

1

Use Stimulus Domain

for Systematic Exploration of Time Dimension

and Automatic Testcase Construction

Ning Chen, Infineon Technologies AG, Munich, Germany (ning.chen@infineon.com)

Martin Ruhwandl, Infineon Technologies AG, Munich, Germany (martin.ruhwandl@infineon.com)

Abstract—The state-of-the-art metric-driven constraint-random verification methodology requires achieving full

functional coverage as one of its most important metrics. However, defining functional coverage itself is a subjective

and dependent process largely based on human intellects. Consequently, given a verification environment and its

attached testcases, it is challenging to even answer the simple question objectively whether the stimulated space is

random enough. In this paper, we propose a new concept of Stimulus Domain and use it to explore the stimulation

space along the time dimension systematically. As a result, the verification methodology is extended and enhanced by

a stimuli-driven aspect which in this sense even overweighs the metric-driven aspect, since the former unfolds the

primary source of power of randomization and leads to better functional coverage definition. Furthermore, the

proposed approach can be used for automatic testcase construction while facilitating the reuse of Stimulus Domains

across a large set of IPs shared with common functionalities and interfaces. The proposed approach has been applied

to two industrial IPs and its effectiveness has been proved with around 20 issues identified for legacy feature sets in

one case and zero bugs ensured in another case.

Keywords—stimulus domain; constraint-random verification; metric-driven; stimulation; functional coverage

I. INTRODUCTION

A digital circuit is a processing machine traversing the state space along a deterministic trajectory of state

transitions in discrete steps. During this process, the inputs are transformed into outputs with defined behavior.

The ideal target of stimulation is not to traverse the whole state space, but to stimulate the full set of all transition

trajectories along the time dimension.

The fundamental underlying principle of simulation-based verification is to capture bugs through redundancy.

The defined behavior according to the specification is to be implemented by both the verification engineer and the

designer. These two implementations are compared in order to capture eventual mismatches. In many severe

cases, where bugs are missed in the pre-silicon phase thus leading to huge cost of redesign, the root cause is not

attributed to missing or bad checkers, but rather the fact that the case has never been stimulated. The Universal

Verification Methodology (UVM) has laid much value on the reusability and scalability of the verification

environment [1]. It provides the basic constructs such as sequence and sequence driver about what can be used to

build testcases [2]. It uses functional coverage defined in the verification environment as one of the most

important metrics to represent and guide the set of test scenarios to be stimulated and full functional coverage is

required for sign-off.

However, there is no systematic framework about how to manipulate the time dimension of stimulation to

achieve the maximum extent of randomization in order to reach or come nearer to the ideal target. On the other

hand, defining functional coverage is a subjective and dependent process which highly relies on human intellects,

since it represents the set of test scenarios that the verification engineer has in mind.

In this paper, we propose to use Stimulus Domain as the core concept to explore the transition trajectories

along the time dimension in a systematic way. As a result, the metric-driven verification methodology is extended

by a stimuli-driven aspect. The unfolded power of randomization allows covering more corner scenarios deeply

hidden and thus leads to a better coverage definition due to its objective nature. Furthermore, the proposed

approach allows for automatic testcase construction and reuse of Stimulus Domains across IPs with common

functionalities shared [3, 4]. The application results have proved the effectiveness of the proposed approach.

mailto:ning.chen@infineon.com
mailto:martin.ruhwandl@infineon.com

2

This paper is organized as follows. In Section II, we explain the core concept of Stimulus Domain and its

construction. In Section III we present the application areas of the proposed approach. In Section IV, we show the

results on verification of two industrial IPs. Section V concludes the paper.

II. STIMULUS DOMAIN

The basic idea behind Stimulus Domain is to apply a divide-and-conquer approach on the large set of control

variables under stimulation. In such a way, the internal structure of the control variables is manifested and its

dynamics can be then analyzed thoroughly and completely.

We start with a general definition of Stimulus Domain to reveal its theoretical soundness with the aim to

cover all different use categories. Then we dive into some special categories for better and intuitive understanding

of the idea.

A. General Definition

We denote the full set of control variables of the design under test as C which includes all inputs and all

individual writable register fields. Each control variable is defined on its finest granularity level based on the

functionality it controls. Assume that the number of control variables is n.

|𝑪| = 𝑛 (1)

The overall functionality of the design under test is controlled by the variables in C. The set C must be

complete in the sense that any control variable that can be stimulated must be an element in C.

Naturally each control variable is responsible for only part of the overall functionality. We can divide and

organize the control variables into different groups according to the functionality under control. Based on these

groups we formulate the concept of Stimulus Domain.

A Stimulus Domain, denoted by Di with i as index, consists of following elements:

 Ci: a set of control variables, i.e., a subset of C, bundled densely by the functionality under its control

from the stimulation perspective.

𝑪𝑖 ⊂ 𝑪 (2)

 Si: a set of states defined on Ci. Assume the number of states is ni.

|𝑺𝑖| = 𝑛𝑖 (3)

 Pi(t): a conditional and time-variant state transition probability matrix based on Si, with each

transition attached with a random integer number of clock cycles, denoted by ri(t), to represent the

delay of state transition. The conditional and time-variant nature stems from the fact that the state

transition may be affected by events during the runtime such as those of the readable register fields

and outputs of the design. Note that the time-invariance can be viewed as one special case of the

time-variance property.

𝑷𝑖(𝑡) = [

𝑝𝑖,11(𝑡) ⋯ 𝑝𝑖,1𝑛𝑖(𝑡)

⋮ ⋱ ⋮
𝑝𝑖,𝑛𝑖1(𝑡) ⋯ 𝑝𝑖,𝑛𝑖𝑛𝑖(𝑡)

] (4)

Each matrix element represents the transition probability from one state to another as in a random

process and the probability can change along the time dimension due to its time-variant nature. A

generalized state transition diagram from state sj to state sk is shown in Fig. 1 where the reference to

the index of Stimulus Domain is omitted.

3

As can be seen in Fig. 1, upon a certain choice of next state for stimulation based on the probability

distribution, each transition is also attached with a random delay to represent the time shift between

two states introduced in the stimulation. The combination of transition probability and random delay

manifests the prime power of randomization.

As a summary, a Stimulus Domain can be written as a bundle of all the elements formulated above.

𝑫𝑖 ≡ {𝑪𝑖 , 𝑺𝑖 , 𝑷𝑖(𝑡), 𝑟𝑖(𝑡)} (5)

The Stimuli as a whole, denoted by D, can be formally defined as the full set of all defined Stimulus Domains.

Assume that the number of Stimulus Domains defined is m.

𝑫 ≡ {𝑫𝑖}, 𝑖 = 1. .𝑚 (6)

The Stimuli is constructed with following three principles enforced.

 Completeness: It should cover the full set of control variables. No control variable should be

neglected unless being excluded explicitly and upon agreement.

𝑪 = ⋃𝑪𝒊

𝑚

𝑖=1

 (7)

 Singularity: Each control variable should belong to only one Stimulus Domain.

𝑪𝑖⋂𝑪𝑗 = ∅, ∀𝑖, 𝑗 = 1. . m, 𝑖 ≠ 𝑗 (8)

 Orthogonality: This is to ensure the independency of control variables with respect to stimulation

between Stimulus Domains. The simple criteria to judge the orthogonality are to ask the question

whether the subset of control variables under focus can be stimulated independently on others. If a

strong dependency exists, it is to consider putting all dependent ones into one Stimulus Domain.

𝑫𝑖 ⊥ 𝑫𝑗 , ∀𝑖, 𝑗 = 1. . m, 𝑖 ≠ 𝑗 (9)

The set of Stimulus Domains can be organized in a tree structure on top of it with respect to the functional

partitioning, with the defined Stimulus Domains as leaf nodes fulfilling the three principles above.

As shown in Fig. 2, the Stimulus Domains have been organized into g groups denoted by G1 to Gg to represent

the whole Stimuli D in a two-level tree structure, with each group being assigned to a certain part of the

functionality under the control of all its consisting Stimulus Domains. Naturally in a more general sense the depth

of the tree can be further extended as necessary.

Figure 1. State Transition Diagram

Figure 2. Tree Structure of Stimuli

4

An interaction matrix, denoted by I(t) as a time-variant global data structure, is defined on D with each entry

Iij(t) representing the encoded message initiated by the domain i for the domain j at time t. Note that this

interaction matrix doesn’t have to be part of the definition of the Stimuli, but rather serves as a combination of

static information and runtime data structure to provide a communication mechanism among the Stimulus

Domains.

𝑰(𝑡) = [
𝐼11(𝑡) ⋯ 𝐼1𝑚(𝑡)
⋮ ⋱ ⋮

𝐼𝑚1(𝑡) ⋯ 𝐼𝑚𝑚(𝑡)
] (10)

In the simple Boolean case where Iij(t) only takes the value 0 or 1, each matrix element can be the on/off state

enforced by domain i on domain j. With each Stimulus Domain being able to be on and off, the state transition

diagram of each Stimulus Domain can be simplified to a diagram of three super-states as shown in Fig. 3 which

allows more insight into the structure of the general state transition defined in Fig. 1.

The three super-states in Fig. 3 are explained as follows.

 force_off: No stimulation initiated by the current Stimulus Domain, i.e., for a certain period of time,

the Stimulus domain is switched off;

 random_off: Randomization is allowed, but currently in the waiting state until the random delay

expires so that e.g. it can be switched on again;

 random_on: Randomization is being initiated under this state which acts as a super-state covering a

detailed state transition diagram defined by the state transition as in Fig. 1.

Note that the Boolean case represents only a simple special case but a commonly used one for the interaction

matrix which allows simplification and insight into the structure of the generalized state transition diagram with

transition probability and random delay as shown in Fig. 3.

B. Special Categories

The general definition above covers a broad spectrum of Stimulus Domains which includes among others the

following two special categories.

 Autonomous: The state transition of an autonomous Stimulus Domain is not affected by any event

along the time dimension. Furthermore, there is no interaction from other Stimulus Domains as

formulated in the interaction matrix. For such a Stimulus Domain, the stimuli can be constructed in a

very simple way based on its own defined dynamics without taking other Stimulus Domains into

account.

 Reactive: A reactive Stimulus Domain becomes active only when a certain event happens. During its

inactive phase, no stimuli are constructed. A good example would be a sequence acting as interrupt

service routine to clear the interrupt status. It will be only driven when the interrupt status bit has

been set.

Figure 3. Simplified State Transition Diagram under Boolean Interaction

5

A common Stimulus Domain will be lying between an Autonomous one and a reactive one. The choice of its

next state to stimulate is constrained by some event while certain interaction patterns between individual Stimulus

Domains are applied as defined by the interaction matrix.

III. APPLICATIONS

We have identified the following main application areas for the concept of Stimulus Domain.

A. Mindset for Stimulation

The concept of Stimulus Domain as proposed in Section II describes a rigorous framework about how to

construct stimuli in a more objective way which exhausts the power of randomization and allows exposing corner

cases normally difficult to touch. It builds the basis of a mindset for a verification engineer to divide and conquer

the whole stimulation space in order to come nearer to the ideal target. Naturally, the definition of Stimulus

Domains is still relying on the human intellects of the verification engineer.

B. Automatic Testbench Construction

Due to the formal definition of Stimulus Domain and its constituent elements, we can use it for automatic

testbench construction. A tool/script can take all the necessary input information of the Stimuli formulated in Eq.

(6) and traverse the state transition probability matrix of each Stimulus Domain to construct any random testcases

either online or offline. If certain format of the input information is defined, one can think of using some generic

core to construct the stimuli assembled from all the constituent Stimulus Domains independently on the design

under test.

 The most generic testcase can be constructed by stimulating all Stimulus Domains in parallel based

on their own dynamics defined in Section II. Each Stimulus Domain acts similar as a random process

with its behavior defined by the state transition probability matrix. The difference is that a random

delay is attached to each state transition. For each Stimulus Domain the verification engineer can

think of e.g. writing a generic sequence with the state as one enumeration type to decide what kind of

detailed stimuli is to be constructed, or using one specific sequence for each individual state attached

with a few random variables and assembling all in the end.

The general stimuli are shown in Fig. 4, where as an example a snapshot of three Stimulus Domains

along the time dimension is drawn. Each circle represents one state for the respective Stimulus

Domain and the distance between two states is used to show the delay of two consecutive states. All

Stimulus Domains are run in parallel with the interaction already encoded in the states selected, i.e.,

upon certain event the time-variant state transition probability matrix will exclude certain states and

allow only a constrained subset of states to be selected as next ones. Note that the stimulation of each

state may also consume time, e.g., by using a series of register writes to configure a specific

functionality.

Figure 4. General Stimuli

6

 By manipulating the interaction matrix I(t), certain Stimulus Domains can be switched on/off.

Testcases corresponding to specific test scenarios can be constructed. It is actually the normal case

that the verification engineer starts with basic Stimulus Domains related with the elementary feature

set of the design under test. As more Stimulus Domains are added, it is time to start to think of the

interactions between them and put them successively into parallel stimulation for maximum

randomization.

C. Reuse across IPs

For IPs with common functionalities shared, such as common configuration and common debug features, the

defined Stimulus Domains can be reused across IP boundaries. That means part of the mature stimuli that have

already been developed can be simply reused so that further development cost can be saved. As shown in Fig. 5,

two IPs share the same group, denoted by Gc, of Stimulus Domains.

Other application areas can be conceived such as in functional safety where faults are injected and the

interplay between failures modes and safety mechanism is to be verified. This is basically another Stimulus

Domain with the set of control variables extended to internal signals in the design.

IV. RESULTS

The proposed approach has been applied to two industrial IPs. For the first IP it is related with the legacy

feature set where the concept of Stimulus Domain has been used to improve the testbench quality and thus

identify potential issues. For the second IP it is related with the new feature set newly defined which has required

building the testbench from scratch. The concept of Stimulus Domain has helped to ensure the zero-bug quality as

already proven by silicon.

A. First IP

The design under test is an IP for the Local Interconnect Network (LIN), a serial communication protocol

widely used to connect components in vehicles [5]. The IP can work in either the master mode or the slave mode.

For the purpose of this paper, we limit the description to the slave mode.

As discussed in Fig. 2, the Stimulus Domains can be organized into a tree structure for further clustering. For

this IP we have used a tree of depth 2, i.e., the Stimulus Domains are organized in groups which are located at the

same level directly under the root node. We have given a name to each Stimulus Domain and each group as

follows.

 Functional

o Configuration: configure the mode and rx/tx related register fields

o RX: receive line for LIN header and LIN response

o TX: transmit line for LIN response

 Interrupt

o ISR: interrupt service routine for clearing interrupt status bits

Figure 5. Reuse of Stimulus Domain

7

 Inactive

o Sleep: put the design under test into sleep

o Disable: disable the design under test

 Reset

o Kernel Reset: do reset on the kernel

o FPI Reset: do reset on the bus

o Debug Reset: do reset related with debug

 Debug

o Suspend: trigger different suspend modes

We take the Stimulus Domain RX as an example to discuss the definition of states and probability transition

matrix. The responsibility of this domain is to stimulate the receive line according to the protocol. One state can

also be viewed as one basic sequence that can be stimulated with a few un-timed random variables attached. The

full set of states can be also built into tree structures. For the RX domain, two main super-states Wake-Up and

Frame are defined.

 Wake-Up: with random wake-up pulse length as attached random variables.

 Frame

o Full Frame: with random break lengths, random PIDs, random parity bit errors and random

stop bits.

o Broken Frame: with random variable to signify the position where the frame is broken.

The state transition diagram is constructed on different levels. On the top level, the system switches among

the super-states. Behind each super-state, a detailed transition of its consisting states is constructed as above, e.g.,

between the different kinds of broken frames.

After the states have been defined, it is time to think about the state transition probability matrix and the

distribution of random time interval between two consecutive states. In the simplest case, equal transition

probability can be allocated to all the individual states defined. However, since we want to test more on the super-

state Frame, we have allocated a much higher probability of super-state Frame (90%) against of super-state

Wake-Up (10%). It has followed an equal transition probability between the Broken Frame and the Full Frame,

since on one hand we want to see how the slave behaves under a broken frame while on the other hand we want

to test the correct functionality of the design. For the random time interval, an equal distribution is assumed with

the range up to a certain limit.

Next, we take a look at the temporal relationship between the two Stimulus Domains TX and Suspend. We

show one snapshot of the interleaving of the frame and the suspend request in Fig. 6 with the variables having

following meanings.

 tstart_of_frame, tend_of_frame: time point of frame start and frame end

 τframe: duration of frame, covered by the state defined in TX domain

 tstart_of_suspend, tend_of_suspend: time point of suspend request entry and exit

 τsuspend: duration of suspend request, covered by the state defined in Suspend domain

Figure 6. Temporal Relationship between TX and Suspend

8

Further, multiple frame and multiple suspend requests shall be stimulated in random ways in order to generate

all constellations between frame and suspend requests. Consequently, two other variables come into place as

shown in Fig. 7.

 τframe_wait: wait time between two consecutive frames, covered by the random delay in TX domain

 τsuspend_wait: wait time between two suspend requests, covered by the random delay in Suspend domain

For the verification of this first IP, as a summary, we have focused on the definition of states and its

probability transition probability. Totally we have defined 10 Stimulus Domains to reach the maximum extent of

randomization. The result has been very positive and around 20 issues have been identified. Most of the issues are

related with corner cases that have never been stimulated before.

Due to better steering into corner cases based on the proposed method, it creates more intellectual challenges

on the verification environment which needs to handle these corner cases correspondingly. However, the

objective nature of the corner cases has forced the verification engineer to think of their validity and, if valid,

extending the verification environment. In the end, the functional coverage still has been used for the final sign-

off.

B. Second IP

The feature set to be verified under the second IP is related with the bus control unit in the system which

offers among others the arbitration, debug and alarm functionalities to the whole bus system. The focus of the

verification based on the concept of Stimulus Domain is to identify individual control variables in a first step

which fulfills the property of orthogonality as in Eq. (9). Each writable register field has been analyzed carefully

to answer the question whether it can be stimulated rather independently on the others. The clustering of

individual control variables into Stimulus Domains has happened only when it is necessary, although in the

general sense the clustering creates an order from an unordered mess of control variables. If no clustering is

meaningful, then one control variable together with its dynamics has been viewed as one standalone Stimulus

Domain. In total we have identified 14 Stimulus Domains. The parallel running of all domains pushes the

stimulation into its edge by giving access to the deep stimulation space. As a result, zero bugs have been ensured

based on the validation of silicon already available today.

V. CONCLUSIONS

In this paper, we have developed a systematic framework of using Stimulus Domain to guide testcase

construction. We have discussed its elements, properties and application areas. Its effectiveness has been proved

with two industrial IPs.

REFERENCES

[1] Accellera Systems Initiative, “Universal Verification Methodology (UVM) Working Group,”

http://www.accellera.org/activities/working-groups/uvm.

[2] K. Schwartz, T. Corcoran, “Error Injection: When Good Input Goes Bad,” DVCON U.S., 2017

[3] A. Hamid, D. Koogler, and T. Anderson, “Using Portable Stimulus to Verify Cache Cohenrency in a Many-Core SoC,” DVCON U.S.,

2016

[4] Accellera Systems Initiative, “Portable Stimulus Specification Working Group,” http://www.accellera.org/activities/working-

groups/portable-stimulus.

[5] LIN protocol, https://www.cs-group.de/wp-content/uploads/2016/11/LIN_Specification_Package_2.2A.pdf

Figure 7. Random Time Interval

http://www.accellera.org/activities/working-groups/uvm
http://www.accellera.org/activities/working-groups/portable-stimulus
http://www.accellera.org/activities/working-groups/portable-stimulus
https://www.cs-group.de/wp-content/uploads/2016/11/LIN_Specification_Package_2.2A.pdf

