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Abstract— One of the pillars of staying strong in the semiconductor market is managing the time-to-market of new 

products. This management of course includes many faceted, complicated tasks, one of which is successfully delivering 

the Design Verification as quickly and as complete as possible. Although reusing IPs in the product design solves some 

of the problems of time-to-market management, Design Verification should also be considered carefully as its NRE cost 

is usually higher. A good structured testbench finds the bugs in the design and increases reuse which consequently 

reduces the time-to-market. Another common feature of today's large SoCs is that they must have low-power 

consumption. Advanced low-power design techniques are used for obtaining such products. Verification of these low-

power SoCs and IPs is a challenge, as making a UVM compatible testbench power aware introduces another level of 

complexity both in the testbench and the test structure. In this paper, we present how to use an Object-Oriented Design 

Pattern called Dependency Injection in a power aware testbench - a concept borrowed from the software world. We 

aim to show how it helps testbench reuse and constructing UVM compatible tests and as a result decreases the 

Verification NRE. 
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I.  INTRODUCTION 

A well-structured testbench requires effort and attention to detail, especially during the development of the 

verification environment. This effort subsequently pays off when scaling and improving the reuse of the testbench 

between different projects and even in test development. Overall, developing a well-structured testbench becomes 

cheaper and faster than those without a structure that considers what kind of design it verifies. Universal 

Verification Methodology (UVM) provides a base methodology for how the testbench should be constructed. UVM 

separates the testbench into two domains: the static domain and the dynamic domain. The static domain consists of 

the Design under Test (DUT) and the wrapping testbench top module that connects the Verification IP (VIP) 

interfaces to the DUT. The dynamic domain is the class hierarchy that implements the test layer. UVM dictates a 

certain flow and design hierarchy for the dynamic domain, i.e., the test instantiates the environment and the 

environment instantiates the agents. There is not a lot of opportunity for enhancement in the static domain outside 

of using macros and generate blocks to improve reusability. On the other hand, for the dynamic part we can leverage 

Object Oriented Design patterns which were initially introduced into the software world. This is mostly due to the 

flexibility of the SystemVerilog (SV) class over SV module. UVM itself also leverages factory and singleton design 

patterns. UVM also encourages inheritance and polymorphism to a great degree. The built-in phases or methods of 

a UVM test can be overridden in extended tests to configure the testbench differently. If this is done as per the 

UVM, it provides significant reusability.  

However, the UVM understandably does not provide any resources on how to implement power aware (PA) 

tests. This is too design oriented for a generic library like UVM. In this paper, our goal is to fill the gap by proposing 

a method for PA UVM tests that enhance the scalability and the reusability of the tests. In doing this, we aim to 

encapsulate the PA methods into one class and provide a base test class for concrete PA/non-PA tests. We also 

propose an inheritance hierarchy for the tests. In Section 2, we discuss problem statement and the possible solutions. 

In Section 3, we present our preferred solution and how to use it. In Section 4, we present a sample design to 

demonstrate the proposed technique in a use case. In Section 4, we conclude our remarks. 
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II. PROBLEM STATEMENT AND POSSIBLE SOLUTIONS 

A. Problem Statement 

 

 

A concrete test (Test Case) extended from a base test, i.e., the tests that are simulated, should work seamlessly 

whether they are PA or non-PA.  

The PA tests must be able to access PA related functionalities/dependencies such as power down and power up 

tasks. A PA test case must also be able to access all the dependencies that a non-PA test accesses. Additionally, 

some overlapping between PA and non-PA functions might exist, although with different behavior in each case, 

requiring the test to handle the same task in a different way. 

B. Possible Solutions 

In a PA verification environment, the test structure is not the only component that needs to be different. The 

DUT might be built differently for PA and non-PA tests. Furthermore, the Universal Power Format (UPF) is 

elaborated together with the DUT in a PA simulation. Therefore, non-PA and PA tests have essentially different 

builds. There is no easy way around it. Requiring different builds is out of scope of this paper which focuses on the 

test hierarchy and structure of a PA verification environment. 

 

1) A Completely Different Testbench for PA tests 

A completely different testbench can be developed for the PA tests. In this solution, the DUT is instantiated in 

a different top module with a limited number of VIP interfaces. In addition, the test hierarchy is structured with the 

sole consideration of the PA use cases. If the main focus of PA verification is integration testing and the tests do 

not utilize most of the VIPs, this would be a preferable solution. For instance, a software running on a CPU in the 

DUT might be initiating the power up and power down sequences. Therefore, the testbench might not need stimuli 

generation by the UVM compatible VIPs. This solution is obviously only suitable for a certain type of PA 

verification environment. The downside of this approach is that two different verification projects are required for 

the same DUT. However, it may improve simulation run times. 

 

2) Make every test power aware 

Based on the problem statement, a PA test needs to have all the features that a non-PA test has. Therefore, we 

can implement the “Project Specific Base Test” as a base test that has all the PA functionalities. For instance, this 

test runs the initial power up sequences in its run phase and calls UPF APIs as well as all other initialization tasks. 

This approach requires all tests to be run on a UPF annotated build despite it not being required for most of the 

tests. Given that a UPF annotated simulation runs slower than a regular simulation, this approach would be a misuse 

of compute resources. Using this approach, we could have simplified the test hierarchy, however the simulation 

times would be significantly increased. 

 

3) Extending the test cases from different parent tests 

In this approach, we have two separate base tests as the “Project Specific Base Test”. The former implements 

all the PA functionalities, i.e., the PA base test. The latter, which is basically the parent of the PA base test, 

implements the functionalities that are required for a non-PA test case. This is the second-best approach among the 

solutions presented in this paper and does not have negative impact on the simulation performance. However, the 
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Figure 1. An example test hierarchy in a UVM compatible testbench 
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downside is that the test cases tend to be tightly coupled with their parents and it is difficult to promote a non-PA 

test to a PA test. Besides this, the PA test base must override most of the initialization and bring-up tasks of its 

parent which makes the maintenance of these tests difficult, as the changes in the parent test must be adequately 

overridden in the child. Another important issue appears when we want to have a base test for certain group of test 

cases, e.g., a base test targeting a certain IP in the DUT. In this case, we would need to implement two base tests: 

one derived from the regular Project Specific Base Test and the other should be derived from the PA version of the 

Project Specific Base Test. Therefore, we may observe issues in scaling and reusing the base tests if we implement 

this solution. 

 

4) Dependency Injection Design Pattern for the PA Dependency 

The Dependency Injection Design Pattern [1] provides a loosely coupled relationship between the dependent 

and the client class. The client class depends on the injected class. In our proposed PA UVM compatible testbench 

solution, the client class is the Project Specific Base Test. The injected dependency is a power component that is 

aggregated into the Project Specific Base Test. The injector in our case is simply a simulation argument that 

distinguishes whether the test is a PA or non-PA test. This approach has multiple benefits: The Project Specific 

Base Test is the same for PA and non-PA tests. Therefore, we are not required to develop two base tests (PA and 

non-PA) if we decide to implement a base test for certain test cases. This solution does not have a negative impact 

on performance as the non-PA tests do not depend on the concrete power component. Any non-PA test can be 

promoted to a PA test seamlessly. Therefore, this approach improves reusability and scalability significantly. 

III. PREFERED SOLUTION: DEPENDENCY INJECTION 

The test structure shown in Fig. 2 presents the implementation of the proposed solution. The power component 

depicted in Fig. 2 is a child class of a power component base class. The Project Specific Base Test has a handle of 

the power component base type. The power component base class defines the methods that are planned to be used 

in PA use cases.  
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Figure 2. Power Component Dependency Injection into the Test Hierarchy. 
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The methods of the power component base class can be implemented with minimal features or can be just blank 

depending on the requirements. However, the concrete component (power component) will have actual 

implementations of the PA methods. Due to polymorphism, when a method of the base handle is called, its behavior 

depends on the type of real instance assigned to that handle. The real instance is instantiated in the build phase of 

the Project Specific Base Test, depending on the type of the test, i.e., whether it is PA or non-PA or by a command 

line argument. A PA test instantiates the concrete component whereas the non-PA test instantiates the power 

component base. Thus, a PA method is always called in the Project Specific Base Test and the call either does 

nothing or execute the real PA functionality.  In Fig. 3 and 4, we present a sample of UVM code that shows how to 

implement the proposed dependency injection design pattern in a PA testbench. 

 

IV. CASE STUDY 

The usage and benefits of the method presented in this paper will be explained over the use case depicted in 

Fig. 5. The case study design has two power domains such as PD1 and PD2. The green block is PD1, and the red 

is PD2. Both domains are subject to power gating: PD1 is controlled externally by a third-party and PD2 is 

controlled by an internal controller or MCU through a Power Switch (PSW) powered by the PD1 domain. In this 

paper, for completeness we assume both power domains have logic that are subject to retention.  

class prj_test_base extends util_test_base; 

(…) 

virtual function build_phase(uvm_phase phase); 

   super.build_phase(phase); 

   if (is_power_aware) 

      m_pwr_comp = power_comp::type_id::create("m_pwr_comp", this); 

   else 

      m_pwr_comp = power_comp_base::type_id::create("m_pwr_comp", this); 

endfunction 

 

virtual task run_phase(uvm_phase phase); 

   super.run_phase(phase); 

   m_pwr_comp.power_up(); 

endtask 

 

(…) 

endclass : prj_test_base 

class power_comp_base extends uvm_component; 

(..) 

virtual task power_up(); 

endtask 

 

virtual task power_down(); 

endtask 

(…) 

endclass : power_comp_base 

 

class power_comp extends power_comp_base; 

(...) 

task power_up(); 

//Do something 

endtask 

 

task power_down(); 

//Do something 

endtask 

(…) 

endclass : power_comp 

 

 
Figure 3. Concrete and Base Power Component Classes. 

Figure 4. Injecting the correct dependency in the test without impacting the test cases. 
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Figure 5. Power domain representation of the case study 

The behavior of different logic elements must be validated in different power states and sequences. Therefore, 

the presence of power gating capability increases the complexity of the testbench, and the number of tests required 

to fully verify the DUT functionality. However, since those functions should have been individually tested in non-

PA tests, a well-structured PA environment shouldn’t affect the reusability of the existing tests. Suppose two 

functions, F1 and F2, residing in two different power domains, PD1 and PD2. The existing tests and functions 

developed to validate F1 and F2 in a non-PA setting should be reusable when the interactions with their respective 

power domains is verified. Table 1. presents a sample reference PA testplan for the reader.  

Table I. A sample PA Testplan for the use case 

 

The functions required from a design are generally independent from whether the design is power collapsible or 

not. Usually, a low-power design is expected to go to low-power mode (power gated) after it performs the required 

function. The device remains in low-power mode for a certain period of time and then it is woken up by an internal 

or external agent when the function is required again. In short, a big chunk of the Functional PA verification is 

essentially validation of the core functions before and after power down to ensure nothing unexpected is happening 

due to power down and power restore sequences. Tests 1, 3 in Table 1 check the core functions of the sample design 

before and after powering down the power domains. Functions F1 and F2 can be individually verified in a non-PA 

test and can be reused in a PA test like we have in our use case scenario in Tests 1,3. Better yet, the non-PA test 

without any modification can be used as the PA test to verify the core functionality before-after power gating. See 

Fig. 6 for the reference test that checks the core functionality F1 (test 3). 

# Test Description Expectation 

1 Partial Power Gate: Validate F2 → Partial power 
down → Power restore using PSW → Validate F2 

(after restore). 

Expectation is that the DUT runs Function F2. The DUT is able to 
power gate and restore PD2 supply gracefully, i.e., no X propagation 

due to missing isolation, etc. Function F2 is still accessible after 

restoring the power. 
 

2 Do partial power down → Power restore and 

check retention in PD2. 

After power down and following power restore in PD2, the expectation 

is that the retained logic preserves the values it had before power down. 
The DUT must be able to resume from where it left off before power 

down. 

3 Complete Power Gate: Validate F1 → Partial 
Power down → Power down PD1 → Power 

restore of PD1 →  Partial power restore via PSW 

→ Validate F1 (after complete restore). 

Expectation is that the DUT runs Function F1 as expected. The DUT 
is able to power gate and restore completely (PD2 & PD1) gracefully, 

i.e., no X propagation due to missing clamps etc. Function F1 is still 

accessible after restoring the power. 
 

4 Do complete power down (PD2 & PD1) → Power 

restore and check retention in PD1. 

After power down and following power restore, the expectation is that 

the retained logic in PD1 preserves the values it had before power 

down. The DUT must be able to resume from where it left off before 
power down. 

 

PSW 

PD1 

Retained 

PD2 

Retained 
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Fig. 6 shows a reference test implementation for verification of a function that can seamlessly be used in a non-

PA and PA environment. The implementation is merely presented to demonstrate the different possibilities 

available, although the non-PA test does not need power aware calls. In addition to the structural benefits mentioned 

in Section 2 and 3, the dependency injection technique allows us to implement the initial power up and the 

configuration of the DUT elegantly in the run phase of the base test (super.run_phase() call in Fig. 6.), and wraps 

up different sequences of the calls in the power component depending on whether the base test is PA or non-PA 

without needing nested if conditions or if/def macros. One can wonder what might happen if the testbench is 

developed gradually and the power up/down sequences are not ready when the core functions are to be tested. In 

other words, how can someone test the core functions without implementing power aware features? Note that, 

power aware features of the testbench are only needed in the actual PA tests. In a non-PA test, as explained in 

Section 3, the power component is taken from the base class, therefore power up/down tasks can be blank. The 

retention tests (tests 2,4) follow the same power down and restore sequence depicted in Fig 6, so we do not repeat 

them. Finally, if a low-level retention test is to be developed, e.g., one that checks what registers are retained and 

what registers are reset after power down and restore, implementing a PA test only is the valid option here, as there 

is no corresponding scenario in the non-PA environment. 

V. CONCLUSION 

The dependency injection technique is well suited to a PA testbench. It provides scalability such that there is no 

need to retain both PA and non-PA version of the base tests. Only the power component and the Project Specific 

Base Test need to be maintained. The encapsulation of the code is adequate in that no similar code is repeated 

throughout the components or tests. PA features are only implemented in the power component. By using the 

proposed approach, a non-PA test can be promoted to a PA test without needing to edit the code. If a subset of the 

test suit is to be run in a Gate Level Simulation (GLS), the same test suit can also be run in the Power Aware Gate 

Level Simulation (PA-GLS). This improves the maintainability and scalability of the environment dramatically, 

drastically reducing the NRE cost of the verification and thus contributes positively to the time-to-market. 
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class testcase_f1_nonpa_pa extends prj_test_base; 

(…) 

virtual task run_phase(uvm_phase phase); 

   super.run_phase(phase);//m_pwr_comp.init_pwr_up() call is in the base test 

 

   repeat(N) begin //test multiple times for robustness  

      check_function_F1(); 

      m_pwr_comp.power_down_PD2(); 

      m_pwr_comp.power_down_PD1(); 

 

      #1us; //wait some time in low power mode 

 

      m_pwr_comp.power_restore_PD1(); 

      m_pwr_comp.power_restore_PD2(); 

    end 

endtask 

(…) 

endclass : testcase_f1_nonpa_pa 

Figure 6. Using a non-PA test as a PA test without any change. 


