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The Challenge
• electronics in heterogeneous systems
• ambient and safety relevant
• increasing complexity
• design and verification
• lining up for the task

– tailored solutions 
– standards 
– languages
– tools
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No „One Size Fits All“
• verification engineers choose and combine what …

– fits best for the company
– the design-team
– the application domain
– the abstraction level
– (budget, roadmap, …)

• deep roots in the design process
• changes endanger productivity
• change carefully and incrementally
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IFS long before SystemC/-Verilog

© Accellera Systems Initiative 5

• enhanced from VHDL with …
– VHDL-AMS
– SystemC
– Matlab/Simulink
– SystemVerilog and UVM

• SystemC based library simulates with any simulator (IEEE 1666)
• tailored to relevant use scenarios in special contexts
• simple IFS command language for (self-checking) test cases

– digital designer
– analog designer
– verification engineer
– system engineer
– software engineer



IFS Simulation Environment
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• design under
verification

• testbench
modules
– cmd loop
– predef. cmd
– user def. cmd

• IFS-controller
• IFS-script

TBM_1 PRINT „Executing Test“ -- predef. module cmd
#LOOP 100 -- predef. controller cmd

IFS SYNC ALL -- predef. controller cmd
TBM_1 write $(100+#i) -- user def. module cmd
TBM_2 read $(100+#i) -- user def. module cmd

#EOL -- predef. controller cmd
IFS QUIT -- predef. controller cmd
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Communication Abstraction
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TBMTBM

separating communication
and behavior

TBM
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Mixing Communication Abstraction
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Interface Definition



Communication Behavior
unsigned int
master_tl_if::if_read( unsigned int address )
{

/// transaction pointer
tlm::tlm_generic_payload* trans =

new tlm::tlm generic_payload;

sc_time delay = sc_time(30, SC_NS);
unsigned int data = 0;

// Initialize 8 out of the 10 attributes
trans—>set_comand( tlm::TLM_READ_COMMAND );
trans->set_address(address );
trans->set_data_ptr( reinterpret_cast

<unsigned char*> (&data) );
// ...
// Blocking transport call
socket->b_transport( *trans, delay );

// obliged to check response status
if ( trans—>is_response_error() )

ifs_error("TLM—2.0: Response error");
// ...
return data

}

unsigned int
master_rt_if::if_read( unsigned int address )
{

// set request
req.write(true);

// wait for grant
wait(gnt.posedge_event());
wait(clk.posedge_event());

// set read request and address
rreq.write(true);
addr.write(address);

// wait for acknowledge
wait(ack.posedge_event());
wait(clk.posedge_event());

// deassert request and read request
req.write(false);
rreq.write(false);

return rdata.read().to_int();
}



template < typename T >
IFS_MODULE(master) , public TLM_READ_COMMAND
{

typedef T if_type;

/* Commands */
void Write(std::list<std::string> parameters);
void Read(std::list<std::string> parameters);

// IF Module method impl
void ack_write_msg(int, unsigned int);
void ifs_error(const char *);

//Constructor master(sc_module_name);
}

template < typename T >
void master<T>::Read(list<string> parameters
{

// ...
unsigned int address =

IFS::StringToUInt(parameters.front());
// ...
parameters.pop_front();

unsigned int exp_value =
IFS::StringToUInt(parameters.front());

unsigned int value = if_type::if_read(address);
// ...

}

Instantiating TBM
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Back-to-Back Simulation
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• methodology  
for V-model 
verification

• DSP from RTL 
to ISS + TLM

• abstraction 
implies 
changed timing 
behavior.



Abstraction and Time
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System Modeling Graph by L. Cai and D. Gajski.
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• simulated time (SIT)
• model execution time 

(MET)
• SIT and MIT differ 

across abstractions



Synchronization of BtB

• high abstraction is expected to execute faster
• sequence of results not guaranteed to be identical
• BtB requires synchronization

– generally not a trivial task to accomplish
– this scenario allows sync to external IRQ
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BtB Verification Setup for DSP at
RTL VHDL and IIS SystemC

• IRQ, CLK and stimuli 
connected parallel

• Script(s) define test(s)
• IRQ used for sync of 

both DUV + script
• same TBM master in 

two flavor
• automatic compare
• manual analysis in 

one waveform viewer
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Conclusion
• seamless flow combining several languages and 

abstraction levels
• comfortable adaption of test environment to DUT 

variants and abstraction level
• comfortably analyzing deviations between models

– automatically generated assertions through BtB
– human readable tests specified in IFS scripts
– easier to understand than generated test vectors

• BtB across abstractions requires synchronization
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Questions
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