Unveil the Mystery of Code Coverage in Low Power Designs
(Achieving Power Aware Verification Closure)

Madhur Bhargava, Mentor, A Siemens Business
(madhur_bhargava@mentor.com)
Durgesh Prasad, Mentor, A Siemens Business
(durgesh_prasad@mentor.com)
Pavan Rangudu, Mentor, A Siemens Business
(rangudu_pavan@mentor.com)
Agenda

• Introduction
• Motivation for paper
• Challenges in code coverage of low-power designs
• Case studies and examples
 – Addressing the challenges
• Conclusion
Introduction

Today's SoCs
• Are incredibly Complex
• Have sophisticated power management strategies for highly power efficient design
• Make use of various coding styles and have complex power aware and non-power aware macro models
• Integrate variety of implementation cells
 – Isolation, retention, buffers etc.

They Must
• Verify the power management
 – Make sure 100% code coverage and low-power coverage
Unified Power Format (UPF)

- RTL is augmented with a UPF specification
 - To define the power architecture for a given implementation

- RTL + UPF drives implementation tools
 - Synthesis, place & route, etc.

- RTL + UPF also drives power-aware verification
 - Ensures that verification matches implementation
Motivation

• Low-Power is now de-facto
• Low-Power design RTL is changed by simulator to make it power aware
• A typical low-power regression setup

• No standard for modeling of code coverage in low-power designs
 – UCIS has no support for low-power
• Need for verification plan to achieve closure for low-power verification
 – Coverage of power objects (all possible states and transitions)
 – 100% code coverage of user RTL
Challenges - Code Coverage of Low-Power Instrumented Design

• PA logic inside “ifdef PA”
 – Block gets activated/covered only when low-power simulations are run
 – Guideline: Guard the low-power functionality and avoid enabling the PA code in Non-PA runs

• Functional Coverage
 – Coverage of assertions (checker logic):
 • Non PA assertions can get triggered during power-off : False alarms
 • Simulation tools generally disable assertions during the power down period
 • Disable the coverage of these assertions during the power down period.
 – Covergroup based coverage
 • Functional coverage done using covergroups does not have any impact and can be easily achieved in low-power designs.

module top
 `ifdef UPF
 reg vdd;
 ...
 /* PA Functionality */
 `endif
 reg abc;
 reg xyz;
 /* non PA Functionality */
Challenges Contd..

• Power Controlling Logic: PA Coverage
 – Verification closure plan requires coverage of power objects
 – Low-power coverage is handled separately by the verification tools

• Low-Power Designs having “Hard Macros: PA Behavior Model”
 – Power-aware behavioral model: power behavior is modeled inside the model itself
 – Visible only when the UPF connections are made

module ana_mac(... ip1, ..)
wire vdd = 1; wire vss = 0;
always @(vdd, vss, clk)
 begin
 if (vdd === 1'b1 && vss === 1'b0)
 d = clk & a1;
 else
 d = 1'bx;
 end

- UPF connections to the supply pins vdd and vss
- No PA logic inserted
- RTL code coverage does not pose any challenge
- Toggle coverage of supply pins (vdd, vss) is not considered
- Code coverage numbers (RTL) differs in a Non PA simulation (always on) Vs PA Simulations (Supplies going on/off)
Challenges Contd..

- **Soft Macros**
 - Verification tool inserts the isolation, level shifter cells and other pa cells
 - Insert some power logic into the design in order to do power aware

```verilog
always @(*)
  out = in1 & in2;
```

- Whenever ‘in1’ or ‘in2’ changes, the statement gets hit
- if the power of this part of design is OFF,
 - then this statement will not get triggered;
 - signal ‘out’ will get a value ‘x’
- When power is enabled
 - the assign statement will get triggered
- Moreover, the number of times this statement gets triggered now also depends on power along with ‘in1’ and ‘in2’
Types of code coverage
(Challenges & How to address them)

• Line Coverage

<table>
<thead>
<tr>
<th>Actual D-FlipFlop RTL logic</th>
<th>PA Instrumented D-FlipFlop RTL logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. always @(posedge clk, posedge reset, posedge set) begin</td>
<td>1. always @(posedge clk, posedge reset, posedge set, posedge PWR) begin</td>
</tr>
<tr>
<td>2. if (reset)</td>
<td>2. if (~(PWR))</td>
</tr>
<tr>
<td>3. q<=1'b0;</td>
<td>3. q <= 1'hx;</td>
</tr>
<tr>
<td>4. else if(set)</td>
<td>4. else</td>
</tr>
<tr>
<td>5. q<=1'b1;</td>
<td>5. if (reset)</td>
</tr>
<tr>
<td>6. else if(clk)</td>
<td>6. q <= 1'h0;</td>
</tr>
<tr>
<td>7. q <= d;</td>
<td>7. else if (set)</td>
</tr>
<tr>
<td>8. end</td>
<td>8. q <= 1'h1;</td>
</tr>
<tr>
<td></td>
<td>9. else if (clk)</td>
</tr>
<tr>
<td></td>
<td>10. q <= d;</td>
</tr>
<tr>
<td></td>
<td>11. end</td>
</tr>
</tbody>
</table>

• New Lines get introduced

• Code coverage on this PA instrumented RTL logic will not give proper results

Solution

• Exclude the coverage of new lines/statements
• Original RTL line number remain same
• Set new lines numbers as “0”
Types of code coverage
(Challenges & How to address them) contd..

• Conditional/Expression Coverage

<table>
<thead>
<tr>
<th>Actual RTL Expression</th>
<th>PA-Instrumented RTL Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>assign c = a&b;</td>
<td>assign c = (PWR) ? (a&b) : 1’bx;</td>
</tr>
</tbody>
</table>

• Challenges
 – Input terms for Expression coverage will be PWR, a and b
 – Increase in FEC Expression input terms
 – coverage results will not give proper results as expected on a non-pa RTL logic

• Solution
 – exclude the input terms that have been additionally added
Types of code coverage (Challenges & How to address them) contd..

- Branch Coverage.

1. always @(posedge clk, posedge reset, posedge set, posedge PWR)
 begin
2. if (~(PWR))
3. q <= 1’hx;
4. else
5. if (reset)
6. q <= 1’h0;
7. else if (set)
8. q <= 1’h1;
9. else if (clk)
10. q <= d;
11. end

New Branches Introduced

Exclude Extra Branches
(Does not capture activity when power goes down) – PA Coverage
• Toggle Coverage
 – Report how many times signals and ports are toggled during a simulation run
 – Insertion of power logic into the RTL logic, toggling of signals and ports may increase
 – Always different results in toggle activity of RTL signals in PA & Non PA (always on) runs

<table>
<thead>
<tr>
<th>Actual D-FlipFlop RTL logic</th>
<th>PA Instrumented D-FlipFlop RTL logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. always @(a) begin</td>
<td>1. always @(a, PWR) begin</td>
</tr>
<tr>
<td>2. t = 1'b1;</td>
<td>2. if ~(PWR))</td>
</tr>
<tr>
<td>3. #1 t = 1'b0;</td>
<td>3. t <= 1'hx;</td>
</tr>
<tr>
<td>4. end</td>
<td>4. else</td>
</tr>
<tr>
<td></td>
<td>5. begin</td>
</tr>
<tr>
<td></td>
<td>6. t = 1'b1;</td>
</tr>
<tr>
<td></td>
<td>7. #1 t = 1'b0;</td>
</tr>
<tr>
<td></td>
<td>8. end</td>
</tr>
</tbody>
</table>

‘t’ toggles when ‘a’ changes
‘t’ additionally toggles at “PWR” off->on
• State/FSM Coverage
 – States defined assuming design is always powered-up
 – During a low-power simulation, when the power goes off
 • Object enters undefined (verification tool added states)
 – Introduction of a new state will not give proper coverage results

• Solution
 – Exclude this extra state
 • Powered down state captured in PA Coverage
Low-Power Coverage

• Low-Power coverage
 – Together with code coverage leads to verification closure
 – Ensure that adequate testing of power aware elements of the design
• How ?
 – Tool defined low-power coverage
 – User defined low-power coverage using covergroups
 • Using bind_checker calls
 • Random directed coverage methodology
Conclusion

Code Coverage is important
 • Complex in PA Designs

Challenges of Code Coverage & Addressing them
 • Examples of various challenges and solutions to them

Closure - Visualization & Analysis of total coverage results
 • Low-Power Coverage & Code Coverage
References

• [2] “Awashesh Kumar, Madhur Bhargava”, Unleashing the Power of UPF 3.0: An innovative approach for faster and robust Low-power coverage, DVCon India 2017

Q&A

Thank You!