
Using an Enhanced Verification
Methodology for Back-to-Back

RTL/TLM Simulation
Frank Poppen and Ralph Görgen, OFFIS Institute for

Information Technology
Kai Schulz, Andreas Mauderer and Jan-Hendrik Oetjens,

Robert Bosch GmbH
Joachim Gerlach, Hochschule Albstadt-Sigmaringen

© Accellera Systems Initiative 1

The Challenge
• electronics in heterogeneous systems
• ambient and safety relevant
• increasing complexity
• design and verification
• lining up for the task

– tailored solutions
– standards
– languages
– tools

© Accellera Systems Initiative 2

No „One Size Fits All“
• verification engineers choose and combine what …

– fits best for the company
– the design-team
– the application domain
– the abstraction level
– (budget, roadmap, …)

• deep roots in the design process
• changes endanger productivity
• change carefully and incrementally

© Accellera Systems Initiative 3

• Motivation
• What is the Integrated Functional Verification

Script Environment (IFS) and why use it?
• What was missing and what did we add to IFS?
• Making use of it for Back-to-Back comparison

between RTL and TLM
• Conclusions

• Motivation
• What is the Integrated Functional Verification

Script Environment (IFS) and why use it?
• What was missing and what did we add to IFS?
• Making use of it for Back-to-Back comparison

between RTL and TLM
• Conclusions

Outline

© Accellera Systems Initiative 4

IFS long before SystemC/-Verilog

© Accellera Systems Initiative 5

• enhanced from VHDL with …
– VHDL-AMS
– SystemC
– Matlab/Simulink
– SystemVerilog and UVM

• SystemC based library simulates with any simulator (IEEE 1666)
• tailored to relevant use scenarios in special contexts
• simple IFS command language for (self-checking) test cases

– digital designer
– analog designer
– verification engineer
– system engineer
– software engineer

IFS Simulation Environment

© Accellera Systems Initiative 6

DUV

IFS-
ScriptRTL

IFS-Controller

TBM

TBM

TBM

TBM

• design under
verification

• testbench
modules
– cmd loop
– predef. cmd
– user def. cmd

• IFS-controller
• IFS-script

TBM_1 PRINT „Executing Test“ -- predef. module cmd
#LOOP 100 -- predef. controller cmd

IFS SYNC ALL -- predef. controller cmd
TBM_1 write $(100+#i) -- user def. module cmd
TBM_2 read $(100+#i) -- user def. module cmd

#EOL -- predef. controller cmd
IFS QUIT -- predef. controller cmd

• Motivation
• What is the Integrated Functional Verification

Script Environment (IFS) and why use it?
• What was missing and what did we add to IFS?
• Making use of it for Back-to-Back comparison

between RTL and TLM
• Conclusions

Outline

© Accellera Systems Initiative 7

DUV

IFS-
ScriptRTL

IFS-Controller

TBM

TBM

TBM

TBM

DMA

AMBA

I²C

CAN
DUV

TBM

TBM

TBM

TBM

IFS-
Script

IFS-Controller

TLM

DMA

AMBA

I²C

CAN

Communication Abstraction

© Accellera Systems Initiative 8

TBMTBM

separating communication
and behavior

TBM

VP

IFS-
ScriptRTL

IFS-Controller

TBM

TBM

TBM

TBM

Mixing Communication Abstraction

© Accellera Systems Initiative 9

DMA

AMBA

USB

CAN

DMA

CAN

TLM

CAN

Interface Definition

Communication Behavior
unsigned int
master_tl_if::if_read(unsigned int address)
{

/// transaction pointer
tlm::tlm_generic_payload* trans =

new tlm::tlm generic_payload;

sc_time delay = sc_time(30, SC_NS);
unsigned int data = 0;

// Initialize 8 out of the 10 attributes
trans—>set_comand(tlm::TLM_READ_COMMAND);
trans->set_address(address);
trans->set_data_ptr(reinterpret_cast

<unsigned char*> (&data));
// ...
// Blocking transport call
socket->b_transport(*trans, delay);

// obliged to check response status
if (trans—>is_response_error())

ifs_error("TLM—2.0: Response error");
// ...
return data

}

unsigned int
master_rt_if::if_read(unsigned int address)
{

// set request
req.write(true);

// wait for grant
wait(gnt.posedge_event());
wait(clk.posedge_event());

// set read request and address
rreq.write(true);
addr.write(address);

// wait for acknowledge
wait(ack.posedge_event());
wait(clk.posedge_event());

// deassert request and read request
req.write(false);
rreq.write(false);

return rdata.read().to_int();
}

template < typename T >
IFS_MODULE(master) , public TLM_READ_COMMAND
{

typedef T if_type;

/* Commands */
void Write(std::list<std::string> parameters);
void Read(std::list<std::string> parameters);

// IF Module method impl
void ack_write_msg(int, unsigned int);
void ifs_error(const char *);

//Constructor master(sc_module_name);
}

template < typename T >
void master<T>::Read(list<string> parameters
{

// ...
unsigned int address =

IFS::StringToUInt(parameters.front());
// ...
parameters.pop_front();

unsigned int exp_value =
IFS::StringToUInt(parameters.front());

unsigned int value = if_type::if_read(address);
// ...

}

Instantiating TBM

© Accellera Systems Initiative 12

• Motivation
• What is the Integrated Functional Verification

Script Environment (IFS) and why use it?
• What was missing and what did we add to IFS?
• Making use of it for Back-to-Back comparison

between RTL and TLM
• Conclusions

Outline

© Accellera Systems Initiative 13

VP

IFS-
ScriptRTL

IFS-Controller

TBM

TBM

TBM

TBM

TLM

DUV
TBM

TBM

TBM

TBM

IFS-
ScriptRTL

IFS-Controller

TLM

DUV
TBM

TBM

TBM

TBM

Back-to-Back Simulation

© Accellera Systems Initiative 14

• methodology
for V-model
verification

• DSP from RTL
to ISS + TLM

• abstraction
implies
changed timing
behavior.

Abstraction and Time

© Accellera Systems Initiative 15

System Modeling Graph by L. Cai and D. Gajski.

A B

C

D

E

F

Un-
timed

Approximate-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

Cycle-
timed

Computation

Communication

A. Specification
B. Component-assembly
C. Bus-arbitration
D. Bus-functional
E. Cycle-accurate computation
F. Implementation

• simulated time (SIT)
• model execution time

(MET)
• SIT and MIT differ

across abstractions

Synchronization of BtB

• high abstraction is expected to execute faster
• sequence of results not guaranteed to be identical
• BtB requires synchronization

– generally not a trivial task to accomplish
– this scenario allows sync to external IRQ

© Accellera Systems Initiative 16

tn tn+1

Cycle Accurate
VHDL RTL

Instruction Accurate
ISS + TLM

Zero Delay
Computational

WCT

Output Valid

O. Valid

External Interrupt

Output Valid

O. Valid

BtB Verification Setup for DSP at
RTL VHDL and IIS SystemC

• IRQ, CLK and stimuli
connected parallel

• Script(s) define test(s)
• IRQ used for sync of

both DUV + script
• same TBM master in

two flavor
• automatic compare
• manual analysis in

one waveform viewer

© Accellera Systems Initiative 17

• Motivation
• What is the Integrated Functional Verification

Script Environment (IFS) and why use it?
• What was missing and what did we add to IFS?
• Making use of it for Back-to-Back comparison

between RTL and TLM
• Conclusions

Outline

© Accellera Systems Initiative 18

Conclusion
• seamless flow combining several languages and

abstraction levels
• comfortable adaption of test environment to DUT

variants and abstraction level
• comfortably analyzing deviations between models

– automatically generated assertions through BtB
– human readable tests specified in IFS scripts
– easier to understand than generated test vectors

• BtB across abstractions requires synchronization

© Accellera Systems Initiative 19

Questions

© Accellera Systems Initiative 20

Acknowledgements: This work has been funded by the German Federal
Ministry for Education and Research (Bundesministerium für Bildung und

Forschung, BMBF) under the grant 01IS13022 (project EffektiV). The
content of this publication lies within the responsibility of the authors.

	Using an Enhanced Verification Methodology for Back-to-Back RTL/TLM Simulation
	The Challenge
	No „One Size Fits All“
	Outline
	IFS long before SystemC/-Verilog
	IFS Simulation Environment
	Outline
	Communication Abstraction
	Mixing Communication Abstraction
	Interface Definition
	Communication Behavior
	Instantiating TBM
	Outline
	Back-to-Back Simulation
	Abstraction and Time
	Synchronization of BtB
	BtB Verification Setup for DSP at�RTL VHDL and IIS SystemC
	Outline
	Conclusion
	Questions

