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Abstract—This work aims at an alternative method to verify the correctness of Fault Lists generated by fault 

simulators tools in context of safety verification. The lists generated by simulation tools are verified against lists from 

formal tools. The consistency evaluation between the lists supports the Tool Confidence Level (TCL) assessment, 

defined in the ISO26262. In addition, formal tools have the potential of performing optimization in Fault Lists by 

annotation of the expected behavior of the design under fault. Our work demonstrates the feasibility of using Formal 

Methods to verify and optimize the fault list from simulators. Results indicate an average reduction of 29.5% on the 

number of faults to be simulated and demonstrate that it is possible to achieve TCL by verification of the fault lists. 
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I. INTRODUCTION 

With the increasing complexity in automotive applications such as autonomous driving, the use of electronics 

systems in this domain is growing exponentially. This is causing a shift in the traditional design flow and is pushing 

ISO26262 compliance down to the semiconductor chain. As a result, Functional Safety compliance becomes part 

of the requirements for the development of complex systems. During the development of an Integrated Circuit (IC) 

compliant with ISO26262, one of the critical tasks is the evaluation of the effectiveness of the design to cope with 

random hardware failures. This is usually done by execution of Fault Injection (FI) Simulations, where each 

possible fault candidate of the design is evaluated for robustness to random faults, and the behavior of the design 

under these faults is simulated. In complex designs, where millions of design components are susceptible for 

random faults, this process becomes challenging [1]. 

To facilitate FI Simulation campaigns, EDA tools may be used for automation of behavioral analysis of a design. 

By examining the description of a design, simulation tools are able to identify what design components should be 

considered for fault injection and simulate the behavior of the design under the effect of these faults. The provided 

automation increases the possibility of faults being introduced or masked by malfunction in the tool. Aiming to 

avoid these malfunctions, ISO26262 includes instructions for qualification of tools. Any tool that supports activities 

required by the standard, must be evaluated to show the minimum level of confidence necessary for the intend 

activities. 

The level of confidence of a tool is determined by evaluating the possibility of a malfunctioning to introduce or 

fail to detect errors in the design under development. In the case of a tool used in FI Simulation, a malfunction 

could mask or introduce an error on the fault candidates and on the analysis of the behavior of the faulty design. To 

guarantee the confidence in the results generated by the tool, an evaluation methodology is required. The outputs 

of the tool should be verified to prevent or detect any malfunctions. 

Considering the automation provided by EDA tools on FI Simulations, this work focuses on improving the 

Level of Confidence on the Fault Lists generated by simulators with Formal Methods. In addition, the results from 

formal analysis allowed us to optimize the Fault Lists and reduce the time of FI Simulation campaigns. 

II. RELATED WORK 

The challenges of tool qualification per ISO26262 are exemplified in [2]. The authors present a semi-automatic 

qualification method for a verification tool that can reduce costs in the qualification process. The work highlights 
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the importance of applying automatic verification on the outputs of a tool, to decrease the efforts of manual 

verification. In [3], formal methods are used to determine the behavior of a design under fault. The authors propose 

a fault injection model that allows the verification of a design by symbolic simulation. A mixed approach using 

formal methods with simulation to decrease the time of fault injections campaigns, is explored in [4]. Formal is 

used to show that a failure state is not achievable with the injected fault, thus the simulation can be stopped. 

Different works are employing combined fault injection analysis flows with simulation and formal methods, [5] 

[6][7]. The strength of formal methods, in analyzing the behavior of a design to all test stimulus, is applied to 

leverage the most appropriate setups for the simulation campaigns. 

Our approach combines simulation and formal methods as a methodology for verification of the results 

generated by both tools. Formal analysis is used to verify Fault Lists generated by the simulator, thus increasing 

the confidence in the tool outputs, as required by ISO26262. To the best of our knowledge this approach was not 

previously used. In addition, as seen in other works, formal analysis can reduce the number of required simulations 

by pre-evaluating the fault propagation potentials. 

III. FAULT INJECTION CAMPAIGNS 

ISO26262 requires that any component that implements a safety related functionality, reach a minimum level 

of tolerance to random hardware failures. Coverage for this type of failure is usually increased by addition of Safety 

Mechanisms to the design. Safety Mechanisms should be able to guarantee that fault propagation cannot disturb a 

safety related functionality. 

The effectiveness of the design to cope with random hardware failures should be quantitatively demonstrated 

as defined by the standard. To accomplish this, it is necessary to assess the efficiency of the Safety Mechanisms to 

handle critical faults thus allowing to achieve targeted safety metrics. Fault Injection Simulation is a widely used 

technique to perform this analysis being the method recommended by ISO26262. 

A. Fault Injection Simulation 

Analysis of Fault Injection by Simulation is widely used and available in a variety of tools. These tools are able 

to analyze a Register Transfer Level (RTL) or Gate-Level (GTL) descriptions of a design and, based on given test 

inputs, simulate their behavior. The effect that a fault causes in the design is determined by comparing the behavior 

of the design with and without faults. The selection of the tool must consider the available features and aspects of 

performance, as FI Simulation campaigns can become long as design complexity increases. Our work deploys 

Cadence® Xcelium™ Fault Simulator (XFS) to perform the Fault Injection Simulation [8]. The flow implemented 

by XFS for Fault Injection Simulation is as follow: 

1. Elaboration of RTL/GTL design description. 

2. Fault List Generation: fault node candidates found in the design are listed for each available fault type. 

User should define rules (e.g. all signals) to identify fault node candidates and fault types (e.g. Stuck-

at-0 (SA0) and Stuck-at-1 (SA1)). Information is stored in a Plain Fault List. 

3. Fault List Optimization: Plain Fault List is analyzed to identify faults that do not need to be simulated 

as the behavior of the design in presence of these faults can be predicted. Information is stored in an 

Optimized Fault List. 

4. Good Simulation: fault-free behavior of design is simulated. The user should define observation points 

in the design to identify: (1) Fault propagation to a functional output: functional strobes; (2) Activation 

of the Safety Mechanism: checker strobes. Strobe values during good simulation are stored. 

5. Fault Injection Simulation: For each fault, listed in the Optimized Fault List, the design faulty behavior 

is simulated, and the observation points compared against the reference values generated during Good 

Simulation. Results of FI are stored in the Annotated Fault List. 
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Looking on the perspective of Tool Qualification, there are three main outputs of the Simulation tool that should 

be verified: The Plain Fault List, the Optimized Fault List and the Annotated Fault List. Figure 1 illustrates the FI 

Simulation flow with the required user inputs and described outputs. 

 

 

Figure 1. Xcelium Fault Injection Simulation Flow. 

Although, FI simulation is the recommended method for FI analysis, the process of simulating each single Fault 

is highly costly. As the behavior of the design is simulated with single stimulus at a time, there is a considerable 

chance that faults will not propagate to a strobe, in other words will be Undetected for this specific stimulus. 

Defining the required group of stimuli to assure that every single fault will propagate to a strobe is nearly impossible 

in complex designs. To address these challenges, different technologies are being analyzed to decrease the efforts 

of FI analysis. The use of Formal Methods is a promising solution, being already deployed by different vendors in 

their Formal Solutions. 

B. Fault Analysis by Formal Methods 

While FI simulation is limited to a single context, applying a single stimulus using a single fault model, formal 

fault analysis is not limited to a specific time or state. Instead, the context is global, and every evaluation context, 

stimulus and faults, are considered. Consequently, formal analysis can exhaustively prove that an Untestable fault 

can never propagate to a strobe. If there is no possibility of propagation, the fault can be considered Safe and do 

not need to be simulated. 

Different vendors are implementing FI Analysis capabilities in their Formal Solutions, this work uses the 

Functional Safety Verification (FSV) application from Cadence JasperGold® (JG) Formal Verification Platform. 

JG FSV requires no formal languages knowledge, as all required properties are automatically generated by the tool. 

Fault Analysis is available in a standalone mode, but also includes build-in support for integration with XFS, 

allowing the deployment of both tools in a unified FI Analysis flow. JG FSV includes two main fault analysis 

techniques, Standard Analysis and Advanced Analysis [9]. 

The Standard Analysis verify the testability of faults. It is an automated pre-qualification flow for simulation 

that improve the results of the Optimized Fault List. FSV applies structural fault analysis techniques to verify if the 

injected faults could affect the results on one of the strobes. In addition, the fault list is optimized by Fault Relations 

Analysis. The tool analyzes the design for relationship between fault pairs in which the result of one fault can be 

predicted by the behavior of the other. Fault pairs are then included in the same Collapsing Group. The behavior of 

all Collapsing Group is predicted by simulation of only one representative of the group, called the Prime Fault. 
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The Advanced Analysis deploys formal propagability and activation analysis. Activation Analysis checks 

whether the fault can be functionally activated from the inputs. Propagation Analysis checks whether the fault can 

propagate to a strobe. If it cannot, then it is determined to be Safe. If it can, this analysis will identify the necessary 

stimulus for propagation. The strobes can be functional or checker. Propagation of the fault to a functional strobe 

can lead to a functional safety violation, while propagation to a checker strobe indicates that the Safe Mechanism 

detected the fault. Figure 2 illustrates JG FSV Fault Injection Advanced Analysis flow. Properties to verify the 

propagation effects from faults and strobes detection are automatically generated, and then verified to all possible 

input stimulus. Results are compared against a copy (Bad Machine) of the design were the fault is injected. 

 

Figure 2. Jasper Gold FSV Fault Injection Analysis Flow. 

The different strengths of Simulation and Formal can complement each other for FI Analysis. The combined 

flow allows reduction of simulation efforts by increasing fault optimization, identifying propagation potentials and 

by identifying stimulus that will cause fault propagation during simulation. 

The build-in integrated flow allows deployment of JG FSV Standard Analysis on the Optimized Fault List from 

XFS. The formal analysis will reduce the number of faults to be simulated by leveraging formal results for Safe 

Faults and Collapsing Groups. After simulation, JG FSV Advanced Analysis can be executed on the remaining 

Undetected faults to verify if they can propagate to a strobe and what is the required stimulus. 

The FI Analysis from JG FSV can generate the same outputs that are generated by XFS. JG FSV flow starts by 

Analyzing and Elaborating a design description. Next, user should set the fault type and design candidates for fault 

injection, generating a Plain Fault List. After, the Standard Analysis will generate an Optimized Fault List, including 

Safe and Collapsing information. And last, the Advanced Analysis will generate an Annotated Fault List by 

including information about propagation and detection of faults. By using formal to generate the same outputs from 

the simulator, it is possible to automatically verify the consistence between the results. As stated by the ISO26262, 

prevention or detection of tool malfunctioning can be accomplished through redundancy in software tools [10]. 

IV. VERIFICATION AND OPTIMIZATION FLOW 

Even though the build-in integrated flow between Xcelium and JG facilitates the FI Analysis, from the 

perspective of tool qualification, it is preferable to run both tools in standalone mode. To use the outputs from 

formal to verify the outputs from the simulator, it is necessary to show that there is no interference between the 

tools. As during the integrated flow, the tools share the same fault database, we have decided to separate the flows.  

 To automate the evaluation of the outputs generated by both tools, a Build Manager application was developed. 

For each given design, the application automates the elaboration and analysis of the design, on both tools, and 

controls the execution flows, including the formal analysis in JG FSV and FI simulations on XFS. Finally, the 
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relevant data is retrieved from both tools and compared. The comparison between the lists is based on rules that 

associate the annotations used by the tools. For example, faults classified as Untestable by XFS are equivalent to 

faults classified as Safe by JG FSV.  

 A detailed report is generated to allow review of the results. An error in an output caused by a malfunction in 

one of the tools, can be detected by the annotation association rules and could be verified in the detailed report. For 

example, if XFS simulation annotates a fault as Detected and JG FSV annotates the same fault as Safe, this would 

indicate a malfunction in one of the tools. A sample of the detailed report, including an example of a tool 

malfunction, is illustrated in Table I. 

Table I. Detailed Report Example 

 XFS JG FSV 

Result Fault 
ID 

Signal 
Name 

Fault 
Type 

Annotation Collapsing 
Signal 
Name 

Fault 
Type 

Annotation Collapsing 

0 dut.u0.rst sa0 Dangerous  dut.u0.rst SA0 Propagated  PASS 

1 dut.u0.rst sa1 Untestable  dut.u0.rst SA1 Safe  PASS 

2 dut.u0.sig1 sa0 Detected  dut.u0.sig1 SA0 Detected  PASS 

3 dut.u0.sig1 sa1 Detected  dut.u0.sig1 SA1 Safe  WARNING 

4 dut.u0.sig2 sa0 Dangerous equiv=2 dut.u0.sig2 SA0 Propagated 2 PASS 

5 dut.u0.sig2 sa1 Detected  dut.u0.sig2 SA1 Detected  PASS 

V. RESULTS 

Results were collected by executing the Build Manager application on a set of selected designs from the IWLS 

2005 benchmarks [11]. The benchmark contains a collection of RTL and Gate Level description of 84 different 

designs, varying from small cores to complete System-on-Chip. 

Initially, the RTL description of 16 designs were analyzed for Stuck-at-0 and Stuck-at-1 faults. Fault Lists 

generated by both tools are analyzed to verify: (1) The tools generated the same faults, (2) Which faults are 

annotated as “Safe”, (3) Which faults are collapsed and (4) All annotations respected the association rules. 

Fault Injection analysis with simulation requires that different test stimuli is applied to assure propagation of 

each fault to a determined strobe. If a fault does not propagate, it is considered Undetected. For the scope of this 

work, as the idea is not to achieve full verification of the example designs, test vectors were not further developed 

and complete FI Simulation was not executed. Therefore, some faults are annotated as “Not Injected” by XFS and 

as “Unknown” by JG FSV. These faults are not considered as a tool malfunction, as they should be revaluated after 

full verification environment is set-up. 

The results of the benchmark evaluation are shown in Table II. For each tested design, the total number of faults 

and Safe annotations for each tool are illustrated. The column Fault List Reduction highlights the fault reduction 

percentage per design, when including the JG annotation to the XFS Fault List. JG FSV Standard formal analysis 

run time in seconds is demonstrated in the corresponding column. 

Table II. Summary of Results 

Design 

XFS Jasper Gold Fault List Reduction 

Nº of 

Faults 

Safe 

Faults 

Nº of 

Faults 

Safe 

Faults 

Collapsed 

Faults 

Run  

time (s) 

by Safe 

Faults 

by Collapsed 

Faults 

DMA 33428 106 33428 4921 8734 186 14,40 % 26,13 % 

ac97 11192 134 11192 1401 2326 674 9,88 % 20,78 % 

aes 4266 0 4266 49 1408 168 1,15 % 33,01 % 

i2c 528 0 528 14 86 9 2,65 % 16,29 % 

mem_ctrl 11044 8 11044 3933 2246 346 34,75 % 22,11 % 
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Design 

XFS Jasper Gold Fault List Reduction 

Nº of 

Faults 

Safe 

Faults 

Nº of 

Faults 

Safe 

Faults 

Collapsed 

Faults 

Run  

time (s) 

by Safe 

Faults 

by Collapsed 

Faults 

sasc 86 0 86 1 0 7 1,16 % 0,00 % 

simple_spi 534 28 534 35 54 9 1,31 % 10,11 % 

spi 1396 0 1396 12 324 13 0,86 % 23,21 % 

ss_pcm 242 2 242 3 1 7 0,41 % 0,41 % 

systemcaes 9302 0 9302 425 2664 40 3,37 % 47,38 % 

systemdes 4104 64 4104 98 1806 41 0,77 % 47,84 % 

tv80 1942 36 1942 51 206 49 0,73 % 15,48 % 

usb_funct 20386 56 20386 8128 6483 665 39,38 % 32,17 % 

usb_phy 364 0 364 3 58 8 0,80 % 18,62 % 

vga_lcd 762 0 762 4 0 9 0,52 % 0,00 % 

wb_conmax 106666 0 106666 2794 65216 186 2,61 % 61,31 % 

VI. CONCLUSIONS 

The combination between simulation and formal methods is becoming a stablished method for Fault Injection 

Analysis and appears as a promising practice for verification of Fault Lists. Looking at XFS and JG FSV as 

representatives of these technologies, we propose an alternative methodology for the evaluation of Fault Lists on 

the scope of ISO26262. Inclusion of redundancy as a method to detect malfunctions in a tool, is one of the standard 

suggested methods for achieving Tool Confidence Level. In addition, the formal methods applied by JG, provide 

improved information about the propagation effects of the faults, allowing the optimization of the Fault List, and 

therefore, reducing the number of required faults to be simulated. Preliminary results have shown that the Fault List 

of both tools are equivalent, allowing the use of JG to verify the outputs of XFS. Furthermore, the results from JG 

allowed an average reduction of 29.5% on the number of faults to be simulated. 

ACKNOWLEDGMENT 

This project has received funding from the European Union’s Horizon 2020 research and innovation programme 

under the Marie Skłodowska-Curie grant agreement No 722325. 

REFERENCES 

[1] Y.C. Chang, L.R. Huang, H.C. Liu, C.J. Yang and C.T. Chiu, “Assessing automotive functional safety microprocessor with ISO26262 

hardware requirements”, 2014 International Symposium on VLSI Design, Automation and Test (VLSI-DAT).  

[2] Q. Wang, A. Wallin, V. Izosimov, U. Ingelsson and Z. Peng, “Test tool qualification through fault injection”, 2012 17th IEEE European 

Test Symposium (ETS). 

[3] U. Krautz, M. Pflanz, C. Jacobi, H.W. Tast, K. Weber and H.T. Vierhaus, “Evaluating Coverage of Error Detection Logic for Soft Errors 

using Formal Methods”, Proceedings of the Design Automation & Test in Europe Conference, 2006, vol 1. 

[4] A. Bernardini, W. Ecker and U. Schlichtmann, “Where formal verification can help in functional safety analysis”, 2016 IEEE/ACM 

International Conference on Computer-Aided Design (ICCAD). 

[5] K. Devarajegowda and J. Vliegen, “Deploying Formal and Simulation in Mutual-Exclusive Manner using JasperGold‘s Proofcore 

Technology”, Cadence User Conference CDNLive EMEA 2017. 

[6] S. Marchese and J. Grosse, “Formal Fault Propagation Analysis that Scales to Modern Automotive SoCs”, 2017 Design and Verification 

Conference and Exhibition (DVCON) Europe. 

[7] A. Traskov, T. Ehrenberg and S. Loitz, “Fault Proof: Using Formal Techniques for Safety Verification and Fault Analysis”, 2016 Design 

and Verification Conference and Exhibition (DVCON) Europe 

[8] Cadence Design Systems, “Xcelium Fault Simulator User Guide”, Product Version 2018.03 

[9] Cadence Design Systems, “JasperGold Functional Safety Verification App User Guide”, Product Version 2018.03 

[10] International Organization for Standardization, “ISO26262 - Road Veichles - Functional Safety - Part 8: Supporting processes”. 

[11] Cadence Research Berkeley, “International Workshop on Logic and Synthesis (IWLS) 2005 Benchmarks”. 


