
Use of Portable Stimulus to Verify Task
Dispatching and Scheduling Functions in an

LTE Switch

Adnan Hamid
Breker Verification Systems

1879 Lundy Ave. #126
San Jose, CA 95131 USA

+1 512 415 1199
adnan@brekersystems.com

Abstract -The verification of a Long Term Evolution (LTE) software-define switch requires a novel verification
methodology. This paper describes one way in which Portable Stimulus can be used to mimic the structure of the software
that will eventually operate on the hardware platform, enabling the platform to be verified before the availability of the
production software. The approach uses a C++ graph-based scenario model that enables production software routines to
be inserted as they become available and enables a seamless transition from simulation to emulation as the design
progresses.

The user had three objectives for the project. First was the ability to create testcases that could be scaled from simple
to the most complex examples possible, second, vertical reuse from cluster test to full chip test and third, horizontal reuse
from simulation to emulation to post silicon. The user also felt that they needed to have procedural C code that could be
inserted into the graph and to help with the generation of the scenarios.

I. INTRODUCTION

There are many trends going on within the semiconductor industry1. Each of these alone could cause significant

change in methodology, but when they are all converging at the same time, it may result in a complete rethink about
certain aspects of the flow. In this paper, we will discuss the verification approach associated with the design of a
Software-Defined Networking (SDN)2 SoC, more specifically an LTE3 switch, utilizing the emerging Portable
Stimulus4 language and discuss the ways in which software behavior can be mimicked within the verification
environment.

The most talked about and probably most significant trend is the slowdown of Moore's law. While we have seen

little slowdown in the rate at which the past few nodes have become available, they are getting more expensive and
the expectation that each node will provide more transistors that are cheaper, faster and use less power, is no longer
a given. In addition, each node is requiring additional and complex physical design steps that are adding to the
design time, adding costs and increasing the risk associated with design. This is significant because it means that
designs are likely to have a longer lifespan in the field and that means that they have to be more flexible than
designs of the past. One design trend that has resulted is that designs are now containing a lot more general purpose
compute power and designers can ill afford to have their architectures be unable to adapt and change to the constant
transformations that are happening within the industry.

Another change that is affecting design and verification methodologies is the pressure for power reduction which

is caused by two factors. The first is that total energy is becoming an issue for all electronic systems and not just
those that are battery powered. At the same time, the power densities of chips has reached a danger zone, where
causing too much activity in a system can result in extreme thermal impacts that can cause damage to the chip, or
result in the product not being able to meet its longevity requirements. Both of these factors have to be included in a
comprehensive verification methodology.

The migration of functional capability into software is creating problems for the design and verification of the

hardware platform. Simply stated – how do you ensure that the design will meet all of the end-user requirements,
when those requirements are not only unknown when the hardware is being designed, but may not be fully defined

until long after the chips have been designed, built and deployed? Software-defined systems are becoming quite
commonplace and things that were once thought to require custom hardware are being made a lot more general
purpose so that they can be upgraded for new protocols, security requirements and feature sets.

One of the segments in which this trend is accelerating is networking switches. In the most general sense, a switch

is a design that connects one set of ports to another set of ports, possibly with multiple protocols and possibly with
data transformation along the way. In the past, most or all functionality was built into the hardware, with no central
CPU controlling the data flow. Many networking and telecommunications chips (switches, routers, hubs, modems,
etc.) have traditionally fallen into this category.

II. THE DESIGN

Switches today are being designed with multiple general purpose CPUs coupled with a large array of engines

capable of performing arbitrary networking functions. The popular term “software-defined networking” (SDN) has
been coined for this type of design. The wireless Long-Term Evolution (LTE) standard is no exception to this trend.
Many LTE chips contain multiple processors and present similar design and verification challenges to those seen in
smartphones, set-top boxes, and other products that have used SoCs for some time.

However, this type of design requires a completely fresh approach to verification. The verification of each of the

components, either individually, or even when integrated into the complete chip, does little to ensure that what has
been produced is capable of performing the intended end function. Simply put, without the software, these devices
perform no function. Unfortunately, the software has not yet been written, but the design teams need a reasonable
level of confidence that the architecture is capable of supporting the needs of the software.

This paper discusses the verification process used for an LTE base-station chip that was designed using an SoC

architecture as shown in Fig. 1. This portion of the LTE base-station chip contains N CPU sub-systems, connected to
M task dispatching and scheduling modules by a full crossbar switch. Any CPU can send commands to any module,
and minimum(M,N) paths can be active at any one point in time. Each command specifies a series of tasks to be
executed, many of which may be dependent on other tasks within the command set. Some of these tasks involve data
moves to and from memory which require the services of the DMA engines; others entail invoking various types of
offload engines to perform data transformations. The Task Dispatcher is responsible for scheduling the individual
tasks and assigning them to the Tasker engines that actually perform the tasks. Complex data structures are used to
convey information between each of the task elements.

Figure 1: Architecture of the LTE switch

For memory-related tasks, a Tasker can schedule DMA operations to send or receive data from the main memory.

Both on-chip and off-chip memory are accessible. For other tasks, the Tasker will handshake with the appropriate
offload engine to initiate and complete its work. Although this sounds relatively straightforward, there are many
variations and corner-case conditions that must be verified. These include:

• Cross-covering all combinations of CPUs and modules
• Saturating all data paths with heavy concurrent traffic
• Exercising the full range of tasks types for each module
• Setting up scenarios that make it challenging for a Task Dispatcher to schedule all tasks
• Trying all memory types and modes supported by the controller

The specific focus of this paper is the task dispatching and scheduling functions, which present many of the

typical challenges for the verification of complex multiprocessor-based designs.

III. VERIFICATION APPROACH

In addition to the verification objectives outlined in the previous section, the team also wanted to combine
simulation and emulation within their verification flow and to have the ability to run the tests on the actual silicon.
This severely constrains the methodologies that would be suitable. While methodologies such as SystemVerilog and
UVM are very mature in the context of simulation, they do not provide portability to the other verification platforms
and cannot be combined with the desire to use parts of the actual software when they have been developed. In
addition, the UVM methodology encourages the removal of processors, instead preferring to drive traffic directly
onto the busses. This would make it very difficult to provide realistic and legal traffic patterns between the
processors and the task dispatchers.

Another alternative would have been to write custom software test cases that would run on the CPUs. The

generation of the software would be complex given the number of levels of task handoff, redirection between the
levels of processing capabilities and memory banking scheme being used. In addition, given that the exact
workloads were not known and many such testcases would be necessary to get to the confidence levels required, it
was decided that a more efficient approach would be to use a methodology that would enable the generation of an
arbitrary number of test cases, of various levels of complexity, and have the tool be able to generate all of the
necessary code to run on the processors and to create any necessary coordination with outside events.

The verification team chose to solve these challenges using Portable Stimulus. Portable Stimulus is based on

graphs that define the control and data flows for all usage scenarios supported by the SoC, and is currently being
standardized within the Accellera Systems Initiative, Portable Stimulus Working Group. Portable Stimulus would
allow them to seamlessly transition between simulation testbenches, software-driven test cases, and hardware
platforms such as emulation as indicated in Fig. 2. They also chose to use a C++ graph-based scenario model to
cover the intended functionality of the modules. The use of C++ made it trivial to call existing C routines, including
chip initialization sequences, from appropriate points in the scenario model. Finally, the team chose the TrekSoC5
portable stimulus solution from Breker Verification Systems to generate the test cases required to thoroughly
exercise as many paths in the scenario model graph as possible.

Figure 2: Portable Stimulus enables retargeting tests to multiple execution environments

Since the primary goal of the project was to verify the Task Dispatcher, it was modeled at the highest level of

detail so that all aspects of its operation could be covered. The modeling contains the way in which tasks can be
joined together to form commands, the data structures that are used to convey information between the tasks, and the
interactions between the taskers and the memory management components, including the DMA engines. The
general approach is to generate a number of commands, each of which has an arbitrary number of interdependent
tasks. These are pre-generated and stored in the program that is to run on the CPUs. The generation of the
commands should conform to all of the rules placed on the software, including the ways in which memory is
allocated, transferred into the taskers and subsequent results transferred back into main memory.

Fig. 3 shows the graph that describes how the commands are composed of a number of interrelated tasks that are

to be sent to the schedulers. While the details of this graph are not being made available due to the proprietary nature
of the product being verified, the figure shows how graphs can be composed hierarchically. This figure captures the
sequential dependencies of the command structure. Behind each of the nodes in the graph is the code that describes
the data structures and how they can legally be filled.

Figure 3: Scenario Graph for the scheduler

One such data structure is the one that describes the necessary DMA transfers in order to get the appropriate data

into and out of the task solver. Generic code for a DMA block is shown as an inset to Fig. 3. Graphs are executed
from left to right and from top down. So for the initialization of the DMA operation, (blue boxes define sequences)
three things are defined as happening sequentially. Each of those involves a choice (purple trapezoids are decisions)
of an action to take (Green ovals define leaf actions). Within the options, dma_config_inc defines the way in which
the addresses are incremented, dma_config_circ defines if a circular buffer should be used and finally
dma_config_intr defines if an interrupt is to be raised at the end of the operation. In each case there are two options
possible, with the feature being turned on or off for the first two configuration parameters and the last one defining if
interrupts or polling should be used. Each of these decisions is decided randomly unless other constraints have been
placed on the graph. Sample code associated with building the descriptors for the DMA operations is shown in Fig.
4.

Figure 4: Code defining the legal ways to specify the DMA transfers

By solving this complete graph within TrekSoC, a valid command can be created, as shown in Fig. 5. Here we see

a number of tasks and the dependences that exist between them. This would be output by the tool as a block of code
that would be executed on one of the main CPUs. When executed on the hardware the collection of tasks and
dependencies would be sent to the scheduler and each of the nodes would execute on a tasker.

Figure 5: Command Graph generated from TrekSoC

This one command graph being dispatched to the task schedulers would hardly constitute a realistic load. In

reality many of these would be initiated based on information being streamed into the chip. In order to add the next
layer of complexity, it is necessary to schedule multiple commands as typified by Fig 5. This requires making sure
that each command has non-overlapping memory regions, that the timing of the system is realistic in terms of the
actually amounts of processing each of the operations would require and that the results of each task can be fully
verified after the operation. TrekSoC does this by performing system-level scheduling as shown in Fig. 6.

Figure 6: Schedule operations at the system level

The four columns on the left correspond to each thread running on the general purpose CPUs. Each thread takes

some of the pre-built commands and sends them off to the task dispatchers, which start attempting to execute each
of the commands, each shown as a tasker thread. Some of those tasks are blocked by shared resources, such as the
DMA operations. As commands are completed and the task schedulers are ready to accept new commands, they are
dispatched by the general purpose CPUs. This schedule it built before the actual timing of the system is known and
is purely based on resource availability. The various views of the system are interlinked such the actual code
associated with a task is shown, lower right, whenever a task is selected along with the memory regions that are
currently in use.

Once such a scenario has been executed on the simulator or emulator, the timing becomes known and can be back

annotated onto the schedule at which point the user will be able to assess the efficiency of the system and identify
areas in which the architecture may be stifling performance, or where certain sequences of tasks may be causing
problems for the scheduling algorithms. This type of chart is also useful for being able to determine the sequence of
hardware events, such as when power domains have been shut down and brought back up again. Being able to ask
queries of the tool, such as have two power domains been brought up with a certain timeframe could identify
potential brown-out situations within the chip.

IV. RESULTS

At this point in time the project is not complete. The first step for the verification team was to model the
command sequence dependencies as shown in Fig. 3. As soon as this was done, they were able to execute the graph
and have synthetic commands being output by the tool, an example of which was shown in Fig. 5. All of this was

completed before any software had been written and before the design had been completed. The verification team
manually checked several examples to gain confidence in the generator. This was the first big advantage that the
team found. They were able to develop and debug this important aspect of the testbench independently and when
hardware verification was started, few additional bugs were found in the generator.

The first stage of hardware verification was with a single CPU and single task cluster using simulation. Single

commands were sent from the CPU to the cluster and basic functionality was verified. Then without any
modification in the model, they were able to add additional CPUs, additional task clusters and start some more
complex tests, still using single commands. This was all accomplished by changing configuration settings within the
tool. Then they switched to a simpler configuration of CPUs and task clusters and started to send multiple
commands to the scheduler.

When they started to run the first examples of multiple simultaneous commands using a configuration more

closely resembling the actual silicon, simulation became too slow and they migrated to emulation to continue
executing additional complex test cases. This phase continues at the time of submission of this paper. Errors have
been found in the hardware that involve very deep state space execution, and the cases have been isolated enough
that it is unlikely that they would have been found if directed testing had been used.

The same strategy is expected to be used when the actual silicon becomes available and the exact timing of the

chip could be compared against simulated results. It is not known at this point how extensive their utilization of this
capability will be, or if they will use it to identify areas for additional verification, such as power verification or
architectural performance evaluation. It is also not clear if the will have any time in their schedule to act on any
performance limitations that are found in the architecture or if this information will be fed into the next generation of
the chip.

The user has been very happy with the abilities that this verification strategy has provided. Portable Stimulus

promises both horizontal and vertical reuse and that capability has been demonstrated. The initial graph for the
command structure was created in just a couple of days, demonstrating the ability for users to grasp the general
concepts of graph-based verification very quickly. The customer was also grateful for the ability to develop and
debug significant aspects of the testbench independently of both the hardware and software.

REFERENCES
[1] Brian Bailey. Electronics Butterfly Effect, http://semiengineering.com/electronics-butterfly-effect/ (2015)
[2] How SDN LTE could simplify network management. http://searchsdn.techtarget.com/tip/How-SDN-LTE-could-simplify-network-

management (2016)
[3] 3rd Generation Partnership Project, https://sites.google.com/site/lteencyclopedia (2016)
[4] Accellera Systems Initiative, http://www.accellera.org/activities/working-groups/portable-stimulus (2015)
[5] Breker Verification Systems, http://www.brekersystems.com/products/product-overview (2015)

