

1

Use of CDC-jitter-modeling in clock-domain-
crossing-circuits in RTL design phase

Dr. Jan Hayek, Bosch Sensortec GmbH, Munich, Germany (jan.hayek@de.bosch.com)
Jochen Neidhardt, Bosch Sensortec GmbH, Munich Germany (jochen.neidhardt@de.bosch.com)

Robert Richter, Bosch Sensortec GmbH, Munich Germany(robert.richter2@de.bosch.com)

Abstract— Checking a design for proper synchronization across different clock domains is usually started in the
mid or end of the RTL design phase. Synchronization issues may have significant impact on a project, varying from a
delay in the schedule to even another iteration of the design cycle by going back to the concept phase. We introduce a
new behavioral description of a 2-Flip-Flop synchronizer (the basic component of most synchronization circuits) that
is able to model CDC-jitter within any simulation based verification framework. The technique we used has proven to
significantly reduce the risk of identifying new problems late in the project cycle.

Keywords: CDC, RTL, UVM, design-methodology
I. INTRODUCTION

Typical techniques to ensure the correct function of synchronization circuits are: reviews, reuse of known good
circuits, formal assertions that check preconditions and usage of specialized formal or static CDC-tools. Designs
with multiple internal and external gated clocks with switchable frequencies and low-latency requirements for data
transfer across clock domain boundaries often require the design of new synchronization circuits. Using CDC-jitter-
modeling in addition is closing the gap between strict deterministic circuit behavior during simulation and
nondeterministic behavior of silicon circuits. If used instantly from the beginning of the design phase, CDC-
reconvergence problems show up with very high probability in the first simulations and reduce the time required
to fix the issue in later design phases. The key component of the proposed solution is a 2-Flip-Flop synchronizer
model that models a metastability resolution employing a pseudo random number generator. The model allows
individual behavior of each synchronization circuit in the design and also throughout different simulations with
guaranteed reproducibility (random stability).

The advantage over existing solutions of CDC-jitter modeling[1][2] is an improved precision that helps
verifying custom synchronizer circuits for low-power design that use extensive clock-gating. These custom
synchronizer circuits could not be verified when using the existing CDC-jitter modeling because of too pessimistic
behavior and problems with gated clocks as input.

II. METASTABILITY

Passing data between asynchronous clock-domains causes registers to become metastable with a certain
probability, which on the other hand causes unpredictable behavior of the subsequent gates. One of the state-of-
the-art solutions is to use a 2-Flip-Flop synchronizer to prevent this potential metastability from propagating to
functional logic (see Figure 1).

D Q D Qmetadin

clk

doutFF_a FF_b

Figure 1 2-Flip-Flop synchronizer. Data on signal din is synchronized to clock domain using clk; metastability caused by setup/hold violation of FF_a should be resolved within one clock-cycle. Valid data is then sampled by FF_b to generate the synchronized signal dout.

2

Digital RTL simulations do not incorporate the concept of metastability and will always behave in the same

deterministic way. Resolving metastability in real silicon is not deterministic. If a register becomes metastable, it
resolves with a high probability[5] within a clock-cycle to either high or low with an unpredictable probability
called CDC-jitter (see Figure 2 and Figure 3 for resolving from setup- and hold-violation in simulation and real
circuit).

III. RECONVERGENCE

 CDC-jitter as described in chapter II is not a problem by itself, especially if the designer is aware of the random
delay and does not expect the signal to be synchronized at a specific time. However, synchronizing multiple related
signals with synchronizers can lead to reconvergence problems due to CDC-jitter, since each synchronizer delays
signals in a non-predictable way. It is hard to track these problems, because reconvergence issues are not limited to
the logic cone(s) directly after the synchronizers, but can also encompass multiple subsequent register stages. Due
to the deterministic behavior of a synchronizer in RTL-simulation, these reconvergence problems will not show up
in simulation and dedicated tools need to be utilized to search for such issues.

Figure 4: Synchronization of a 3-bit counter src_cnt (green) from src_clk domain to dst_clk domain: sync_1 (blue) using one 2FF sync per
bus-signal (typical simulation result); sync_2 (red) using same synchronization as sync_1 but with CDC-jitter emulation; sync_3 (black):
doing gray-encoding before synchronizing; also simulated with CDC-jitter.
 An example for insufficient simulation behavior is shown in Figure 4: A counter value src_cnt (green) is
synchronized from domain src_clk into domain dst_clk. This could be for example a read- or write-pointer of an
asynchronous FIFO. Synchronizing each bit to solve metastability appear to work well in simulation (see: sync_1
(blue)). However, as metastability is resolved randomly in real silicon (see: sync_2 (red)), corrupt values will be
generated that disrupt the design but do not show up in simulation (neither at RTL nor gate level). One design
solution for this case would be to synchronize the pointers in gray-encoded representation. Using gray-encoded
counter values will ensure consistency between read- and write-pointer across clock domains, even with random
CDC-jitter (see: sync_3 for one pointer(black)).

Figure 2: Resolving from metastability caused by hold conflict:
dout may arrive one clock-cycle earlier than simulated.
Hatched area: signal has resolved to logic one resulting in
dout1 or logic zero resulting in dout2.

Figure 3: Resolving from metastability caused by setup conflict:
dout may arrive one clock-cycle later than simulated.
Hatched area: signal has resolved to logic one resulting in dout1
or logic zero resulting in dout2.

3

IV. MODELLING CDC-JITTER

 The basic concept of the CDC-jitter modelling 2FF synchronizer is shown in Figure 5. The first Flip-Flop
(FF_a) monitors the time between din and clk events. If the time between clk and din events is below a given setup
or hold time, FF_a will become metastable. The signal meta between both Flip-Flops is modeled in a way that it
can represent metastability in addition to the normal high and low value (data type for net meta is modeled as an
enumeration type with values: ONE, ZERO and META). In this case the second Flip-Flop (FF_b) will resolve to
a random value delivered by the pseudo-random-number-generator (PRNG) at the next clk edge.

D Q D Qmetadin

clk

doutFF_a FF_b
setup / hold time randombitPRNGseed_1seed_2

Figure 5: Basic structure of the CDC-jitter modelling 2FF synchronizer.

 The PRNG is built using the uniform() procedure which is part of the VHDL ieee.math_real package. It is
started with 2 seeds (seed_1 and seed_2). One seed is set up to be unique for each instance (see chapter VI on page
4), the other one uses the seed for constrained-random-simulation. Using this approach also makes the effect of
metastability visible in simulations, which helps debugging a circuit (see Figure 6 as an example).

Figure 6 net-states of all three synchronizers when synchronizing a counter.
Figure 6: Shows input, internal net and output of each synchronizer when synchronizing each bit of a three bit
counter individually.

4

V. COMPARISON WITH EXISTING APPROACHES

 CDC-jitter modelling in simulation has already been introduced in 2006 [1][2]. The models in these solutions
use one or two multiplexers to delay the signal by one clock-cycle or to bypass Flip-Flops (see Figure 7).

Figure 7 CDC-jitter modelling Synchronizer described in [2]

The advantage of this solution are the possibility to describe the model in a synthesizable way (just exclude one
Flip-Flop and multiplexer by synthesis-off pragmas) and the easy configuration (no setting of susceptibility-
window needed). One disadvantage of this circuit is its misbehavior in an environment that makes usage of clock-
gating (functional clock-gating or clock-gating for power reduction).

The muxing jitter-modeling[2] does not distinguish between setup-/hold-violation or no violation at all. If a steady
clock is present at the synchronizer, this works fine. The results however might be more pessimistic than needed as
a potential hold violation is treated the same way as a setup violation on the next clock edge, which does not match
the real possible outcomes. If the clock is gated, the outcome may break protocols giving a false negative result.
Figure 8 shows the three possible results of the muxing synchronizer[2]. A change of din is considered as a possible
hold-violation at the last clock-edge before the clock is gated and a possible setup-violation of first clock-edge after
the clock is released. In fact, there is no possible violation at all and there is only one possible outcome also shown
by the new jitter-modeling synchronizer. In contrast to our solution, using the muxing jitter-modeling will not
annotate the occurrence of metastability which might cause confusion during simulation reviews.

VI. PRNG SEED-DISTRIBUTION
 Special care needs to be taken to generate the seed for the PRNG of each synchronizer (see Figure 5 on page 3)
as the same seed will cause the same stream of random numbers which causes same behavior witch is not desirable.
Furthermore, reproducibility (random stability) of a simulation must be ensured. Independent behavior of all
PRNGs can be archived by assigning a unique number only used once (Nonce) to each instantiation of a
synchronizer and using this number as a first seed.

Figure 8: Three possible outcomes in clock-gating environment if
 jitter-modeling with muxing[2] is used (Figure 7) Figure 9: Outcome in clock-gating environment with the proposed

jitter-modeling (Figure 5)

5

This is done by defining the procedure pr_get_nonce (see line 115 of Listing 1) in the package also containing
the cdc-jitter model itself. That procedure provides a new, unique value each time it is called. This procedure is
called exactly once by each cdc-jitter model instantiation upon a first clock or reset event initializing the individual
seed of the instance. (see Chapter VIII The Architecture on Page 7 for further details). A second procedure
pr_set_uvm_seed is defined to pass the UVM seed to the simulation. This procedure is called once after evaluation
at first simulation event (see line 204 of Listing 2). The UVM seed is stored in a variable v_uvm_seed and is
fetched by each cdc-jitter model instantiation by calling the procedure pr_get_uvm_seed at the same time as
pr_get_nonce.

100. PACKAGE cdc_components_pack IS 101. -- pragma synthesis_off 102. SHARED VARIABLE v_nonce : positive := 1; -- seed1 103. SHARED VARIABLE v_uvm_seed : positive := 6473802; -- seed2 104. PROCEDURE pr_get_nonce (VARIABLE uvm_nonce : OUT positive); 105. PROCEDURE pr_get_uvm_seed (VARIABLE uvm_seed : OUT positive); 106. PROCEDURE pr_set_uvm_seed (VARIABLE uvm_seed : IN positive); 107. -- pragma synthesis_on 108. COMPONENT bst_cdcff 109. […] 110. END COMPONENT; 111. END cdc_components_pack; 112. 113. PACKAGE BODY cdc_components_pack IS 114. --pragma synthesis_off 115. PROCEDURE pr_get_nonce (VARIABLE uvm_nonce : OUT positive) IS 116. BEGIN 117. IF v_nonce = 1 THEN 118. ASSERT v_uvm_seed /= 6473802 119. REPORT "unknown uvm-seed (call pr_set_uvm_seed from tb!)" SEVERITY warning; 120. END IF; 121. v_nonce := v_nonce + 1; 122. uvm_nonce := v_nonce; 123. END PROCEDURE pr_get_nonce; 124. 125. PROCEDURE pr_get_uvm_seed (VARIABLE uvm_seed : OUT positive) IS 126. BEGIN 127. uvm_seed := v_uvm_seed; 128. END PROCEDURE pr_get_uvm_seed; 129. 130. PROCEDURE pr_set_uvm_seed (VARIABLE uvm_seed : IN positive) IS 131. BEGIN 132. v_uvm_seed := uvm_seed; 133. END PROCEDURE pr_set_uvm_seed; 134. -- pragma synthesis_on 135. END cdc_components_pack;
Listing 1: Declaration and implementation of needed support procedures pr_get_nonce, pr_get_uvm_seed

and pr_get_uvm_seed to pass seeds to ensure independent behavior of all synchronizers
200. extend bst_cdc_lib_tb_env_u { 201. vhdl procedure 'pr_set_uvm_seed' using interface="(uvm_seed:positive)", 202. library="worklib", package="cdc_components_pack"; 203. set_cdc_seed() @sys.any is { 204. 'worklib.cdc_components_pack.pr_set_uvm_seed'(covers.get_seed()); 205. }; 206. run() is also { 207. start set_cdc_seed(); 208. }; 209. };

Listing 2: specman e testbench environment snipped that passes the UVM-seed
 to simulation after evaluation at first simulation event

6

VII. CONFIGURATIONS AND INTERFACE
At least two configurations for the 2 flip-flop synchronizer are needed in the flow:

 Jitter-modeling configuration: used in RTL simulation / regression only. This configuration is not
synthesizable and needs to be exchanged with an implementation configuration in the physical
implementation flow

 Implementation configuration: synthesizable description of the 2-Flip-Flop synchronizer
Both configurations need to use the same interface to support the replacement. The interface of the 2-Flip-Flop

synchronizer is shown in Listing 3. The following definitions apply:

A. Generics:
 g_rst_val: defines the reset value of the synchronizer (applies to both configurations)  g_scan_en: scan enable: is ignored in both configurations but picked up by scan-insertion step in the

design backend. This parameter allows the designer to explicit exclude a synchronizer from the scan
chain, e.g. a reset synchronizer.  g_susc_time: susceptibility time: defines setup and hold time before and after the clock edge in which
metastability will be generated in the first Flip-Flop. Recommended setting is “a little less than half a
clock cycle” to let the model clearly distinguish between setup and hold violation which have different
outcomes. It is not recommended to enter real Flip-Flop timings here. Higher values will increase the
occurrence of metastability in simulations (compared to real behavior) and thus ensures valuable results
in short regressions.

B. Ports:
 i_din: data input  i_clk: clock of target clock domain  i_rst_n: reset, active low; reset value is determined by generic parameter g_rst_val.  o_dout: i_din synchronized to i_clk clock domain

300. ENTITY bst_CDCff IS 301. GENERIC(g_rst_val : std_ulogic := '0'; -- reset value 302. g_scan_en : std_ulogic := '1'; 303. g_susc_time : natural := 40000); -- susceptibility window 304. PORT(i_din : IN std_ulogic; 305. i_clk : IN std_ulogic; 306. i_rst_n : IN std_ulogic; 307. o_dout : OUT std_ulogic); 308. END ENTITY bst_CDCff;};
 Listing 3: Interface description of configurable 2-Flip-Flop synchronizer

7

VIII. THE ARCHITECTURE
Listing 4 shows the architecture of the jitter-modeling synchronizer. The synchronizer is part of the cdc-

components package (see Listing 1) that also contains the essential functions for proper initialization of the PRNG
contained in each synchronizer (see Chapter VI on Page 4).

PRNG initialization (Line 435-436) is triggered once after process p_two (Line 425-449) is triggered the first
time by either a clock or reset event.

 400. BEGIN -- ARCHITECTURE rtl 401. s_susc_time <= g_susc_time * 1 ps; -- translate g_susc_time into time 402. p_one: PROCESS (ALL) IS -- purpose: 1st stage ff; detect setup and hold; 403. VARIABLE clk_time : time := 0 ns; 404. VARIABLE din_time : time := 0 ns; 405. BEGIN -- PROCESS p_violate 406. IF i_rst_n = '0' THEN 407. IF g_rst_val = '0' AND i_din = '0' THEN s_m1_reg <= ZERO; 408. ELSIF g_rst_val = '1' AND i_din = '1' THEN s_m1_reg <= ONE; 409. ELSE s_m1_reg <= META; END IF; 410. ELSIF i_din'event THEN 411. din_time := now; 412. IF din_time - clk_time < s_susc_time THEN 413. s_m1_reg <= META; -- hold violation; goto meta 414. END IF; 415. ELSIF i_clk'event AND i_clk = '1' THEN -- rising clock edge 416. clk_time := now; 417. IF clk_time - din_time < s_susc_time THEN -- setup violation 418. s_m1_reg <= META; 419. ELSE 420. IF i_din = '1' THEN s_m1_reg <= ONE; 421. ELSE s_m1_reg <= ZERO; END IF; 422. END IF; 423. END IF; 424. END PROCESS p_one; 425. p_two: PROCESS (i_clk, i_rst_n) IS -- purpose: 2nd stage ff 426. VARIABLE v_seed1, v_seed2 : positive; -- seed values for random generator 427. VARIABLE v_rng_boot : boolean := true; -- reseed from signal 428. VARIABLE v_rand_real : real; -- random real value in range 0 to 1.0 429. BEGIN -- PROCESS p_one 430. IF i_rst_n = '0' THEN -- asynchronous reset (active low) 431. s_dout_reg <= g_rst_val; 432. ELSIF i_clk'event AND i_clk = '1' THEN -- rising clock edge 433. IF v_rng_boot THEN 434. v_rng_boot := false; 435. pr_get_nonce (v_seed1); -- get instance individual seed 436. pr_get_uvm_seed(v_seed2); -- get simulation seed 437. v_seed2 := s_seed; 438. END IF; 439. CASE s_m1_reg IS 440. WHEN ZERO => s_dout_reg <= '0'; 441. WHEN ONE => s_dout_reg <= '1'; 442. WHEN META => 443. uniform(v_seed1, v_seed2, v_rand_real); -- generate random number 444. IF v_rand_real > 0.5 THEN 445. s_dout_reg <= NOT s_dout_reg; 446. END IF; 447. END CASE; 448. END IF; 449. END PROCESS p_two; 450. 451. o_dout <= s_dout_reg; 452. 453. END ARCHITECTURE rtl;

Listing 4: VHDL architecture of the CDC-jitter-modeling 2-Flip-Flop synchronizer

8

IX. RESULTS AND CONCLUSION

Based on our experience, it is not recommended to integrate the CDC-jitter modelling synchronizer into an
existing project. Due to the random shift of timings at the model boundary, there is a high probability that UVM
monitors or self-checking test-benches will fail and need to be adjusted to tolerate that behavior. CDC-checking
tools provide a much less intrusive solution to search for reconvergence issues at this stage of the project. If,
however, used from project start, the RTL designers will spot CDC-reconvergence-problems instantly after
designing a block, even if no CDC-checking tool is in place. Early spotted reconvergence-problems can be fixed
instantly, which clearly needs much less time than problems spotted during CDC-checking as a post-design effort.
Much time is needed to understand the finding, fix it, review it and / or change the design concept if design
constraints cannot be met anymore. Depending on design constraints there might be better solutions for jitter-
emulation models than the proposed solution. A clear advantage of the proposed solution is the ability to work
well in a clock-gated environment. Using a muxing jitter-emulation model proposed in[2] might be the better
solution for systems with steady clock as it needs less configuration and can be described in a synthesizable way.

Having a dedicated module for the 2-Flip-Flop-synchronizer has some additional advantages besides jitter-
emulation. It allows easy constraining on module level to ensure that the two Flip-Flops are placed together in
place-and-route and that the net between the two Flip-Flops is exempt from automatic optimization by (both are
essential to minimize and guarantee Mean Time Between Failure (MTBF) of the synchronizer).

 Jitter-modeling does not disengage from using dedicated CDC-checking tools:
 It does not check for the synchronizer inputs to be free of glitches  It does not check for proper synchronization of design inputs  Design may still have convergence-problems not hit by chance in constrained-random simulation

However, the effort to setup a design with CDC-jitter-modeling compared to the benefit gained made this

technique mandatory for our projects.

REFERENCES

[1] Hin-Kwai Lee, Methodology for verifying multi-cycle and clock-domain-crossing logic using random flip-flop delays,

US Patent 7,289,946
[2] Mark Litterick, Pragmatic Simulation-Based Verification of Clock Domain Crossing Signals and Jitter using System Verilog Assertions,

DVCon 2006
[3] IEEE Std 1076.2 https://standards.ieee.org/downloads/1076/1076.2-1996/math_real.vhdl
[4] K. Meade, S. Rosenberg, A Practical Guide to Adopting the Universal Verification Methodology, 2nd ed, Cadence Design Systems 2013.
[5] Ang Boon Chong, Product Level MTBF Calculation, 2014 Fifth International Conference on Intelligent Systems, Modelling and

Simulation

