
               Using Advanced OOP Concepts 

                     To Integrate Templatized 

Algorithms for Standard Protocols With UVM 
 

                             Anunay Bajaj                                                                                Gaurav Chugh          

                        Synopsys India Pvt. Ltd.                                                               Synopsys India Pvt. Ltd. 

                               New Delhi                                                                                     New Delhi 

                        0091.11.49233971                                                                         0091.11.49233980 

                    abajaj@synopsys.com                                                              cgaurav@synopsys.com 

 

Abstract: Reusability is no longer a nice-to-have 

requirement when it comes to the development of a 

successful verification environment for a System On 

Chip(SoC) that incorporates multiple standard 

protocols. The more reusable the code and the 

implementation of verification IPs, the faster will be 

its development and verification cycle. From an 

organizational point of view, the major time and 

effort penalty that one has to pay is writing and 

verifying the same set of code repetitively across 

multiple projects.This is one of the prime hidden 

factors in the latency of Project Development to 

Delivery Cycle. 

This paper emphasizes the incorporation of many 

standard   encoding,data integrity, and common 

protocol intersection schemes to become a part of 

the Universal Verification Methodology(UVM) 

library package through the concepts of specialized 

container classes. To support the dynamic and ever-

upgrading nature of verification industry, several 

template class packages for common layers across 

multiple protocols and complex mathematical 

operations are proposed to achieve effective 

reusability and universally-accepted standard-

quality product across the entire verification 

industry. 

 

Keywords 

UVM,Encoding,Decoding,Clock,Package,Digital 

SignalProcessing,SoC,LaneManagement,Filters, 

Sampling 

 

I. INTRODUCTION 

 

The Time is money adage stands true in the current 

cut-throat competition. Why would one want to 

reinvent the wheel? The same stands true in the field 

of Design and Verification of SoC; the man-hours put 

in to implement a commonly-used logic or an already 

implemented block with a few minor application-

specific changes is one of the prime unknown time 

and effort penalty that one has to pay without 

realizing the fact that the same task could be 

implemented in a much smarter way. 

 

II. NEW AGE METHODOLOGY: 

UVM WITH A DIFFERENCE 

 

We all agree that methodologies in the field of SoC 

verification has rendered the life of a testbench 

developer and an end-user much simpler.The 

efficient idea of introducing methodologies is to have 

a standard layout across all the Verification IPs. A 

well-defined structure helps even a naive developer 

to get an overview of the flow control of any 

testbench architecture.However, the current standard 

methodology, that is, UVM can be armed to become 

more protocol friendly and developer aware.  

 

The proposal in this paper is to empower UVM with 

technology-independent and developer-oriented 

container classes, which will be generic in nature and 

flexible enough to be molded according to the type 

and requirement of a testbench creator. 

 

SystemVerilog with its advanced Object-Oriented 

Programming (OOP) concepts along with UVM can 

be harnessed to provide a common and a standard 

platform to developers. They could get a feel that 

their job is already partially done and they just need 

to map or override these containers to suit their 

verification architecture. 

 

There are many coding algorithms, also termed as 

schemes, which are often used across multiple 

verification environments in the industry. These 

could be standardized as a part of the standard UVM 

package. This paper throws light on the categories 

and mechanism of implementation of these 

algorithms. However, this does not mean that the 

proposed mechanisms are the only ways to 

implement; more efficient and flexible ways can be 

evolved. 

 

mailto:abajaj@synopsys.com
mailto:cgaurav@synopsys.com


 

 

III. COMMONALITIES ACROSS 

PROTOCOLS 

 

We shall now look at some of the common features 

across various protocols, discuss how to harness 

these features, and make a part of UVM. 

 

A. Encoding/Decoding and Encryption 

Algorithms 

These algorithms are often implemented and 

exhaustively used in PCI Express,SATA,Ethernet,and 

Interlaken, etc. One of the most common algorithms 

is 8b/10b Coding. 

Encryption algorithms across wired and wireless 

protocols, for example Advanced Encryption 

Standard (AES) in Bluetooth, seem ubiquitous.  

 

B. Data Integrity 

To maintain data integrity through error-detecting 

codes, find extensive usage in digital networks and 

storage devices to detect accidental changes to raw 

data is a mandatory block. In most of the cases based 

on a polynomial division, data corruption is 

monitored. Cyclic Redundancy Check (CRC), Parity 

checks, and checksum calculations are some of the 

most abundantly used data-integrity checking 

methods. 

 

C. Digital Signal Processing (DSP) 

Many wireless, audio, and video-codec blocks in 

SoCs require complex mathematical operations. In 

addition, designer-customized blocks for instance, the 

circuits where standard hardware multiplier and 

transform blocks are replaced with typical 

application-specific block find a lot of Digital Signal 

Processing (DSP). 

 

D. Clock Generation and Recovery 

This is the most common block across all the SoC. In 

high-speed serial data streams where clock is not 

accompanied, clock recovery blocks come handy. 

Also, in slower data-rate protocols, such as MIPI-

HSI, where optimality of design is prerequisite, clock 

is recovered based on the data obtained at the 

receiver end along with the status of some control 

signals or reference clock. Here, reusability of these 

designs is an important feature. 

 

E. Data Sampling Algorithms 

Video coding and wireless protocols use a host of 

sampling techniques, such as Phase Shift Keying 

(PSK), Manchester Coding, and Non-return-to-zero 

(NRZ), etc. Even in a Bus protocol, such as Universal 

Serial Bus (USB), implements the NRZ coding 

exhaustively. 

 

F. Lane Management 

Communication protocols, such as MIPI, Interlaken, 

and PCI Express, etc. where data streams or packets 

are sent across multiple lanes, the algorithms for the 

management of these protocols have similarities. 

 

IV. INTELLIGENT UVM:MON AMI 

 

This paper proposes three distinct packages 

implementing the commonalities across various 

designs so that the development of verification 

environment for the same becomes a much more 

easier, effective, and comprehensive in nature. These 

packages, if become a part of the standard UVM 

package, can really propel it to be stated as a new age 

methodology. 

 

These packages broadly include template classes also 

termed as containers for the following components: 

 

 Data Conversion algorithms 

 Clock Generation and Recovery blocks 

 Complex Mathematical operations 

 Data Sampling  

 Data Integrity 

 Running Disparities 

 Lane Management 

 

Table I. gives an overview of the package 

classification along with their supported templates. 

 
            TABLE I. PACKAGE-SUPPORTED TEMPLATES 

Package Name Supported Templates 

 

Standard Template 

Algorithms 

Container (STAC) 

classes 

 

 

1) Common 

Encoding/Decoding 

algorithms  

2) Data Integrity algorithms 

3) Linear Data algorithms 

 

Standard Template 

Math 

Container(STMC) 

classes 

 

1) Standard and 

Complex 

Mathematical 

operations for 

Dynamic computer 

and mathematical 

programming-specific 

RTL cores 

2) Digital Signaling 

algorithms 

http://en.wikipedia.org/wiki/Telecommunications_network


 

Standard Template 

Utility Container 

(STUC) classes  

 

 

 

1) Clock-related utilities, 

such as its generation 

and detection 

2) Data Sampling 

algorithms 

3) Lane Management 

 

These proposed template classes can be included as a 

part of UVM on per-need basis depending on the 

developers’ extent of usage. These classes wrapped 

in packages can be included in a chained manner 

along with the UVM package as: 

                     import uvm_pkg::*; 

                     import uvm_<package name>_pkg::*; 

It is important to note that these packages are very 

exhaustive and contain almost all the algorithms if 

they go on to become a part of UVM. Here, we will 

discuss with a bird’s-eye view on how the packages 

and their containers would have a look and feel. 

 

V. PROPOSED PACKAGES 

 

We shall see the pseudocode or skeleton of the 

Template classes packages in this section. 

 

A. Standard Template Algorithms Container 

(STAC) Classes Package 

 

                       package uvm_stac_pkg 

 

 
 

1) Common Encoding/Decoding Algorithms 

 

Encoding/Decoding and other line coding algorithms 

to optimize the bandwidth usage and achieve DC 

balance form an integral part of almost all standard 

and customized blocks of SoC designs. 

 

Similarly, with the STAC package up and running, 

testbench developers only need to identify the 

required blocks of an algorithm based on their needs 

and can use it umpteen times.The templates of this 

package are flexible enough to customize the 

encoding/decoding blocks as per needs. 

 

Some of the frequently used algorithms are 

8b/10b; 64b/67b; and 128b/130b, etc. These schemes 

are extensively used in Ethernet, PCIe, USB3.0, 

Interlaken,and many other communication  protocols. 

 

The uvm_stac_standard_encoder class provides a 

free hand to users to pass the encoding scheme 

through the ENCODING_TYPE variable with the 

input, termed as INSTREAM. The 

standard_encode_data function operating as the 

code-conversion machine,in turn, calls an algorithm-

specific function, which converts and returns the 

output, termed as OUTSTREAM. The function is 

virtual, thus, can be overridden whenever and 

wherever a developer wants. INSTREAM and 

OUTSTREAM are designed to support dynamic 

arrays in nature to cater any width of data.This code-

conversion machine’s salient driving factor is the 

encoding type scheme that users provide.Its internal 

case statement takes the ENCODING_TYPE _e_type 

as an argument and calls the relevant function to code 

or decode INSTREAM _in_data and return 

OUTSTREAM _out_data. 

 

The standard UVM document will maintain a table 

containing all the encoding/decoding algorithms 

against their parameter names that will be passed as 

an argument in standard_encode_data,any other data 

sampling, or conversion algorithm. The UVM 

document (User’s Guide) table with a few of the 

coding schemes will look as below: 

 
TABLE II.CODING SCHEME VS PARAMETER NAME 

SNo. Coding Scheme Parameter 

1 8b/10b `8B10B 

2 n-Bit Cyclic 

Redundancy Check 

`NBITCRC 

3 Manchester Coding `MANCHESTER 

4 Digital Butterworth 

Filter 

`FILTER 

 

Figure 1 shows the pseudocode of 

uvm_stac_standard_encoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uvm_stac_standard_encoder 

uvm_stac_data_integrity_encoder 

uvm_stac_linear_encoder 

class uvm_stac_standard_encoder 

#(int    ENCODING_TYPE=0, 

    type INSTREAM=bit, 

    type OUTSTREAM=int 

  )extends uvm_object; 

 

 int _e_type = ENCODING_TYPE; 

 

         virtual function bit standard_encode_data 

             (input INSTREAM _in_data,  

              output _out_data 

             ); 

            case(_e_type) 

               `8B10B_CODE:  

                   f_8b_10b(_in_data,_out_data); 

 

          

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

          Figure 1: Common Encoding/Decoding Algorithms 

 

2)  Data Integrity Algorithms 

 

Data integrity algorithms are paramount for a 

protocol as they maintain the accuracy and 

consistency of data sent across layers or links.The 

STAC package provides built-in data integrity 

creation and verification functions wrapped in the 

uvm_stac_data_integrity_encoder class.This class 

contains an extra parameter, 

ENCODE_POLYNOMIAL, and remaining 

parameters are same as uvm_stac_standard_encoder. 

 

The ENCODE_POLYNOMIAL parameter provides 

a space to a testbench developer to input the custom 

or protocol-specific coefficients of polynomial. 

 

The skeleton of this class be seen in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                            Figure 2:Data Integrity Algorithms 

 

The steps for a developer to use the 

uvm_stac_data_integrity_encoder template class in 

the verification environment are as follows: 

             `128B130B_CODE: 

                 f_128b_130b(_in_data,_out_data); 

 

            `64B66B_CODE: 

                f_64b_66b(_in_data,_out_data); 

                 /* -------------------------- 

                    More Standard Encoding/Decoding    

                    Schemes in the code 

                  --------------------------- */ 

               /*---------------------------- 

                   Provision for User Created  

                   Schemes Below 

                  -------------------------- */ 

           `USER_DEFINED_CODE: 

                f_user_coding_scheme(_in_data,_out_data); 

        endcase 

     endfunction 

       /* -------------------------- 

         Generic Conversion Functions 

         Definitions for all the algorithms 

          -------------------------- */ 

 

         virtual function void f_8b_10b 

             (input INSTREAM _in_data, 

              output OUTSTREAM _out_data 

             ); 

                   // Input  : 8-bit  data 

                  // Output : 10-bit encoded data   

       endfunction 

 

       virtual function void f_128b_130b 

          (input INSTREAM _in_data, 

           output OUTSTREAM _out_data 

          ); 

               // Input  : 128-bit  data  

              // Output : 130-bit  encoded data   

      endfunction 

 

virtual function void f_user_coding_scheme 

(input INSTREAM _in_data, 

output  OUTSTREAM _out_data 

); 

//User Code Here... 

endfunction 

 

endclass //uvm_stac_standard_encoder 

 

class uvm_stac_data_integrity_encoder 

         #(int  ENCODING_TYPE=0, 

            int  ENCODE_POLYNOMIAL=1, 

            type INSTREAM=bit, 

            type OUTSTREAM=bit 

           )extends uvm_object; 

 

          int _e_type = ENCODING_TYPE; 

          int _e_poly = ENCODE_POLYNOMIAL; 

 

          virtual function void encode_data_integrity 

             (input  INSTREAM _in_data,  

              outputOUTSTREAM _out_data 

             ); 

            case(_e_type) 

               `NBITCRC:  f_n_bit_crc 

                   (_e_poly,_in_data,_out_data); 

 

              `ODDPARITY:f_odd_parity 

                  (_in_data ,_out_data); 

 

             `EVENPARITY:f_even_parity 

                 (_in_data,_out_data); 

 

            `USER_DEFINED_CODE: 

                      f_user_coding_scheme 

                (_e_poly,_in_data,_out_data); 

              //More Coding Algorithms 

          endcase 

       endfunction 

 

/*The implicitly called functions in the case statements  

have their definitions separately in the same class*/ 

Here is how they look: 

 

               virtual function void f_n_bit_crc 

                   (input ENCODE_POLYNOMIAL _e_poly,   

                     INSTREAM _in_data, 

                   output OUTSTREAM _out_data 

                  ); 

                      // Input_1  :  Polynomial 

                     // Input_2  : Input Data 

                    // Output   : N-Bit CRC value   

             endfunction 

 

             virtual function void  f_user_coding_scheme 

                 (input INSTREAM _in_data 

                  output OUTSTREAM _out_data 

                 ); 

                   //User Code Here... 

            endfunction 

 

endclass// uvm_stac_data_integrity_encoder 

 



(i) Specialize the 

uvm_stac_data_integrity_encoder 

template class with appropriate values 

and types for ENCODING_TYPE, 

ENCODE_POLYNOMIAL, 

INSTREAM, and OUTSTREAM. 

(ii) Create an object of a specialized class. 

(iii) Call the encode_data_integrity function 

by providing an input bit 

stream,_in_data. 

(iv) The return data stream from the 

function gives an output bit 

stream,_out_data. 

Parity calculation can be done in the same way  

 

Users can also create customized data-integrity 

algorithms by overriding the f_user_coding_scheme 

function. 

 

3)  Linear Data Algorithms 

 

The uvm_stac_linear_encoder template contains 

some of the very important and typical 

communication-coding techniques. 

For communication protocols, where the data or 

signal encoding and decoding process is continuous 

as well as repetitive in nature, this template would be 

very handy. 

The skeleton of this class be seen in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                            Figure 3:Linear Data Algorithms 

 

Let us take the example of the Hamming code. 

The f_hamming_code function returns data streams 

by just passing BLOCK_LENGTH, 

MESSAGE_LENGTH, and INSTREAM as inputs. 

 

B. Standard Template Math Container 

(STMC) Classes Package 

 

It is difficult to think about any SoC without DSP 

blocks as an integral part of it, especially when Video 

and Audio decoding algorithms are vastly 

implemented in them. The STMC package contains 

template classes for all the complex mathematical 

operations often hand in glove with DSP algorithms. 

This package acts as a wrapper around Direct 

Programming Interface (DPI) calls to C-

programming language 

 

                    package uvm_stmc_pkg 

 

1) Z-Transform 

 

The equation of Z-Transform is: 

 

 

 

 

 

 
 

                                      Figure 4:Z-Transform 
 

class uvm_stac_linear_encoder 

#(int    ENCODING_TYPE=0, 

   int    BLOCK_LENGTH=0,  

   int    MESSAGE_LENGTH=0, 

   type  INSTREAM=bit, 

   type  OUTSTREAM=int 

  )extends uvm_object; 

 

          int _e_type = ENCODING_TYPE; 

          int _b_length = BLOCK_LENGTH;  

          int _m_length = MESSAGE_LENGTH; 

 

  virtual function void encode_linear_data 

      (input INSTREAM _in_data, 

               output OUTSTREAM _out_data  

              ); 

 

            case(_e_type) 

            `HAMMING: f_hamming_code 

                                     (_in_data,_out_data); 

 

            `REED_SOLOMON: f_reed_solomon_code 

                                    (_in_data,_out_data); 

 

                       // .….. Other cases here 

           endcase 

       endfunction 

 

        virtual function void f_hamming_code 

            (input  INSTREAM _in_data, 

             output OUTSTREAM _out_data 

            ); 

 

 

         /*Takes Input data and depending upon the  

            Block and Message length returns Hamming 

            Code Output*/ 

        endfunction 

 

        virtual function void f_reed_solomon_code 

            (input  INSTREAM _in_data, 

             output OUSTSREAM _out_data 

            ); 

              // Implementation same as above 

        endfunction 

 

endclass //uvm_stac_linear_encoder 

 

 

 



Here, developers include the uvm_stmc_pkg package 

in their environment and use the 

uvm_stmc_math_encoder container class.The 

PHASE _phase, TIME_LOWER_LIMIT _t_ll, and 

TIME_UPPER_LIMIT _t_ul values are required for 

a typical z-transform of any digital information 

spread across a time bandwidth.The f_z_transform 

function takes these overridden values specified by 

developers and returns the bit stream of transformed 

variables.Wherever calculations of complex 

equations are required, the DPI call to C will be 

implicitly called by the function itself to return the 

desired output. 

 

2) Digital Filters 

 

The realization of Digital Filters for the Core Digital 

Signal and Image processing blocks that require 

verification can be done using STMC. 

 

 

 

 

 

 

 

 

 

 

 
                Figure 5: A Digital Filter Example 

 

Filter output: 

y[n]=b0x[n]+b1x[n-1]+b2x[n-2]-a1y[n-1]-a2y[n-2] 

n is a timestamp or time instant,x components are 

inputs, and y components are outputs with their 

respective avarand bvar coefficients. 

Based on the time range captured, any standard or 

customized filter can be implemented just by 

providing the order and summation of filter inputs 

based on the time range can be captured and 

converted using the STMC template. 

 

The skeleton of this class be seen in Figure 6. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                          Figure 6: Math Encoder  

 

The steps for developers to use the 

uvm_stmc_math_encoder template class in 

verification environment are as follows: 

(i) Specialize the uvm_stmc_math_encoder 

template class with appropriate values 

and types for INSTREAM, 

ENCODING_TYPE,   ORDER, 

PHASES, POLES, ZEROS, 

TIME_LOWER_LIMIT,TIME_UPPER

_LIMIT, and OTSTREAM. 

(ii) Create an object of a specialized class. 

(iii) Call encode_linear_data by providing 

input bit stream _in_data. 

(iv) The return data stream_out_data of the 

internal function f_filter will give the 

desired digitally filtered output.Filter 

can be Butterworth or Chebyshev in its 

implementation. 

 

An exhaustive STMC package contains a library of 

various DSP algorithms and other filters to suit 

developers’ need. 

 

 

 

 

 

 

 

 

class uvm_stmc_math_encoder 

 #( type   INSTREAM=bit, 

     int     ENCODING_TYPE=0, 

     int     ORDER=0, 

     int     PHASE=0, 

     int     POLES=0, 

     int     ZEROS=0, 

     int     TIME_LOWER_LIMIT=0, 

     int     TIME_UPPER_LIMIT=0, 

     type  OUTSTREAM=bit 

   )extends uvm_object; 

 

         int _e_type = ENCODING_TYPE;  

         int _order = ORDER;  

         int _phase = PHASE;  

         int _poles = POLES;  

         int _zeros = ZEROS;  

         int _t_ll = TIME_LOWER_LIMIT; 

         int _t_ul = TIME_UPPER_LIMIT;  

 

         virtual function void math_encoder 

   (input INSTREAM _in_data, 

    output OUSTREAM _out_data 

    ); 

   case(_e_type) 

     `Z_TRANSFORM:   

         f_z_transform(_in_data,_out_data); 

 

     `FILTER: 

         f_filter (_in_data,_out_data); 

 

                       // ……… Other cases here 

  endcase 

       endfunction 

endclass //uvm_stmc_math_encoder 

 

 



C. Standard Template Utility Container 

(STUC) Classes Package 

 

As the name suggests, this package contains all the 

utilities common to most of the protocols. 

Algorithms, such as Clock generation, Clock 

Recovery, Clock stretching, Timer, and other clock-

related blocks are the part of this package. 

 

                       package uvm_stuc_pkg 

 

 
 

1) Clock Recovery 

 

Protocols, such as SATA and MIPI-HSI etc. find a 

very extensive use of clock recovery, thus, making 

imperative for this logic to be a standard UVM 

source code block. 

A very basic Clock Recovery block has the edge 

detection and Sampling Circuitry blocks in it. The 

Edge Detection block detects all logic 0 to logic 1 

transitions of an incoming data and vice versa. This 

function is just like a Phase Locked Loop (PLL). The 

output of this block is fed to the Sampling Circuitry 

block.The Sampling Circuitry block implements a 

sampling counter,which monitors and samples the 

edges detected by the previous block and outputs the 

clock.Refer to Figure 7 for the Clock Recovery Block 

diagram and Figure 8 for its pseudocode. 

The uvm_stuc_clock_recovery class of the STUC 

package has the uvm_clock_rec task, which takes 

data stream _in_data and a reference clock _clk as an 

input. 

 

 
                  Figure 7: Clock Recovery Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                  Figure 8: Clock Recovery 

 

The uvm_clock_rec task wraps the Edge Detection 

and Sampling Circuitry blocks into a single task, 

namely t_edge_detection_and_sampling_circuitry,  

and can be overridden. The clock recovery block of 

verification environment needs to provide the input 

data stream and a reference clock of 

developers’choice.  

 

One thing to note here is that this is a very basic 

implementation of Clock Recovery shown as an 

instance; but provision for more complex logic by 

adding more conversion functions can become a part 

of this class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uvm_stuc_clock_recovery 

uvm_stuc_clock_generation 

uvm_stuc_calc_running_disparity 

uvm_stuc_data_sampling 

uvm_stuc_lane_management 

class uvm_stuc_clock_recovery extends uvm_object; 

 

virtual task uvm_clock_rec 

    (ref bit  _in_data, 

                 _clk, 

     ref _out_data  

    ); 

 

   t_edge_detection_and_sampling_circuitry 

  ( _in_data, _clk, _out_data); 

 

/*Logic for Edge detection outputs the edges which is 

fed to Sampling Circuitry*/ 

 

/*Output Clock from the Sampling circuitry is 

recovered with the help of reference clock as the 

circuitry’s inbuilt sampling counter samples the edges 

obtained from the previous block*/ 

 

  endtask 

 

endclass //uvm_stuc_clock_recovery 

 

 

 

 

 

 



2) Clock Generation 

 

The Clock generation pseudo code is in Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                             Figure 9: Clock Generation 

 

The clock generation logic class 

uvm_stuc_clock_generator, is a standard clock 

generation class with an inherent task 

uvm_clock_gen, which has clk, freq, and duty_cycle 

as referenced arguments. Developers’ top-level 

module can instantiate the class handle and allocate 

memory to it. In the verification environment, the 

uvm_clock_gen task is called with the clock variable 

- clk and the custom frequency - freq, and the duty 

cycle - duty_cycle as its arguments. 

 

3) Running Disparity 

 

On a broad-level, Running Disparity (RD or rd) is the 

difference between the number of logic 1-bit and 

logic 0-bit between the start of a data sequence and a 

particular instant in time during its transmission. The 

RD for a data stream is the difference between the 

number of logic 1-bit and logic 0-bit in that stream. 

For example, if there are more 1 bits than 0 bits, the 

RD is defined as positive. If there are fewer 1 bits 

than 0 bits, the RD is defined as negative. If the 

number of 1 bits and 0 bits is the same, the RD is 

defined as neutral or zero. Thus, RD helps in 

achieving the Direct Current (DC) balance. 

This important concept is applied across many 

communication protocols, such as 

Ethernet,Interlaken,and PCI Express, etc. 

 

The STUC package contains container classes to 

calculate the RD of the input stream entered by a 

testbench developer.Figure 10 shows the pseudo code 

of class uvm_stuc_calc_running_disparity. 

 

To calculate the RD of encoded data(eg. 8b/10b), a 

Lookup table is maintained by the 

calc_running_disparity function. Based on the 

_rd_value input provided from the environment, the 

_out_data will have either positive or negative 

disparity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
                      Figure 10: Running Disparity 

 

4) Sampling Algorithms 

 

Data and clock sampling techniques in Video and 

Audio codecs are widely used along with many 

wireless technology protocols. 

 

 
    Figure 11: Common Sampling/Encoding Schemes 

 

On the fly sampling of data facility by just 

mentioning the type of scheme is the purpose of the 

uvm_stuc_data_sampling container class 

 

 

 

Top level module  

module top; 

    bit clk; 

    real freq;   

    real duty_cycle; 

 

   uvm_clock_generator clk_gen_object; 

   clk_gen_object=new(); 

   initial begin  

          clk_gen_object.uvm_stuc_clock_gen 

                (clk,freq,duty_cycle); 

            //Other user code here 

   end 

endmodule 

 

class uvm_stuc_clock_generator extends uvm_object; 

 

     virtual task uvm_clock_gen 

       (ref   clk,  

        ref   freq, 

        ref   duty_cycle 

        ); 

        //Clock generation code here 

     endtask 

endclass //uvm_stuc_clock_generator 

 

class uvm_stuc_calc_running_disparity 

         #(type INSTREAM=bit, 

            type OUTSTREAM=bit 

           )extends uvm_object; 

 

   virtual function  void  calc_running_disparity 

     (input INSTREAM _in_data, 

      input _rd_value=0              

      output OUTSTREAM _out_data 

     );  

      //Generates _out_data on _in_data and 

      //_rd_value representing +/- disparity number 

    endfunction 

endclass//uvm_stuc_calc_running_disparity 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

                            Figure 12: Data Sampling 

 

 

Figure 11 denotes the most common data sampling 

schemes. 

 

The skeleton of the uvm_stuc_data_sampling class 

can be referred from Figure 12. According to the 

sampling scheme passed as an argument in the 

data_sampling task along with the input data stream 

and a reference clock can be done effectively. This 

reference clock may or may not be required based on 

the selected sampling scheme. The case statements or 

the sampling machine inherently calls the code 

conversion task for the desired SAMPLING_TYPE -  

_s_type. 

 

 

 

 

5) Lane Management  

 

Active lane management from the bundle of lanes is 

an important feature across MIPI,PCI 

Express,Interlaken,and Ethernet,etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                             Figure 13: Lane Management 

 

This is a very important utility to be a part of the 

STUC package as it reduces a lot of overhead of 

developers. 

 

In Figure 13, the uvm_stuc_lane_management class 

contains the input data,INSTREAM, which has to be 

divided across lanes as specified by users in the 

LANE variable. The WIDTH variable signifies the 

width of the data to be sent across the 

lanes.OUTSTREAM is the output data per lane.  

 

The steps for developers to use the 

uvm_stuc_lane_management template class in a 

verification environment are as follows: 

 

(i) Specialize the 

uvm_stuc_lane_management template 

class with appropriate values and types 

for INSTREAM, WIDTH, and LANES. 

(ii) Create an object of the specialized class. 

(iii) Set the number of active lanes using the 

handle as follows: 

handle._active_lanes=<value> 

(iv) Call the lane_mgmt function with a 

developer-specified data vector 

(v) Capture the output per lane in the array 

of the _lane_count queue. 

class uvm_stuc_data_sampling 

        #(int SAMPLING_TYPE=0 

          )extends uvm_object; 

 

          int _s_type=SAMPLING_TYPE; 

 

          virtual task data_sampling 

              (ref bit _in_data, 

               ref bit _reference_clk=0, 

               ref bit  _out_data 

              ); 

             case(_s_type) 

      `NRZ:  

         t_nrz_code(_in_data, ,_out_data); 

 

     `MANCHESTER:     

                t_manchester_code 

                  (_in_data,_reference_clk,_out_data); 

 

            `PSK:  

       t_psk_code(_in_data,out_data); 

 

               //More sampling algorithms 

          endcase 

       endtask 

 

       virtual task t_nrz_code(input _in_data,output 

                                                                _out_data); 

                   //NRZ Code conversion here 

      endtask 

 

      virtual task t_manchester_code(input  

                 _in_data,_reference_clk,output _out_data); 

//Manchester Code conversion here 

      endtask 

 

endclass //uvm_stuc_data_sampling 

 

 

class uvm_stuc_lane_management 

         #(type INSTREAM=bit, 

            int WIDTH=0, 

            int LANES=0, 

           )extends uvm_object; 

 

           int _active_lanes; 

           bit [WIDTH-1:0]  _lane_count [LANES][$]; 

 

           virtual function void lane_mgmt 

               (input  INSTREAM _indata, 

                         WIDTH _width 

               ); 

 

             case(_active_lanes) 

                 //Function calling based on the number of    

                //active lanes 

             endcase 

          endfunction 

endclass //uvm_stuc_lane_management 

 

 

 



 

 

 

VI. SUMMARY 

The paper has given one of the many possible ways 

to implement the commonalities across various 

standard protocols and application-specific blocks. 

The only motive to include these packages with multi 

functionalities is to add more value to the existing 

UVM environments and to make developers’ life 

easier. The templatized approach minimizes 

repetition and thus, saves the development and debug 

time. The packages are forward compatible in nature 

to cater future requirements and the new as well as 

the existing verification environment.Developers 

should feel that they are at an entirely new level and 

are not developing from the scratch. By making 

things more industry standard yet flexible, the shift 

from one block to another becomes easy. The 

consistency of the architecture and its maintenance is 

another feature that comes with these packages. 

 

 

VII. REFERENCES 

[1] Robert Lafore,Object Oriented Programming in 

C++,4/E  

[2] IEEE 1800-2009 System Verilog LRM 

[3] Universal Verification Methodology (UVM) 1.1  

User’s Guide 

[4]MindShare,PCI Express System Architecture 

[5] John G. Proakis,Digital Signal Processing: 
Principles, Algorithms, And Applications, 4/E 

 

 

 

  


