
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Use of Aliasing in SystemVerilog Verification Environment
Evean Qin

Advanced Micro Devices, Inc.

1 Commerce Valley Drive East, Markham, ON, Canada

Introduction

Building a state-of-art verification environment for a design is

essentially building a large complex software system. Many

constructs and techniques from computer programming are

supported by the verification language for convenience in

development. However, some commonly used ones are not. For

instance, “alias” is not defined in the SystemVerilog Standard.

Despite the reasons regarding not having “alias” in the language,

in some cases, aliasing can be very handy for designing an

efficient testbench. It helps to reduce the maintenance effort and

prevents human mistakes while building or using the verification

environment.

Example of a Design and Testbench

Problems in the Design

In the UVM verification environment, a monitor and a driver shall

be set up for this interface. A base transaction is designed to

contain an ENUM member “opcode” associated with the Opcode

bus, and a 32-bit data member “operand” associated with the

Operand bus. The driver and monitor operate with this base

transaction. And multiple child transactions are extended from

this base for different commands, and ought to store their own

unique fields according to the specification. The UVM tests

execute the testing sequences with different command

transactions based on the test intents.

Potential Alternative Solution

Here are the two typical problems when designing and using the

UVM environment:

a) Extra actions for packing and unpacking the operands. For

example, the driver needs to decode the opcode then pack

the fields from the command transaction into the operand

before sending it into the interface. Vice versa for the Monitor.

b) Data synchronization between variables is not seamless. For

example, in the command transaction class, the same

information is stored in two independent sets of variables.

Updating either of them does not imply updating the other

one.

Usually, in a programming language, the above problems can be

solved by aliasing the variables, so that either the operand or any

field is updated in the command transaction, the value will be

synchronized without any extra action. Here are the pseudo

codes in Command_Transaction_A:

B. let Construct

SystemVerilog from the IEEE 1800-2012 standard introduces the

“let” construct, which defines a template expression, customized

by its ports. Besides customizing the text macros, it can be used

to provide shortcuts for identifier. It can be used in UVM by

declaring it in a SystemVerilog package.

However, the let identifier cannot be used in the left-hand-side

(LHS) of an assignment as shown in the example below. So the

user will not be able to update the operand through assigning

values directly to the fields in the command transactions. Here is

an example:

The User-Defined Aliasing Method

When using this setup, different packed union types need to be

defined for different command transactions. The operand variable

in the base transaction is decoupled with the operand variable in

its child transactions due to the data type overriding. As a result,

the driver cannot directly drive the Operand bus with the value

from the “operand” in the base transaction. In the end, this

testbench structure with additional static components is not

dynamic enough to solve the problem but increases work in

maintenance.

For example, when the Opcode is COMMAND_A, the Operand

will be assigned to a 32-bit field: fields_A0. When the Opcode is

COMMAND_B, the Operand will be divided into two 16-bit fields

instead: field_B0 and field_B1. Sometimes, the Operand does

not have to be fully filled and the fields do not have to be

consecutive. For example, when the Opcode is COMMAND_C,

the Operand is setup to have three 8-bit fields with 8 reserved

bits between two of them.

Figure 1. Design and Testbench Example

The UVM Environment Setup

class Command_Transaction_A extends Base_Transaction;

…

alias field_A0 = operand[31:0];

…

As mentioned previously, “alias” is not allowed in a class

construct in SystemVerilog. The pseudo codes will fail to be

compiled. Therefore, we will start the journey of seeking for the

solutions to workaround this and hopefully achieve the desired

goal in the testbench design.

A. Standard-Defined “alias”

SystemVerilog 3.1 has introduced “alias” into the standard. The

alias statement models a bidirectional short-circuit connection

used in a module or an interface construct, by which the designer

can assign different “virtual” nets sharing the same physical net.

Here is a code example of the “alias” usage in an interface:

interface Command_A_inf (inout wire [31:0] operand);

wire [31:0] field_A0;

alias field_A0 = operand;

…

endinterface

package command_bus_dv_package;

bit [31:0] operand;

let field_A0 = operand;

endpackage

class Command_Transaction_A extends Base_Transaction;

function set_A0(bit[31:0] value);

field_A0 = value; //This is illegal

endfunction

endclass

Furthermore, the let construct is not supported in a class

construct, and hence, all its declarations have to be put inside a

package. This may cause name conflicts and data corruptions

due to multiple concurrent assignments. Therefore, the let

construct seems unsuitable for linking the variable bi-directionally.

typedef union packed {

bit[15:0] field_B0;

bit[15:0] field_B1;

} commandB_union;

…

The DUT contains a

command interface which

consists of a 16-bit opcode

bus and a 32-bit operand

bus. In this command bus,

according to the Opcode,

the Operand can be

dynamically divided into

different fields.

However, each command needs its own virtual interface to the

bus for the monitor and drive. Adding a new command, a new

interface needs to be created. Using the standard-defined “alias”

statement does not provide any convenience in the verification

environment.

C. Packed Union Struct

With SystemVerilog 3.1, packed union can be defined to

concatenate multiple packed or integer data into a packed array.

It allows the users to access the union as a 32-bit data type and

its members independently. Most importantly, it can be used in a

package or a class construct. Here is an example:

D. Dynamic Methods Lookup

In the SystemVerilog standard from IEEE 1800-2012, dynamic

methods lookup is introduced. It allows the use of a variable of

the superclass type to hold subclass objects and to reference the

method of those subclasses directly from the superclass variable.

In practice, the pure virtual methods can be declared in the

Base_Transaction for packing and unpacking the operand. The

actual method definitions are implemented in the child classes

such as Command_Transaction_B. Here is a code example:

This polymorphism technique eliminates the casting actions,

which saves some code and solves problems of bit-packing in the

testbench development. However, it still relies on the functions to

synchronize the data between variables. Therefore, the users and

the testbench designers need to carefully decide when and where

to call these functions to avoid data corruption.

After exhausting the potential solutions from the SystemVerilog

Standard, it is concluded that none of them can fully resolve the

problems in the testbench construction for this design. Therefore,

let’s come back to the aliasing method and see if this can be

implemented in a class construct for the verification environment.

In a computer system, aliasing describes a situation in which a

data location in memory can be accessed through different

symbolic names in the program. Hence, implementing a user-

defined alias in a SystemVerilog class construct needs to retrieve

the memory address of the variable first. But SystemVerilog does

not define pointer type and has no system function to retrieve the

memory address of a variable either. In this case, to leverage the

fine establishment of the pointer referencing in C/C++, the DPI-C

plugin can be used to work with SystemVerilog for this problem.

Here is an example of the DPI-C functions and the usage in

SystemVerilog environment:

class Base_Transaction;

…

pure virtual function void pack_operand();

pure virtual function void unpack_operand();

…

endclass

class Command_Transaction_B extends …;

//Define the virtual functions here

virtual function bit[31:0] pack_operand();

operand = {field_B1, field_B0};

return operand;

endfunction

virtual function void unpack_operand();

field_B0 = operand[15:0];

field_B1 = operand[31:16];

endfunction

endclass

#include <stdio.h>

#include "vc_hdrs.h"

int get_pAddress(int* variable) {

return variable;

}

int get_pValue(int address){

int *addr;

addr = address;

return *addr;

}

void set_pValue(int address, int value){

int *addr;

addr = address;

*addr = value;

}

class VARIABLE #(int WIDTH=32);

rand bit[WIDTH-1:0] value;

int offset;

…

function int get_value();

value = get_pValue(pointer + offset);

return value;

endfunction

function void set_value(bit[WIDTH-1:0]

_value);

bit[31:0] full_value = get_pValue(address);

bit[31:0] mask = {WIDTH{1'b1}};

full_value = full_value &

(~(mask<<(offset*8))) | (_value<<(offset*8));

value = _value;

set_pValue(pointer, full_value);

endfunction

function void set_alias(VARIABLE _alias, int

_offset=0);

pointer = _alias.pointer;

offset = _offset;

value = get_pValue(pointer + offset);

endfunction

endclass

class Command_Transaction_B extends Base_Transaction

VARIABLE#(16) field_B0; // 16-bit field

VARIABLE#(16) field_B1; // 16-bit field

…

field_B0.set_alias(operand, 0);

field_B1.set_alias(operand, 2);

…

endclass

class example_test;

Command_Transaction_B trans;

…

trans.field_B0.set_value(16‘hbbbb);

trans.field_B1.set_value(16‘h2222);

// This will print “trans.operand = 0x2222bbbb”

`uvm_info(“EXAMPLE”, $sformatf(“trans.operand = 0x%x”, trans.operand.get_value()), …)

endclass

Summary

Though the DPI-C approach has some solvable limitations, it

empowers the verification environment with the “alias” method.

Different variables can be linked dynamically to reduce the effort

in testbench development and maintenance. With an insignificant

run-time overhead, the verification environment can become

more scalable, less design error-prone, and more user friendly.

Here is an example of how to declare and use the alias:

© 2019 Advanced Micro Devices, Inc. All rights reserved.

Figure 2. Example of the Transaction Hierarchy Setup

