
UPF Code Coverage and Corresponding

Power Domain Hierarchical Tree for

Debugging
Shang-Wei Tu

MediaTek Inc.

+886-3-5670766#23493

kuma.tu@mediatek.com

Tom Lin

Synopsys Inc.

+886-3-5581860

tomlin@synopsys.com

Archie Feng

Synopsys Inc.

+1-650-5844915

archief@synopsys.com

Chen Ya Ping

Synopsys Inc.

+86-592-3012457
lukechen@synopsys.com

Abstract- The functional coverage together with the code coverage is essential for completely verifying a

design. This is also true for the low power verification. However, traditionally, verification engineers only

consider the RTL code for generating and collecting the code coverage. Nowadays, a design usually comprises

two parts. One is the functional part described in the hardware language such as Verilog or VHDL, and the

other is the power management part described in the power format language such as UPF or CPF. Hence, to

completely verify the design, we have to adopt the power-aware simulation instead of the pure RTL simulation.

However, we found the low power verification is incomplete without a suitable coverage model to cover the UPF

part. In this paper, we proposed the concept of the UPF code coverage to fill in the missing piece of the low

power verification. To implement and prove the concept, we collaborated with Synopsys to implement this

concept into their simulator. In addition, the Power Domain Hierarchical Tree is proposed to facilitate

debugging and reviewing the UPF code coverage. The result is also demonstrated in this paper.

Keywords—low power verification; UPF; code coverage; power-aware simulation; power domain hierarchical

tree

I. INTRODUCTION

When the process technology and the design complexity continue advancing, the leakage power

consumes over 50% of the total power for portable devices from year 2012 as shown in Figure 1. However,

traditional low power techniques such as the clock gating, the logic optimization, and the multi-Vt

optimization cannot handle the leakage power effectively [2]. Therefore, various advanced low power

techniques are employed in the industry [3]. This further increases the complexity of the hardware and the

corresponding software, and both of them become highly risky when not being well verified. This is why

we require the low power verification methodology to minimize the risk of both the hardware and the

software.

Figure 1. SOC consumer portable power consumption trends [1].

The coverage is an important index for measuring the completeness of the verification, and the same

concept can also be applied to the low power verification as well. There are two categories of the coverage.

One is the functional coverage, and the other is the code coverage. Then the upcoming question is that “Is

either one of them enough for measuring the completeness of the verification?”. The answer is negative.

The code coverage measures how thoroughly your tests exercise the “implementation” of the design

specification, but not the verification plan. In other words, the code coverage does not provide the

measurement of how well the functionality is verified. Consider a case that you have 100% code coverage,

but there is one function left unimplemented. For this case, the functional coverage will reveal the missing

functionality. On the other hand, the functional coverage is tied to the design intent and is sometimes called

“specification coverage”. However, with the functional coverage only, corner cases could be missed even

when the functional coverage is 100% covered. Consider a case that you have 100% functional coverage,

but there are still some FSM states or some IO ports left not toggled. The code coverage will reveal the

uncovered corners. Therefore, we will have high confidence of the verification quality only when both the

functional coverage and the code coverage are considered together [4].

Nowadays, a low power design comprises two parts. One is the functional part implemented with the

IEEE HDL language—Verilog/VHDL, and the other is the power management part implemented with the

IEEE power intent language—UPF. In other words, UPF also describes a part of a design, since it will be

synthesized and implemented with the RTL code. Although current vendor tools can generate the code

coverage to cover the RTL code very well, they do not address the code coverage of the UPF part or

provide the same user interface for the UPF code coverage as that of the RTL code. Besides, from our

literature survey, we do not find any literature address this missing piece of the low power verification

either. However, the UPF code coverage is essential for the low power verification. We cannot measure

how thoroughly the power management design is exercised without coverage directly generated from the

UPF code. For example, we don’t have any index to measure if all isolation rules are toggled without the

UPF code coverage. Hence, to fill in the missing piece of the low power verification, we proposed the

concept of the UPF code coverage and collaborated with Synopsys to implement into their simulator and

prove the concept with the real project execution. In addition, the Power Domain Hierarchical Tree is

proposed to facilitate debugging and reviewing the UPF code coverage. The result is also demonstrated in

this paper.

The rest of this paper is organized as follows. Section II describes the features of the code coverage.

Section III details the definition of the UPF code coverage and the corresponding interface provided by

VCS NLP. In Section IV, the concept of the Power Domain Hierarchical Tree is briefly explained.

Following, we demonstrate the debugging solutions implemented with the Power Domain Hierarchical

Tree for the UPF code coverage. Finally, Section VI concludes this paper and discusses the plan for future

work.

II. FEATURES OF CODE COVERAGE

Before giving the detailed definition of the UPF code coverage, we should first review the features that

should be contained by the code coverage. Those features are key indices for us to inspect if the defined

UPF code coverage is similar to the RTL code coverage. The similarity is crucial for the verification

engineer to adopt the UPF code coverage seamlessly just like RTL code coverage, since as mentioned in

[5], the efficiency is also a key factor of the successful verification. From our experience on the execution

with the RTL code coverage, we list the features of the code coverage below:

(1). Have clear definition

(2). Directly derived from source code

(3). Coverage automatically collected by tool

(4). Can be selectively turned on

(5). Have debugging scheme

(6). Have user friendly coverage report

(7). Easy to exclude and merge

We believe that if all above features are contained in the UPF code coverage, we can easily adopt the

UPF code coverage to measure the completeness of the low power verification. In Section III, we will

cover feature (1) to (4), and in Section V, we will cover feature (5) and (6). However, feature (7) is not

covered in this paper, since these are still under discussion with Synopsys.

III. DEFINITION OF UPF CODE COVERAGE

In following subsections, we will give detailed definitions of the UPF code coverage and the

corresponding VCS options to turn on.

A. Port State Coverage

The port state coverage is defined for below UPF command:

add_port_state port_name {–state {name value}}*

and the corresponding compile-time option is:

 –power=cov_port_state

After turning on the port state coverage, there are two coverage types generated. One is the state coverage

of each state, and the other is the transition coverage between the states. For example, if we have below

UPF command and turn on the port state coverage, we will get 3 state coverage points and 6 transition

coverage points generated:

add_port_state DVDD_DVFS –state {ON 1.0} –state {HI 1.2} –state {LO 0.8}

With the port state coverage, we can check if our testbench can toggle all defined port states. For some

extreme cases, if we have some port states can never be toggled, it could be either redundant states or even

missing connection for the corresponding ports.

B. Power Switch Coverage

The power switch coverage is defined for below UPF command:

create_power_switch switch_name [–domain domain_name]

–output_supply_port {port_name [supply_net_name]}

{–input_supply_port {port_name [supply_net_name]}}*

{–control_port {port_name [net_name]}}*

[–ack_port {port_name net_name [logic_value]}]*

{–on_state {state_name input_supply_port {boolean_expr}}}*

[–off_state {state_name {boolean_expr}}]*

and the corresponding compile-time option is:

 –power=cov_psw

After turning on the power switch coverage, there are two coverage types generated for the power switch

states (i.e., –on_state and –off_state), the control ports, and the acknowledge ports. One is the state/level

coverage of each state/port, and the other is the transition coverage between the states/levels. For example,

if we have below UPF command and turn on the power switch coverage, we will get 2 power switch state

coverage points, 2 level coverage points of the control port, 2 level coverage points of the acknowledge

port, and 2 transition coverage points generated for each of them:

create_power_switch PSW –domain PD

 –output_supply_port {vout DVDDO}

 –input_supply_port {vin DVDDI}

 –control_port {ctrl pwr_on}

 –ack_port {ack pwr_ack}

 –on_state {PSW_ON vin {ctrl}}

 –off_state {PSW_OFF {!ctrl}}

With the power switch coverage, we can examine if our testbench have toggled all power switch rules.

This coverage is extremely important for the power-aware simulation, since many corner cases can be

covered by reviewing this coverage. In our project execution, we consider this power switch coverage must

be fully covered in the power-aware simulation.

C. Power State Table Coverage

The Power State Table (PST) coverage is defined for below UPF commands:

create_pst table_name –supplies supply_list

add_pst_state state_name –pst table_name –state supply_states

and the corresponding compile-time options are:

 –power=cov_pst

 –power=cov_pst_state

 –power=cov_pst_transition

“–power=cov_pst_state” enables only the state coverage of the PST, and “–power=cov_pst_transition”

enables only the transition coverage of the PST. “–power=cov_pst” enables both the state and transition

coverage of the PST. For example, if we have below UPF command and turn on the PST coverage (i.e., –

power=cov_pst), we will get 3 state coverage points and 6 transition coverage points generated:

create_pst PST_M –supplies {VDD VDD_SW VDDB VSS}

add_pst_state Normal –pst PST_M –state {ON ON ON GND}

add_pst_state Sleep –pst PST_M –state {ON OFF ON GND}

add_pst_state OFF –pst PST_M –state {OFF OFF ON GND}

With the PST coverage, we can review if all the legal power modes are fully covered. This coverage is

also extremely important for the low power verification, since the power modes represent the use cases

which are defined by the power architect for the software engineers to use. In other words, all allowable

power modes are defined in the PST. The software engineers are not supposed to use any power mode

beyond the PST. In addition, for the macros and IPs, we are interested in the correctness of the integration

in the top design. The PST coverage also gives us an index for measuring the correctness of the integration.

Hence, in our project execution, we also consider this PST coverage must be fully covered in the power-

aware simulation.

D. Retention Coverage

The retention coverage is defined for below UPF commands:

set_retention retention_name –domain domain_name

 [–elements element_list]

 [–retention_power_net net_name]

 [–retention_ground_net net_name]

set_retention_control retention_name –domain domain_name

 [–save_signal {logic_net <high|low|posedge|negedge>}

 –restore_signal {logic_net <high|low|posedge|negedge>}]

 [–save_condition {boolean_expression}]

 [–restore_condition {boolean_expression}]

and the corresponding compile-time option is:

 –power=cov_ret

After turning on the retention coverage, there are two coverage types generated. One is the active and

inactive coverage of each retention signal/condition, and the other is the transition coverage between the

active and inactive state. For example, if we have below UPF command and turn on the retention coverage,

we will get 4 active and inactive coverage points and 4 transition coverage points generated for the save

and restore signal:

set_retention RR –domain PD

 –retention_power_net DVDD_BCK

 –retention_ground_net DVSS

set_retention_control RR –domain PD

 –save_signal {save high}

 –restore_signal {restore high}

With the retention coverage, we can measure the verification completeness of the retention rules defined

in the UPF file. On the other hand, without this coverage, we could have some retention logics left

unverified and, hence, this could result in some verification holes.

E. Isolation Coverage

The isolation coverage is defined for below UPF commands:

set_isolation isolation_name –domain domain_name

 [–elements element_list]

 [–applies_to <inputs|outputs|both>]

 [–source source_supply_ref]

 [–sink sink_supply_ref]

 [–clamp_value <0|1|latch|Z>]

 [–isolation_power_net net_name]

 [–isolation_ground_net net_name]

set_isolation_control isolation_name –domain domain_name

 –isolation_signal signal_name

 [–isolation_sense <high|low>]

 [–location <self|parent>]

and the corresponding compile-time option is:

 –power=cov_iso

After turning on the isolation coverage, there are two coverage types generated. One is the active and

inactive coverage of the isolation control signal, and the other is the transition coverage between the active

and inactive state. For example, if we have below UPF command and turn on the isolation coverage, we

will get active and inactive coverage point and 2 transition coverage points generated for the isolation

control signal:

set_isolation ISO –domain PD

 –isolation_power_net DVDD_BCK

 –isolation_ground_net DVSS

 –clamp_value 0

 –applies_to outputs

set_isolation_control ISO –domain PD

 –isolation_signal iso

 –isolation_sense high

 –location self

With the isolation coverage, we can measure the verification completeness of the isolation rules defined

in the UPF file. On the other hand, without this coverage, we could have some isolation logics left

unverified and, hence, this could result in some verification holes.

 IV. POWER DOMAIN HIERARCHICAL TREE

A. Background and Assumption

Among all existing tools, we found that they are either flattening view or design-hierarchy-based view

for reviewing the power domains defined in UPF. To make the power domain view structuralized, we

propose the Power Domain Hierarchical Tree in this paper. However, we have a basic assumption for this

solution. The assumption is that real projects will adopt the hierarchical UPF coding style. In other words,

most reusable IPs and sub-systems will be delivered with corresponding UPF files for top integrators to

integrate. Hence, top integrators can easily integrate those UPF files with below UPF command:

 load_upf “IP.upf” –scope some_hier/ip0

We think the hierarchical UPF coding style is a common practice in real projects due to several factors.

First is the increasing complexity of the design power intent, so it is not realistic to create a flattening UPF

for a SoC. Second is the reuse of IPs. IP providers should provide both Verilog and UPF for customers to

integrate, verify, and implement. Third is the trend of the bottom-up hierarchical verification and

implementation flow, so stand along UPF files are required for this flow.

Based on the assumption of the hierarchical UPF coding style, we propose the Power Domain

Hierarchical Tree [6] to systematically organize the power domain structure. With the structuralized power

domain hierarchy, designers can review and debug their power intent efficiently.

B. Criterions for Creating Power Domain Hierarchical Tree

Below are criterions for creating the Power Domain Hierarchical Tree:

1). Power domain hierarchy should base on the design hierarchy

2). Branch node will be created only when “changing scope” and “creating base domain” happen

concurrently

3). Every branch node should record its current scope and parent scope

4). If PD_X is defined with create_power_domain PD_X –elements {list_of_inst}, then PD_X is a

member of current branch node

i. Use current scope as a hash key to find out the branch node which it belongs to

ii. If cannot find a branch node with current scope, then use parent scope to find

5). To determine which branch node a given PST (power state table) belongs to, we can also adopt the

same method listed in i. and ii.

The branch node represents the tree node in the Power Domain Hierarchical Tree, and the members of a

branch node can be non-default power domains and PSTs.

C. Example

In this subsection, we use a simple example as illustrated in Figure 2 to demonstrate the creation of the

Power Domain Hierarchical Tree with the criterions listed in previous subsection.

Figure 2. Example UPF code and design hierarchy.

When parsing first 2 UPF commands, criterion 2) will be applied, since a new scope with a new default

domain PDT are created. Hence, a branch node PDT will be created as shown in Figure 3. Then, after

parsing the third UPF command, criterion 4) will be applied, since a normal power domain is created.

Therefore, a member PDB3 belonging to branch node PDT will be created and the data structure will also

be updated as demonstrated in Figure 3.

Figure 3. Data structure after parsing first 3 UPF commands.

Next, after parsing successive 4 UPF commands, criterion 1) and 2) will be applied, since two scope

changes (i.e., set_scope and -scope) with two creations of new default domains PDM (introduced by

load_upf) happen respectively. Hence, two new branch nodes with name PDM will be created under PDT

and the data structure will also be updated accordingly as demonstrated in Figure 4. In addition, criterion 3)

will be applied and the parent scope “/” (i.e., top) will be recorded for the new branch nodes.

Figure 4. Data structure after parsing following 4 UPF commands.

Still next, after parsing following 3 UPF commands, criterion 1) and 2) will be applied, since two scope

changes (i.e., -scope and set_scope) with two creations of new default domains PDS1 and PDS2

(introduced by load_upf and source) happen respectively. Hence, two new branch nodes PDS1 and PDS2

will be created as demonstrated in Figure 5. Then, criterion 3) will be applied. The parent scope “/” will be

recorded for the new branch nodes, and the parent scope of two branch nodes PDM will be updated to “s1”

to keep the hierarchy correct. Finally, after parsing last 2 UPF commands, criterion 5) will be applied.

Since current scope is changed to “/”, T_PST will be created as a member of the branch node PDT as

demonstrated in Figure 5.

Figure 5. Data structure after parsing last 5 UPF commands.

After all UPF commands are parsed, we can easily draw the Power Domain Hierarchical Tree as

demonstrated in Figure 6 from the latest data structure in Figure 5. Since there could be some IPs’ or

macros’ UPF loaded several times, you will see several branch nodes with the same domain name but

different scope such as PDM in Figure 6. For simplicity, we can also group them as a supper branch node.

With this hierarchical tree, we can easily review and debugging our power intent comparing to a flattening

view.

Figure 6. Generated Power Domain Hierarchical Tree.

V. APPLICATION OF POWER DOMAIN HIERARCHICAL TREE

The concepts of the UPF code coverage and the Power Domain Hierarchical tree are both tool

independent. In other words, they can be implemented in any tool. In this section, we demonstrate the

results of applying the Power Domain Hierarchical Tree to commercial tools. We collaborate with

Synopsys to implement this concept into URG low power coverage report and Verdi coverage debugging

GUI for the UPF code coverage. In addition, this concept can also be applied to power intent debugging

GUI. The result of Verdi-PD (Verdi Power-aware Debug) with the Power Domain Hierarchical Tree is also

demonstrated in this section.

A. URG Low Power Coverage Report

One solution provided by Synopsys for reviewing the UPF code coverage is the HTML report generated

by URG. The original HTML report generated by URG is demonstrated in Figure 7. This is just a kind of

raw data, and engineers are difficult to review the UPF coverage with the raw data.

Figure 7. Original HTML report generated by URG for the UPF coverage.

After applying the Power Domain Hierarchical Tree and the concept of the UPF code coverage, the new

HTML report is demonstrated in Figure 8. Obviously, the structuralized coverage data is easier for

engineers to review. In addition, the coverage report structure is analogous to the RTL code coverage report

demonstrated in Figure 9. Engineers will quickly get familiar with the similar report style and do the UPF

code coverage review as well as the RTL code coverage review.

Figure 8. Enhanced HTML report with the Power Domain Hierarchical Tree and the concept of the UPF code

coverage.

Figure 9. Example of the RTL code coverage report.

B. Verdi Coverage GUI for UPF

Another solution provided by Synopsys for reviewing the UPF code coverage is the Verdi Coverage GUI.

The original solution is DVE GUI coverage view as shown in Figure 10. This is also just a kind of raw

data, and engineers are difficult to review or debug the UPF coverage with the raw data.

Figure 10. DVE GUI coverage view for the UPF coverage.

After applying the Power Domain Hierarchical Tree and the concept of the UPF code coverage, the new

Verdi coverage GUI is demonstrated in Figure 11. Obviously, the structuralized coverage data is easier for

engineers to review and debug. In addition, the coverage report structure is analogous to the RTL code

coverage report demonstrated in Figure 9. Engineers will find no difficulty to get familiar with the similar

data structure and do the UPF code coverage review and debugging efficiently.

Figure 11. Enhanced Verdi coverage GUI with the Power Domain Hierarchical Tree and the concept of the UPF code

coverage.

C. Verdi-PD Debugging GUI for UPF

When we want to review our power intent defined in UPF or debug power-aware simulation failures, we

usually open a debugging GUI and hope it can help us do the job efficiently. However, the solutions

provided by vendors are all kinds of a flatten view of UPF domain as shown in Figure 12. It is difficult for

us to find a certain power domain in the flattening view and there is no any power domain hierarchy

relation provided.

Figure 12. Original Verdi-PD debugging GUI for UPF.

After applying the Power Domain Hierarchical Tree to Verdi-PD, the new UPF debugging GUI is

demonstrated in Figure 13. Obviously, the well organized tree structure is easier for engineers to review or

debug than the previous one. In addition, the multiple macro power domains are grouped for simplicity.

The enhancement of the debugging GUI is obvious.

Figure 13. Enhanced Verdi-PD GUI with the Power Domain Hierarchical Tree for UPF debugging.

VI. CONCLUSION AND FUTURE WORK

In the paper, we propose the concept of the UPF code coverage to fill the missing piece of the low power

verification methodology. To make this concept practical, we collaborate with Synopsys to implement this

concept into their power-aware tools including MVSIM NLP, URG, and Verdi. In addition, this concept is

general and it is not supposed to be tool specific. It can also be implemented in the simulators of other

vendors.

The Power Domain Hierarchical Tree is also proposed in this paper for the practical consideration of

executing the UPF code coverage in real projects. The results are demonstrated in this paper as well. Again,

this concept is general and is not supposed to be tool specific.

There are three future works to be planned. First is the UPF code coverage definition for covering full

UPF commands. Second is the UPF code coverage exclusion mechanism. The last one is applying the

Power Domain Hierarchical Tree to a UPF editor.

ACKNOWLEDGMENT

The authors wish to thank the following for their contributions and support.

 Tiger Hsu of Synopsys Inc. provides the supportive and thorough reviews.

 Sean Lin of Synopsys Inc. bridges the customer and the research and development engineers of

Synopsys.

 Research and development engineers of Synopsys Inc. implement these ideas.

REFERENCES
[1] Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2010; http://public.itrs.net.
[2] Synopsys presentation slide, Low Power Design: Galaxy Power Implementation, 2013.
[3] Srikanth Jadcherla, Janick Bergeron, Yoshio Inoue, and David Flynn, Verification Methodology Manual for Low Power,

Synopsys, 2009.
[4] Chris Spear and Greg Tumbush, SystemVerilog for Verification: A Guide to Learning the Testbench Language Features,

3rd edition, Springer, 2012.
[5] Iman Sasan, Step-by-step Functional Verification with SystemVerilog and OVM, Hansen Brown, 2008.
[6] Shang-Wei Tu, Tom Lin, and Archie Feng, “Power Domain Hierarchical Tree”, DAC Designer Track, 2014.

