
UPF 1.0, UPF 2.0, UPF 2.1, UPF 3.0, and now UPF 3.1: The big
Q “Which is the Right Standard for My Design”?

Madhur Bhargava, Mentor, A Siemens Business
(madhur_bhargava@mentor.com)

1

Agenda
• Introduction
• Evolution of UPF
• Challenges in Migration
• Backward Compatibility
• What’s new in UPF 3.1
• Semantic difference b/w standards
• UPF design Guidelines
• Conclusion

2

Introduction
• Power Management & Verification Complexity

– Complex & energy aware chips
– Maximize battery life
– Requiring sophisticated power management

• Power Gating, Multi Voltage, DVFS, Biasing
• Affect design functionality
• IPs using own power management posing integration challenges

– Need for power verification
• HDL not equipped, Power formats share burden

• Unified Power Format
– Define power management
– Based on Tcl
– Provide HDL Interface
– Information Model to capture processed data

3

Evolution of UPF

UPF
1.0

UPF
2.0

UPF
2.1

UPF
3.0

UPF
3.1

• UPF 1.0 was defined by Accellera
– Focused on adding power intent to HDL
– Relatively simple concepts and commands

• UPF 2.0 defined by IEEE
– Backward compatible with UPF 1.0
– Supports IP development, refinement

• UPF 2.1
– Clarifies and enhances UPF 2.0 features
– Adds a few new capabilities

• UPF 3.0
– Several new capabilities added
– Updated existing concepts, viz. power

states
• UPF 3.1 – latest standard

– New commands for simulation control
– Clarification of semantics

4

New Challenges
• Five UPF standards

– Compatibility, Differences & Migration challenges
• Starting a new design: Which UPF version to choose for your design ?
• Building on top of your existing design

– And some functionality requires a standard upgrade
• Building an SoC : Integration challenges

– One of the IPs was built using a different UPF standard than another IP in the same
design

• Verification tools support different standard as a tool-default
– Designs are not easily interoperable

• UPF standards are not entirely backward compatible
• Which is the right standard for my design ?

5

Migration to UPF 3.1: Backward Compatibility
• UPF standards are not backward compatible

– Old commands get deprecated
– Syntax update for existing commands
– Semantics also get changed

• Challenges in reuse of existing IPs
• Semantic compatibility

– Need to understand the semantic difference b/w releases
– May be required to edit the UPF files

• Syntax compatibility
– May need to edit to make UPF 3.1 compatible

6

Migration to UPF 3.1: Common FAQs
• Does UPF command upf_version controls both the syntax and semantics of a UPF file?

– The standard does not define how a verification tool uses the specified UPF version argument;
– UPF command upf_version can be used multiple times for the UPF specification
– Semantics are generally defined for the whole design
– The UPF command upf_version controls the syntax of subsequent UPF commands
– In general verification tool’s follow a default particular standard for semantics with tool options to modify

the same.
• Designs with multiple IPs: Is it possible to have multiple semantics (UPF standards) for a same

design?
– Different UPF files in the same design may use different upf_version command to specify the different

standard.
– It is not possible to follow multiple semantics for a same design. UPF does not have any concept of

namespace to limit the scope of standard version to be followed
• If starting with a new design, which UPF standard to follow?

– Unless absolutely necessary always follow the latest standard and UPF semantics.

7

What’s new in UPF 3.1
• Address the challenges in low-power verification
• New features introduced
• Semantics updates

– Some semantics have been changed over UPF standard releases

8

Challenge: Controlling SV Assertions in Low-
Power Designs

• Assertion based verification is one of most common verification methodology
• During power-off, its possible that the signals used in assertion control check

got corrupted
– FALSE assertion failure messages

• No standard definition of how SV assertions controlled in low-power
simulations
– Relying on assertion control RTL system task $assertcontrol
– Tool’s capabilities & mechanism

always @(clk)
begin
assert (q == 1'b1)

else error(“ERROR”)”;
end

always @(clk)
begin
assert (q == 1'b1)

else error(“ERROR”)”;
end

‘x’Domain OFF

9

Solution: Controlling SV Assertions in Low-
Power Designs

always @(clk)
begin
assert (q == 1'b1)

else error(“ERROR”)”;
end

always @(clk)
begin
assert (q == 1'b1)

else error(“ERROR”)”;
end

Domain OFF

• Introduced new command “sim_assertion_control” to
control the behavior of assertions during low-power
verification

• Allows users to specify when the assertions will remain
active or get inactive/killed/reset based on the control
criteria

• Eg. Disable assertions during power down period

sim_assertion_control
[-elements element_list]
[-exclude_elements
exclude_list]
[–domain domain_name]
[-model model_name]
[-controlling_domain
domain | -control_expr
boolean_expression]
[-type <reset | suspend |
kill>]
[-transitive [<TRUE |
FALSE>]]

10

Challenge: Controlling replaying of initial
blocks

• Initial blocks in Verilog are used to provide initial
values to logic in the module
– Reinitialize logic in behavioral modules of ROMs or PLLs

after all power up events
– During the power off – on sequence, certain logic may

remain corrupted
• Standard lacked any semantic definitions for

controlling the initial blocks
– Rely on simulation tool capabilities to specify the initial

blocks to be replayed at power up
– Non interoperable

initial begin
//initialize mem
mem[size:0] = 1;

end

mem[size:0] = ‘x’

Power Down

Power Up

//Remains ‘x’
mem[size:0] still ‘x’

11

Solution: Controlling replaying of initial blocks

• New command “sim_reply_control” to specify initial blocks
to be replayed when a domain powers up

• Each initial block targeted by this command will be replayed
when the primary supply set of the domain/controlling
domain transitions into the NORMAL state

initial begin
//initialize mem
mem[size:0] = 1;

end

mem[size:0] = ‘x’

Power Down

Power Up

//Retrigger initial
block
mem[size:0] is now 1

sim_replay_control
[-elements element_list]
[-exclude_elements exclude_list]
[-model model_name]
[–domain domain_name]
[-controlling_domain domain]
[-transitive [<TRUE | FALSE>]]

12

Challenge: Precedence Rules
• Common UPF build up methodology

– Define a power domain/strategy/attributes for a more generic set of elements
– Further write subsequent commands defining power intent for more refined set of

elements
– Reduces number of lines of UPF code

• No clear precedence rules
• Conflicting scenario’s

set_isolation iso1 –domain pd –source pd1 –sink pd2
set_isolation iso2 –domain pd –source pd1

• Both the above UPF command applies to ports which have source as
PD1

13

Solution: Precedence Rules
• Precedence rules defined

– Precedence rules for power domains
– Precedence resolution for retention strategies
– Precedence resolution for isolation, level_shifter, and repeater strategies,
– Precedence resolution for name affixes
– Precedence resolution for supply connections
– Precedence resolution for attributes
– Precedence resolution for simstates

set_isolation iso1 –domain pd –source pd1 –sink pd2
set_isolation iso2 –domain pd –source pd1

• Command that has both the options –source and –sink has higher precedence as
compared to the command which has one of the options –source or –sink specified

14

What’s new in UPF 3.1: Many more
• Challenge: Controlling corruption semantics of specific design

elements
– Solution: New command “sim_corruption_control”

• Challenge: Macro & Terminal boundaries
– What’s a hard boundary, no analysis beyond this
– Solution: Clearly defined the terminal boundary beyond limiting the access

beyond this boundary
• Challenge: Verifying supply constraints

– UPF 2.1 introduced available_supplies, but doesn’t satisfy all criteria’s
– Solution: UPF 3.1 introduced boundary_supplies, and clarified

available_supplies

And Many More..
15

SEMANTIC DIFFERENCES BETWEEN UPF STANDARD’S

• With every UPF release, a number of semantics or
concepts gets clarified.
– Some may not be backward compatible
– As general practice it is important to follow the latest

semantics
– Migration of existing deigns is challenge

• Verification tools follow a common semantics for low-
power verification of the whole design

• Important to know all the semantic differences
– Specifically ones which are backward incompatible

16

Power State’s
• Used for both verification and implementation of power management

– Define the simulation aspect of various state the system is in to
– Checking the power management structures

• UPF 2.0
– Power State Tables (PST) : Tabular representation of the possible state

combinations for the given supplies
• Limitations : Dependency on supply port/nets ; Tabular representation causes an

explosion of states ; Lack of hierarchical composition capability in PSTs
– Power States : allows users to define power states on supply sets and power

domains using add_power_state command
• Express power states in terms of boolean expressions via –logic_expr and –supply_expr

switches
• Very powerful in capturing more complex relationships including hierarchical

dependencies
• Limitations : No proper semantics about how the states are handled when supply sets

are associated with other supply sets or handles ; does not restrict the transfer of power
states in the supply set associations

17

Power State’s
• UPF 2.1

– Marked PST as legacy
– New Clarifications

• Supply set handles are local supply sets. Power states do not get transferred
• Added –supply, -domain and –complete to add_power_state
• Addition of another simstate “CORRUPT_STATE_ON_ACTIVITY”

– Restrictions
• Number of restrictions to avoid state explosion & unlimited possibilities of defining power

state expressions ; facilitate better methodology for power intent modeling
– Limitations

• Failed to provide clear definitions about the relationship between power states of various
IPs and how the system behaves a whole.

• Lacked to provide any information about system level power modeling
• Further the simulation behavior based on power states definitions relied on loose concept

of multiple power states being active at same time and most corrupt simstate being the
active simstate driving the simulation.

18

Power State’s : UPF 3.0/3.1
• New command “create_power_state_group” to create a group of related power states

– Define the power state of a whole system which relies on the power state definitions of its IPs
• Overhauled the definitions & restrictions of power states

– Predefined states DEFAULT_NORMAL and DEFAULT_CORRUPT for supply sets removed
• Two new predefined states ON and OFF for supply sets : Backward incompatible
• Users can update these power state by defining logic expression for these deferred power states.

– Two new predefined power states for all objects, UNDEFINED and ERROR state.
• ERROR state: Represents error condition in which two mutually exclusive states are both active at the same

time.
• Undefined power state: This power state initially represents the undifferentiated set of all possible functional

states of that object.
– Definitive power state: If its defining / logic expression consists of a single term or conjunction of terms
– The new standard allowed building the power states upon existing ones

• One being the refined power state of an abstract power states. A power state S of an object is a fundamental
power state if it is a power state that is not a refinement of any other power state of that object.

– Multiple power states can be active at the same time, however LRM defined clearly that there will be a single current
power state of an object.

• The simstate of current power state is the one which drives simulation behavior of that object.
19

Port Vs Path Based Semantics
• Source logic goes OFF and sink logic in an ON state, there is a need for

Isolation

set_isolation strategy_name
[-source <source_domain_name | source_supply_ref >] [-sink <sink_domain_name | sink_supply_ref >]
[-location <self | other | parent | fanout>] [-clamp_value <0 | 1 | Z | latch | value | {<0 | 1 | Z | latch | value>*}>]
…

PD_MP3 ‘X’ PD_DISP
‘1’

D

A

C

E

out1

in1

in2

in3

in4

B

• If the isolation is not inserted properly at the right path, then it can lead to
functional failure

• If the isolation is placed at a location where it is not required, it is a redundant cell
and leads to waste of area and power.

UPF 3.0
set_isolation iso3 -domain red –location parent

• UPF commands do specify the path where the isolation needs to be applied and
the domain at which the cell needs to be inserted

• Port Based Semantics : can result in collateral damage

20

UPF 3.1 Solution: Port Vs Path Based Semantics

D

A

C

E

out1

in1

in2

in3

in4

B

• Isolation strategies are applied on a per path basis in the design
• Net splitting to avoid to minimize collateral damage
• -location fanout : target insertion port is port on location domain boundary closest to the receiving logic.
• -location fanout is not specified: target insertion port is the port of the location domain that is (for the self

domain), or corresponds to (for the parent or child domain), the port to which the strategy applies
• Error if the isolation power intent cannot be implemented without duplicating ports

UPF 3.1
set_isolation iso3 -domain red

• Iso3 –location self: Error
• Iso3 –location parent: At highconn of out1 but will not isolate path that

goes to in4.
• Iso3 –location fanout: At in1 before A (will not isolate path goes to in2), at in2 in

green, at in3 in green, at highconn of out1 but will only isolate path that goes to
D.

21

UPF Attributes
• Attributes provide information that supports or affects the meaning

of related UPF commands
• Multiple sources
• UPF 2.1

– Information about what are the set of attributes that can be applied on
model/instances/ports

• UPF 3.0
– Clarified the precedence of attributes
– Concept of characteristics attributes : represent characteristics of a

module or cell
• Verification tools error out when constraints are not met

• UPF 3.1
– Removed any ambiguities in the definitions and restrictions of attributes
– Characteristics attributes were replaced with more clear definitions

• Model specific, some only instance specific and which can be applied on both model
and instance level

• More clear constraint definitions

UPF

RTL Liberty

PRIORITY ??

22

UPF Design Guidelines
 Use UPF command “upf_version” to specify the syntax of commands

– Specify this command per UPF file
• If the file has a different way of syntax from its parent UPF file from which it got loaded

 Check the verification’s tool default support of UPF standard with respect
to semantics
– Use tool’s options or attributes to control a specific functionality

 Unless absolutely necessary always follow the latest semantics
 Starting-off with a new design

– Follow the same UPF version for all the design & UPF file
– Semantics cannot be controlled for a particular part of the design however it is

applicable for the whole design.

23

Conclusion
• Power Aware Verification has become complex

– Lots of challenges to verify power management
• UPF is fastest evolving IEEE standard
• UPF 3.1 is a major milestone in evolution of UPF

– New additions to fill the gap
– Clarification of many concepts

U
P
F

3.1

• “Which is the right standard for my design”.
– There is no single answer for the question

• With clear understanding of the syntax and semantic changes over the
UPF releases
– Better judgment of the UPF version for their respective design
– Easy migration to latest UPF standard

24

THANK YOU
Questions ??

25

	UPF 1.0, UPF 2.0, UPF 2.1, UPF 3.0, and now UPF 3.1: The big Q “Which is the Right Standard for My Design”?
	Agenda
	Introduction
	Evolution of UPF
	New Challenges
	Migration to UPF 3.1: Backward Compatibility
	Migration to UPF 3.1: Common FAQs
	What’s new in UPF 3.1
	Challenge: Controlling SV Assertions in Low-Power Designs
	Solution: Controlling SV Assertions in Low-Power Designs
	Challenge: Controlling replaying of initial blocks
	Solution: Controlling replaying of initial blocks
	Challenge: Precedence Rules
	Solution: Precedence Rules
	What’s new in UPF 3.1: Many more
	SEMANTIC DIFFERENCES BETWEEN UPF STANDARD’S
	Power State’s
	Power State’s
	Power State’s : UPF 3.0/3.1
	Port Vs Path Based Semantics
	UPF 3.1 Solution: Port Vs Path Based Semantics
	UPF Attributes
	UPF Design Guidelines
	Conclusion
	THANK YOU�Questions ??

