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Abstract—Critical electronic systems as in the automotive domain have to comply with the functional safety norm 
ISO 26262 and make extensive verification in the development process mandatory. Still, their success as a product 
and the return on investment are at risk if the time to market window should be missed. With test and verification 
consuming main effort in the development process, hardware/software co-design through application of virtual 
prototypes is an option to parallelize development tasks and shorten time to market significantly. Virtual prototypes 
can contain heterogeneous components potentially implemented at different levels of abstraction to support earliest 
concept evaluation and software development without the target hardware platform available. Achieving virtual 
prototype integration across mixed levels of abstraction is a challenge though, which is addressed in this work. We 
introduce a register-transfer abstraction level verification method and how it is enhanced by a technique for the 
simulation of transaction-level models in order to enable the mixed-level simulation of hardware and software 
systems and evaluate it in a Back-to-Back verification scenario. 
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I. INTRODUCTION 

High-end technology applications such as internet of things or automated driving cars have a raising demand 
for performance, functionality and consequently complexity in the design of semiconductor products. We are past 
the time when silicon chips contained a simple microcontroller and a few IO peripheral components. Today’s 
challenge is to handle complete and complex Systems-on-Chips. A single die of a few square millimeters gives 
room for several subsystems containing processor cores with memories, peripherals and analog components 
connected by hierarchies of on-chip buses. Guaranteeing properties of safety, sustainability and comfort is 
mandatory, which requires consistent verification of quality along every stage of the development process. 
Literature speculates that this combination of demands leads to a 70% verification effort of overall design costs, a 
number that is not really proven, but for sure must be avoided for future products. 

An established approach to address verification is the application of virtual prototypes (VP) to parallelize 
development tasks and shorten time to market significantly. A VP is an integration of executable models of any 
relevant component under development and enables the early simulation and verification of a product’s 
functionality. Unfortunately, there is no such thing as one size fits all. Verification engineers need to choose the 
abstraction level to combine what fits best for the verification task at a given development state. Along the design 
and verification process the VP and its components are prone to constant change and reorganization of abstraction 
levels, for the reason that a component may not be implemented in all details yet or that it is not relevant for a 
certain test scenario and should be abstracted to increase simulation performance. Of course, a component needs 
to show a consistent behavior independent of, but with respect to, the chosen abstraction level. Back-to-Back 
(BtB) comparison is a verification setup to guarantee this and which also requires mixed-level abstraction 
simulation techniques. In this paper, we introduce the enhancements of our “Integrated Functional verification 
Script environment” (IFS) verification method [1-4] to be able to stimulate and verify mixed-level VPs. In the 
context of this work, we used an automotive Digital Signal Processor (DSP) for sensor data processing as a 
reference for applicability. 

The remainder of this document is structured as follows. In Section II we give an outline on the state-of-the-
art for multi-abstraction-level verification methodologies followed by Section III describing our mixed-
abstraction-level communication concept. Section IV describes our practical results for which we applied our new 
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concept to an automotive DSP. This paper finishes with our conclusions in V followed by acknowledgements and 
the list of references. 

II. STATE OF THE ART 

Our verification methodology named IFS was continuously enhanced from VHDL with VHDL-AMS [1] to 
SystemC [2], MATLAB/Simulink [3] and further on to SystemVerilog and the Universal Verification 
Methodology (UVM) [4]. Major aspects of the test bench architecture as defined by IFS can also be found in the 
established standard UVM that has its roots in the Open Verification Methodology (OVM) and the Verification 
Methodology Manual (VMM). The idea is to conceptually separate the Design Under Verification (DUV) from a 
test setup, which again is separated into test bench and test cases. The methodologies support automated directed 
or constrained random test pattern generation. This enables reuse of design IP, test IP and test patterns and 
dramatically improves design and verification efficiency between projects. 

UVM though comes with mentionable overhead as stated by [6]. A typical UVM training class has an average 
length of four days. This assumes a working knowledge of the SystemVerilog language as their starting point. 
According to the authors of [6], a typical formal training program for engineers already familiar with Verilog 
would consist of a four day training class to teach the verification features of the SystemVerilog language, 
followed by four days to teach UVM. Adhering to the authors’ experience it takes about another half a year of 
practical work with UVM to master it completely. As a solution they introduced Easier UVM “…a 
comprehensive set of coding guidelines for the use of UVM together with an open-source UVM code generation 
tool. The code generator creates project-specific boilerplate UVM code according to the Easier UVM 
guidelines.”[6] The idea behind this is the support of a best practice, and to avoid the most common pitfalls. 

As we state in [4], the IFS approach is even less complex than Easier UVM and simpler to apply. After an 
afternoon introduction (analog) designers and system integrators are able to use test benches and create command 
files for own test cases. All stakeholders in the development process, digital designer, analog designer, 
verification engineer and system engineer make use of the same, simple IFS command language to create self-
checking test cases. Reuse is crucial for the exponentially growing verification task and requires a structured test 
bench design. IFS and UVM are both methodologies that specify such a structure well suited for test bench reuse. 
Computational behavior is separated from communication so that both aspects can be modelled individually 
according to verification needs (compare with Figure 1). Simultaneously, separation of communication and 
computation allows for an effortless change of protocols without touching functional behavior of the 
computational core. This is an important feature for generic IP reuse. 

UVM in this matter makes use of communication abstraction by means of Transaction-Level Modeling 
(TLM) [7] and Register-Transfer Abstraction Level (RTL). Our IFS methodology bases on SystemC which also 
includes TLM as a standard. Nevertheless, our previous work did not focus on TLM for IFS. This work 
demonstrates in a practical application how TLM is also applicable for IFS. In the automotive domain we use 
TLM together with RTL for co-verification in a 
way that our applied method is conceptually 
equivalent to the BtB comparison testing 
between model and code according to the 
standard ISO 26262 as named in [8]. The 
authors refer to automatic software code 
generation from executable models and their 
parallel simulation with simultaneous 
comparison. Nevertheless, the concept also 
holds for hardware development across different 
abstraction levels where models need to be 
verified against each other after each refinement 
step. This includes manual reimplementation of 
algorithmic C/C++ golden models in a RTL Figure 1. System modeling graph by L. Cai and D. Gajski [7]. 
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Hardware Description Language (HDL), or might also be applied for automatically synthesized Gate-Level 
representations. 

The authors of [9] describe a similar methodology for the verification of SystemC models in RTL test 
benches. They verify a TLM module by comparing the output with a “golden RTL module” and its RTL test 
bench. Initially, the RTL test bench is simulated with stimulation vectors. The sequence of activities and results is 
traced and later transformed into TLM transactions by use of proprietary scripts. The TLM module is then 
stimulated by these transactions and the responses are compared to the previously recorded. MathWorks is 
following the same approach with their tools MATLAB/Simulink and the HDL-Verifier toolbox [10]. The tool is 
capable of automated SystemC/TLM code generation from a computational model specified in the block-based 
graphical Simulink language. The tools also generate a test environment that firstly executes and traces the 
Simulink model and secondly generates, compiles and executes the SystemC/TLM model to apply the same 
inputs as before and check for same results on the outputs. 

In this matter, neither [9] nor [10] provide BtB comparison as stated in [8]. In the work presented here, we 
simulate both instances of the DUV at RTL and TLM simultaneously in a real BtB comparison and verify the 
results at runtime without the need to previously record any activity. 

III. COMMUNICATING ACROSS LEVELS OF ABSTRACTION 

As stated in Section II, our IFS methodology has its 
roots in VHDL and the RTL. When IFS was introduced, 
UVM and even TLM weren’t standardized and verification 
at RTL was state-of-the-art and feasible. Figure 2 depicts 
the original concept which separates the DUV, test bench 
and test cases as it is state-of-the-art today. Test cases are 
defined separately in script files by means of a proprietary 
IFS scripting language. The script controls the actions of 
Test Bench Modules (TBM) which stimulate and monitor 
the in- and output port signals of a DUV. A descriptive 
example of the IFS scripting language is part of [4] and [5] 
for further reference. We note that a DUV can be as simple 
as a single component, but could also be a completely 

integrated VP. The abbreviations DUV and VP are therefore replaceable for the following discussion. 
Communication protocols are modelled at signal level. Increased verification complexities and reuse of third 
party verification IP require an abstraction of communication to TLM. 

We describe how we enhanced our TBM concept to be easily configurable for different levels of 
communication abstractions. This has been done in two aspects: With new synchronization features and a stricter 
separation of communication and 
computation. 

The first is required because of different 
timing accuracy in RTL and TLM 
components that may lead to incomparable 
simulation results or even incorrect execution 
orders. Interrupts have been available already 
before to ensure the execution of a command 
at a specified point in time or with a specific 
period. In addition to that, we introduced 
events in the test case description language 
(IFS-Script). This allows to notify events in 
the script and to force TBMs to wait for the 

Figure 2. IFS test bench environment for RTL simulation. 

Figure 3. IFS test bench environment with multi-level test bench modules. 
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notification of an event. Together, the two features allow ensuring causality and the correct temporal behavior of 
the entire test bench even if individual components are 
modeled at different abstraction and timing accuracy levels. 

The second, strict separation of communication and 
computation, is required to reuse TBMs at different 
abstraction levels. We separated the TBM’s command 
implementation from its interface implementation. This 
allows a quick and easy exchange of the communication 
interface and abstraction levels depending on the 
development state of different components of the DUV or 
the needed simulation detail for chosen verification 

scenarios. While components of interest are verified in detail using RTL abstraction, other components may 
remain to be more abstract at TLM abstraction to increase simulation performance as shown in Figure 3. 

To support the easy switching of abstraction levels in TBMs, 
we introduced a further level of separation between 
communication and computation. In general, computation is 
already implemented in an abstract way in TBMs because they 
do not need to be synthesizable or deployable on the target 
platform. The communication however has to match the 
abstraction level of the DUV to be connected correctly. The 
additional interface level provides a number of methods to the 
computation part. These methods realize all required 
communication features so that the computation part does not 
need to access the actual interface as ports, TLM sockets etc. We 
can then provide different implementations of these methods for 
the different abstraction levels. In the following, we will 
describe this concept by using a bus master TBM as an example 
that provides various commands to trigger sequences of read and 
write accesses to a bus. 

The general technical idea is to have a class encapsulating the communication. The TBM is derived from that 
class to be able to use the communication facilities. Firstly, we extract the communication patterns from the 
TBM’s behavior. In our case this is writing a given value to a specific address and reading the content from a 
specific address. Then, we define an abstract base class master_if_base for the interface (Figure 4). It 

contains method prototypes supposed to implement the communication pattern, in our case if_write and 

if_read to perform the write or read access. In addition to the communication methods, there might be more 
functionality that should be available in the communication interface. But this functionality has to be 

implemented in the context of the TBM. Prototypes for such 
methods are declared here as well. 

Next, we define two derived classes to implement the 
RTL interface (Figure 5) and the TL interface (Figure 6). 
The declaration of the actual interface resides here, signal 
ports in the RTL version and a TLM socket in the TL 
version. In addition, the actual communication protocol is 
hidden behind in the definitions of the if_write and 

if_read methods. 

Figure 5. RT interface implementation. 

Figure 6. TL interface implementation. 

Figure 4. IF base class. 



 

5 
 

In Figure 7, the RTL implementation of the method if_read is shown. It executes the signal-level protocol 
for the bus to read a value from the address given as argument. The according TL implementation (Figure 8) does 
the same by creating and initializing a transaction object and calling the transport method to initiate the 
transaction. 

Here, we can also see the reason for methods used in the interface but implemented in the TBM. If an error 
occurs while reading is performed, this error should be reported correctly. This cannot be done entirely in the 
TBM because the cause and circumstances of the error are not available here. They are stored in the transaction 
object and handing the transaction object to the TBM would break the separation of computation and 
communication aspects. Likewise, it cannot be realized in the interface. Here, the reporting and error handling 
facilities are not available as they reside in the TBM. To solve this, we declare the abstract method ifs_error 
in the interface base class. The interface implementation is then able to call this method and give it the error 
circumstances as arguments, whereas the method implementation is done in the TBM. 

Figure 9 shows the declaration of the bus master TBM. We see no declarations of ports or sockets here. 
Instead, the module is derived from the interface implementation given as template parameter T. In addition to the 
derivation, we can check statically if T itself is derived from master_if_base by using 

std::is_base_of or similar type traits. This is omitted here for readability. With this, we are sure that the 
methods defined in the abstract interface base class are available and we can use them in the implementation of 

Figure 7. RT implementation of read method in RT interface. Figure 8. TLM implementation of read method in TLM interface. 

Figure 9. Bus master TBM. Figure 10. Implementation of read command. 
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the TBM’s commands. The Read command is shown as an example in Figure 10. Instead of accessing ports or 

sockets directly, it uses the if_type::if_read method to perform the actual bus access. 

Finally, we can instantiate the TBM in the version we need by simply using another template argument 
(Figure 11). Module m1 is a bus master TBM with a TLM interface. Module m2 is a TBM with the same behavior 
but with an RTL interface. Beyond this flexibility, we save effort 
when other interface implementations are needed, e.g., a TLM 
interface facilitating the non-blocking transport calls. Then, we 
only need to define another interface class implementing the 
if_read and if_write methods and use it in the TBM 
instantiation. The behavioral and computational part of the TBM 
remains untouched and the same test bench can be easily reused 
for RTL or TLM verification. 

IV. APPLICATION TO AN AUTOMOTIVE DSP 

Following the long tradition of the V-Model systems engineering process [11], we are challenged with the 
verification need for system components across several levels of abstraction along the refinement process down 
the “V”. BtB comparison is one approach to handle this verification task. 

Figure 12 depicts an IFS test bench environment configuration setup for BtB verification of two instances of 
the same DUV at RTL and TLM communication abstraction. The shown setup is not different to the one depicted 
in Figure 3 if one considers the two instances of the DUV as one larger DUV with two components, one at RTL 
and one at TLM. The refinement of TLM components towards RTL might seem to be the typical case at first 
glance. But the inverted direction of development is legit when legacy RTL components of projects prior to the 
VP era are reused and become part of a higher abstraction level verification. In our scenario, we abstracted an in-
house DSP from RTL to an Instruction Set Simulator (ISS) implementation with a TLM interface and verified the 
abstraction using BtB comparison. 

Whenever timing implementation details are removed, DUVs at different levels of abstraction imply different 
timing behavior. On one hand, this affects the time it takes to execute the model on a host machine. We call this 
time Model Execution Time (MET). On the other hand, we refer to the simulated time period as Simulated Time 
(SIT). Such abstraction in timing can be part of communication when bus handshaking signals across several 
clock cycles are abstracted away by TLM, or can be part of the functional behavior of the DUV, if it is specified 
at behavioral/algorithmic level executing instantly instead of spreading state machine behavior and algorithmic 
operations across many clock cycles. It is to be expected and the intended idea of abstraction that high-level 
modeled DUVs will execute faster than such at lower levels. 

For this reason, BtB requires synchronization of paired DUVs. They differ in MET, as well as SIT. Not only 
timing behavior but also the sequence of results from a DUV at lower abstraction levels is not guaranteed to be 
identical. While a TLM/behavioral model might 
jump right to the correct result, a refined model can 
produce intermediate, faulty results at its outputs 
before reaching the correct response. This makes 
synchronization mandatory for BtB, which is in 
general not a trivial task to accomplish. The target 
application of our work though is signal processing 
in the automotive domain. In this specialized 
context, we look at sensor data processing triggered 
periodically through external interrupt signals, a 
given source for simulation synchronization events. 

The use case of this work is the VP of a DSP. 
Any model representation of the DSP always needs 

Figure 11. Instantiation of bus master TBM. 

Figure 12. IFS test bench environment for BtB verification. 
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to finish computations correctly within the 
SIT timeframe of two succeeding interrupts 
with a defined period to achieve real-time 
response requirements. The availability of 
such a signal is used as our solution to the 
BtB synchronization problem for signal 
processing in the automotive domain. For a 
functionally correct DUV it is valid to trace 
the previously computed response in 
synchronization with the next triggering interrupt as shown in Figure 13. We used BtB on the above named 
instruction accurate ISS plus TLM communication in combination with the cycle-accurate model plus RTL 
communication. The details of our setup are depicted in Figure 14. Referencing Figure 1, it can be said that we 
BtB-simulated a model “B” against a model “F.” We also show a zero delay computational model in Figure 13 
(model “A”) to visualize how e.g. a MATLAB/Simulink model would behave in the same BtB scenario. 

The three input TBMs in Figure 14 named IRQ, CLK and STIM use SystemC ports and signals to connect to 
both DUTs simultaneously. This is an efficient decision as both models process the same data in a BtB 
simulation. The TBMs are controlled by commands of the IFS-script. This script defines what and when stimuli 
are applied to the DUTs. It also defines interrupt triggered test routines in the IFS scripting language. 

The CTRL IRQ has a special role in this scenario and serves as a feedback loop into the IFS-script execution 
which is not linearly scripted IRQ event by IRQ event. The TBM IRQ is rather programmed to autonomously 
generate events at the required period. The script environment does not need to take track of the periods as they 
evolve. Instead, CTRL IRQ is sensitive to the same IRQ event as the two DUVs and synchronizes the test bench’s 
IFS-script with the simulated DSPs’ interrupt service routine execution. With each event on the IRQ, the IFS 
script executes its own interrupt routines to collect results from the Master TBMs and applies new stimuli at 
STIM, while in parallel the simulated DSPs are triggered to proceed the next cycle of data processing. The 
interrupt event is used to synchronize two DUVs and the test script execution at the same time. 

The outputs of the two DUVs are monitored by a TBM master that was implemented according our new 
concept as introduced in the previous section. The great achievement in this setup is that the DUTs’ outputs are 
compared automatically by a simple compare component but can also be examined manually by the user by 
plotting the signals of the models within the same simulation waveform viewer. This increases the efficiency for 

error detection and debugging of the 
ISS/TLM abstraction model. We were able 
to comfortably analyze deviations in the 
behavior of the models of different 
abstraction levels. This work helped to 
reduce our verification effort significantly. 
Our concept processes human readable tests 
specified in an IFS scripting language and 
BtB simulation automatically generate 
assertion values for comparison. These are 
easier to handle, read and understand than 
generated, cryptic test vectors. The time 
synchronization makes debugging in one 
waveform window an easy task. This was 
achieved by the synchronization of test, test 
bench and DUVs. 

Figure 13. Synchronization of BtB comparison for each IRQ event. 

Figure 14. BtB verification setup for DSP at RTL VHDL and ISS SystemC. 
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V. CONCLUSION 

We argued that mixed-level VPs are a valid approach to handle the exponentially growing verification task 
which requires structured test bench design to enable reuse of design IP, test IP and test patterns. This 
methodology helps preventing that verification to implementation share increases above tolerable limits. In this 
context, we introduced our established RTL verification method IFS which is even easier to use than “easier 
UVM” of [5]. We explained how it was enhanced by a technique for the simulation of transaction-level models in 
order to enable the mixed-level simulation of hardware and software systems. We achieved this by enhancing our 
TBM concept with C++ template class definitions to be easily configurable for different levels of communication 
abstractions. An important requirement for this approach was not to interfere with the established and operational 
design flow environment of a global player in automotive microelectronics. We needed to create added value 
without interfering with the compliance to the applied IFS methodology. We proved the validity of our approach 
by its application to an automotive DSP sensor example in a BtB setup of two VPs of the application at two 
different abstraction levels. The synchronization challenge for signal processing in the automotive domain is 
solved by using an external synchronization signal. We observed that our work helped to reduce significantly our 
verification effort. Newly designed tests automatically create comparable outputs without the need for the 
verification engineer to design fitting assertion, too. In case of simulated differences, debugging is convenient in 
the synchronized waveforms of a DUV and its reference. 

In our future work we will enhance our IFS methodology even further towards concepts for fault-effect-
simulation. The idea behind this is the instantiation of fault injectors similar to our TBM that deliberately cause 
erroneous functional behavior. The application’s robustness for error handling becomes verifiable by means of 
the further enhanced mixed-level VP simulation possibilities. 
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