simulation optional to just generate exclusions

– No test bench required / exclusions without test knowledge

Coverage Closure (Flow 2)

3/1/2022 David Crutchfield, Cypress Semiconductor 12

• No new steps in VMS / Normal exclusion flow
• Exclusions generated in previous run
• Coverage adjusted after regression run

Coverage Closure (Flow 3)

3/1/2022 David Crutchfield, Cypress Semiconductor 13

• One new step in VMS:
– Generate exclusions with Formal tool (Questa CoverCheck)

• Seed code coverage to minimize search for unreachable
code (less time consuming)

• Test bench and tests required

Register Checks

3/1/2022 David Crutchfield, Cypress Semiconductor 14

• One new step in VMS:
– Verify registers with Formal tool (Questa RegisterCheck)

• New input to VMS: Register spec (CSV)
• RegisterCheck:

– Generates assertions from CSV
– Formally proves assertions against design

• No test bench required

Code Quality

3/1/2022 David Crutchfield, Cypress Semiconductor 15

• One new step in VMS:
– Apply standard checks against design with Formal tool

(Questa AutoCheck)
• AutoCheck:

– Generates assertions based on desired checks
– Formally proves assertions against design

• No test bench required

Connectivity Check Usage

3/1/2022 David Crutchfield, Cypress Semiconductor 16

type,src,dest,cond,delay
cond,mod2.out[0],ip.out[1], mux1.sel==1

`define WidthParam_0 1
check_cond #(.width(`WidthParam_0))
CHECK_COND_FROM_mod2_out_0_TO_ip_out_1 (

.cond((mux1.sel == 1)), .src(mod2.out[0]), .dest(ip.out[1])
);

module check_cond #(parameter width = 1) (
input logic [width-1:0] src , dest ,
input logic cond

);
connectivity_assert : assert property (@($global_clock)

cond |-> src == dest
);

endmodule : check_cond

Connectivity Check Results

3/1/2022 David Crutchfield, Cypress Semiconductor 17

• Completed routing verification of PLD like IP in 1 week
• Savings > 4 person weeks (exhaustive simulation)
• Identified major bug (likely missed in functional simulation)
• Automated chip level connectivity verification through CSV

generation from spec

Block Route
Inputs

Route
Outputs

Control
Register

Bits

Lines in
CSV File

Formal
Runtime
(minutes)

1 408 308 962 5266 2

2 408 308 962 5266 2

3 312 256 786 5127 2

4 312 256 786 5127 2

Connectivity Check
Concerns / Lessons

3/1/2022 David Crutchfield, Cypress Semiconductor 18

• Knowing when to use Formal connectivity checks
• How to combine Formal results with simulation coverage
• Good specifications of connectivity are needed
• Strict code modularity / limit modules to specific behaviors
• Automation of connectivity CSV is key for savings

Coverage Closure Results

3/1/2022 David Crutchfield, Cypress Semiconductor 19

Results of example IP without tests provided
• Approximately 1 hour execution
• 17783 unreachable items found

– Branch 8489
– Condition 22
– Expression 1517
– FSM States 0
– FSM Transitions 0
– Statement 7577
– Toggle 178
– Coverbin 0

• Exclusions generated for each

Coverage Closure Issue

3/1/2022 David Crutchfield, Cypress Semiconductor 20

• Parameter passing to highly configurable IP
– Questa Formal can only process one configuration
– Coverage exclusions can change for each configuration
– Intersection is not sufficient
– Union could cause errors

• Iterate over configurations and
selectively apply exclusions based
on configuration

Config1

Config3Config2
Exclusion

sets

Coverage Closure Issue –
Potential Solution

3/1/2022 David Crutchfield, Cypress Semiconductor 21

• Questa CoverCheck analyze configuration parameters
• Select configuration
• Execute CoverCheck
• Repeat for more configurations
• Categorize exclusions based on configuration

Register Check Usage

3/1/2022 David Crutchfield, Cypress Semiconductor 22

• Register CSV and control file
generated from internal
specification

Register Name,Register Description,Register Address,Register Width,Register Access,Register Reset
Value,Register Reset Mask,Field Name,Field Description,Field Offset,Field Width,Field Access,Field Reset
Value,Field Reset Mask,Field Is Covered,Field Is Reserved,.memmap_write_internal
botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel0,"comment",0,2,RW,0x0,0xffffffff,,,
botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel1,"comment",2,2,RW,0x0,0xffffffff,,,
botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel2,"comment",4,2,RW,0x0,0xffffffff,,,
botsel_l,"comment",0x00007808,32,RW,0x0,0xffffffff,clk_sel3,"comment",6,2,RW,0x0,0xffffffff,,,

IP Specification

-ra
-register u_csr_bctl.$register_$field
-interface amba_ahb
-base_addr 0x00000000
-spec_type uvm
-signal_match nocase,prefix,postfix

-interface_port hready_in = mmio_hready
-interface_port hselx = mmio_hsel
-interface_port hwrite = mmio_hwrite
-interface_port haddr = mmio_haddr
………
-interface_port hresetn = rst_hf_act_n
-interface_port hclk = clk_sys

Register Check Results

3/1/2022 David Crutchfield, Cypress Semiconductor 23

• PLD like IP (full configuration) functional simulation
– 2781 registers = 27,105 register fields
– Approximately 55,000 AHB accesses for full verification
– > 50 CPU Hours

• Evaluating RegisterCheck
– 10 register fields
– 32 CPU min for design compilation
– 76 CPU min for proving properties

Register Check Issues

3/1/2022 David Crutchfield, Cypress Semiconductor 24

• 7.6 min per / register field * 27,105 fields = 143 CPU days!
– Black boxing could provide 20x improvement
– More work / profiling to make performance reasonable

• Unique register access not understood
– Address aliasing
– Address ganging

• Non-uniform register variable naming
– Makes automation of register

specification difficult

Quality Check Results

3/1/2022 David Crutchfield, Cypress Semiconductor 25

• Approximately 30 min execution time
• Results of PLD like IP

– Block Unreachable 1690
– Bus Multiply Driven 2
– Bus Undriven 2
– Bus Value Conflict 2
– Combo Loop 114
– Declaration unused 36
– Init X Unresolved 9067
– Logic Unused 71
– Port Unused 31

Conclusions

3/1/2022 David Crutchfield, Cypress Semiconductor 26

• Formal applications
– Can be leveraged for automation
– Good first step into Formal techiniques
– Can get started without a test bench

• Connectivity and Code Quality Checks show the most
promise

• Coverage and Register Checks need more investigation
and tool enhancements for flow integration

	Using Formal Applications to Create Pristine IPs
	Agenda
	Verification Pain Points - Connectivity
	Verification Pain Points - Connectivity
	Verification Pain Points - Coverage
	Verification Pain Points - Registers
	Verification Pain Points – Code Quality
	Existing Verification System
	Existing Verification System
	Connectivity Checks
	Coverage Closure (Flow 1)
	Coverage Closure (Flow 2)
	Coverage Closure (Flow 3)
	Register Checks
	Code Quality
	Connectivity Check Usage
	Connectivity Check Results
	Connectivity Check Concerns / Lessons
	Coverage Closure Results
	Coverage Closure Issue
	Coverage Closure Issue – Potential Solution
	Register Check Usage
	Register Check Results
	Register Check Issues
	Quality Check Results
	Conclusions

